Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Water Regions
2.2. AERONET-OC
2.3. In Situ Data
2.4. Specification of SGLI
3. Results
3.1. Results of nLw(λ), τa(λ), and ω(λ) Obtained from SeaPRISM
3.2. Relative Comparison of Optical Properties among Tokyo Bay, Ariake Sea, and AERONET-OC Sites
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urabe, T.; Okamura, Y.; Tanaka, K.; Mokuno, M. In-orbit commissioning activities results of GCOM-C/SGLI. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXII, Berlin, Germany, 10–13 September 2018; Volume 10785, pp. 88–107. [Google Scholar]
- Tanaka, K.; Okamura, Y.; Mokuno, M.; Amano, T.; Yoshida, J. First year on-orbit calibration activities of SGLI on GCOM-C satellite. In Proceedings of the Earth Observing Missions and Sensors: Development, Implementation, and Characterization V, Honolulu, HI, USA, 24–26 September 2018; Volume 10781, pp. 101–110. [Google Scholar]
- Murakami, H.; Ogata, K. GCOM-C/SGLI capability for coastal observation. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–26 September 2018; Volume 10778, pp. 38–45. [Google Scholar]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.K.; Chuprin, A.; et al. Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Brewin, R.J.W.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Cipollini, P.; Couto, A.B.; Dingle, J.; Doerffer, R.; et al. An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI). Sensors 2019, 19, 4285. [Google Scholar] [CrossRef]
- Nobileau, D.; Antoine, D. Detection of blue-absorbing aerosols using near infrared and visible (ocean color) remote sensing observations. Remote Sens. Environ. 2005, 95, 368–387. [Google Scholar] [CrossRef]
- Toratani, M.; Fukushima, H.; Murakami, H.; Tanaka, A. Atmospheric correction scheme for GLI with absorptive aerosol correction. J. Oceanogr. 2007, 63, 525–532. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, L. Atmospheric correction using the information from the short blue band. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6224–6237. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef]
- Salem, S.I.; Strand, M.H.; Higa, H.; Kim, H.; Kazuhiro, K.; Oki, K.; Oki, T. Evaluation of MERIS chlorophyll-a retrieval processors in a complex turbid lake Kasumigaura over a 10-year mission. Remote Sens. 2017, 9, 1022. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.H.; Park, Y.J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sens. Environ. 2021, 253, 112236. [Google Scholar] [CrossRef]
- Gordon, H.R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. Atmos. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Mouw, C.; Greb, S.; Aurin, D.; DiGiacomo, P.M.; Lee, Z.; Twardowski, M.; Binding, C.; Hu, C.; Ma, R.; Moore, T.; et al. Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions. Remote Sens. Environ. 2015, 160, 15–30. [Google Scholar] [CrossRef]
- Gordon, H.R.; Clark, D.K. Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Appl. Opt. 1981, 20, 4175–4180. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.H.; Gordon, H.R. Coastal zone color scanner “system calibration”: A retrospective examination. J. Geophys. Res. Ocean. 1994, 99, 7293–7307. [Google Scholar] [CrossRef]
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric correction of seawifs imagery: Assestement of the use of alternative bands. Appl. Opt. 2000, 39, 3573–3581. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef]
- Wang, M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: Simulations. Appl. Opt. 2007, 46, 1535–1547. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Chen, J.; Yin, S.; Xiao, R.; Xu, Q.; Lin, C. Deriving remote sensing reflectance from turbid Case II waters using green-shortwave infrared bands based model. Adv. Space Res. 2014, 53, 1229–1238. [Google Scholar] [CrossRef]
- He, Q.; Chen, C. A new approach for atmospheric correction of MODIS imagery in turbid coastal waters: A case study for the Pearl River Estuary. Remote Sens. Lett. 2014, 5, 249–257. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of high quality SWIR bands for ocean color processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Oo, M.; Vargas, M.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Improving atmospheric correction for highly productive coastal waters using the short wave infrared retrieval algorithm with water-leaving reflectance constraints at 412 nm. Appl. Opt. 2008, 47, 3846–3859. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Liang, S.; Wang, D.; Wu, H.; Yu, Y.; Wang, J. Estimation of surface albedo and directional reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) observations. Remote Sens. Environ. 2012, 119, 286–300. [Google Scholar] [CrossRef]
- Moore, G.F.; Aiken, J.; Lavender, S.J. The atmospheric correction of water color and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS. Int. J. Remote Sens. 1999, 20, 1713–1733. [Google Scholar] [CrossRef]
- Lavender, S.J.; Pinkerton, M.H.; Moore, G.F.; Aiken, J.; Blondeau-Patissier, D. Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters. Cont. Shelf Res. 2005, 25, 539–555. [Google Scholar] [CrossRef]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Goyens, C.; Jamet, C.; Ruddick, K.G. Spectral relationships for atmospheric correction II Improving NASA’s standard and MUMM near infra-red modeling schemes. Opt. Express 2013, 21, 21176–21187. [Google Scholar] [CrossRef]
- Doerffer, R.; Schiller, H. The MERIS case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Schroeder, T.; Behnert, I.; Schaale, M.; Fischer, J.; Doerffer, R. Atmospheric correction algorithm for MERIS above case-2 waters. Int. J. Remote Sens. 2007, 28, 1469–1486. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Chomko, R.M.; Gordon, H.R.; Maritorena, S.; Siegel, D.A. Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: A validation. Remote Sens. Environ. 2003, 84, 208–220. [Google Scholar] [CrossRef]
- Stamnes, K.; Li, W.; Yan, B.; Eide, H.; Barnard, A.; Pegau, W.S.; Stamnes, J.J. Accurate and self-consistent ocean color algorithm: Simultaneous retrieval of aerosol optical properties and chlorophyll concentrations. Appl. Opt. 2003, 42, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Jamet, C.; Thiria, S.; Moulin, C.; Crepon, M. Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean colar imagery: A feasibility study. J. Atmos. Ocean. Technol. 2005, 22, 460–475. [Google Scholar] [CrossRef]
- Brajard, J.; Jamet, C.; Moulin, C.; Thiria, S. Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean color sensor: Application to absorbing aerosols. Neural Netw. 2006, 19, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Brajard, J.; Moulin, C.; Thiria, S. Atmospheric correction of SeaWiFS ocean color imagery in the presence of absorbing aerosols off the Indian coast using a neuro-variational method. Geophys. Res. Lett. 2008, 35, 20. [Google Scholar] [CrossRef]
- Kuchinke, C.P.; Gordon, H.R.; Harding, L.W.; Voss, K.J. Spectral optimization for constituent retrieval in Case 2 waters II: Validation study in the Chesapeake Bay. Remote Sens. Environ. 2009, 113, 610–621. [Google Scholar] [CrossRef]
- Brajard, J.; Santer, R.; Crépon, M.; Thiria, S. Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion. Remote Sens. Environ. 2012, 126, 51–61. [Google Scholar] [CrossRef]
- Mograne, M.A.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A. Evaluation of five atmospheric correction algorithms over French optically-complex waters for the Sentinel-3A OLCI Ocean Color Sensor. Remote Sens. 2019, 11, 668. [Google Scholar] [CrossRef]
- Toratani, M.; Ogata, K.; Fukushima, H. Atmospheric Correction Algorithm for Ocean Color Version 3. 28 October 2021. Available online: https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver3/V3ATBD_O2AB_NWLR_toratani.pdf (accessed on 28 May 2024).
- Hayashi, M.; Ishizaka, J.; Kobayashi, H.; Toratani, M.; Nakamura, T.; Nakashima, Y.; Yamada, S. Evaluation and Improvement of MODIS and SeaWiFS-derived Chlorophyll a Concentration in Ise-Mikawa Bay. J. Remote Sens. Soc. Jpn. 2015, 35, 245–259. [Google Scholar]
- Yang, M.M.; Ishizaka, J.; Goes, J.I.; Gomes, H.D.R.; Maúre, E.D.R.; Hayashi, M.; Katano, T.; Fujii, N.; Saitoh, K.; Mine, T.; et al. Improved MODIS-Aqua chlorophyll-a retrievals in the turbid semi-enclosed Ariake Bay, Japan. Remote Sens. 2018, 10, 1335. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.F.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A network for the validation of ocean color primary products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Zibordi, G.; Holben, B.N.; Talone, M.; D’Alimonte, D.; Slutsker, I.; Giles, D.M.; Sorokin, M.G. Advances in the ocean color component of the aerosol robotic network (AERONET-OC). J. Atmos. Ocean. Technol. 2021, 38, 725–746. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Feng, H. Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets. Remote Sens. Environ. 2015, 159, 14–27. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Sekiguchi, M.; Shi, C.; Hashimoto, M.; Nakajima, T. Analysis and validation of ocean color and aerosol properties over coastal regions from SGLI based on a simultaneous method. J. Oceanogr. 2022, 78, 229–243. [Google Scholar] [CrossRef]
- Jamet, C.; Loisel, H.; Kuchinke, C.P.; Ruddick, K.; Zibordi, G.; Feng, H. Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sens. Environ. 2011, 115, 1955–1965. [Google Scholar] [CrossRef]
- Tan, J.; Frouin, R.; Ramon, D.; Steinmetz, F. On the adequacy of representing water reflectance by semi-analytical models in ocean color remote sensing. Remote Sens. 2019, 11, 2820. [Google Scholar] [CrossRef]
- Ishizaka, J.; Yang, M.; Fujii, N.; Katano, T.; Hori, M.; Mine, T.; Saitoh, K.; Murakami, H. Use of AERONET-OC for validation of SGLI/GCOM-C products in Ariake Sea, Japan. J. Oceanogr. 2022, 78, 291–309. [Google Scholar] [CrossRef]
- Mélin, F.; Clerici, M.; Zibordi, G.; Holben, B.N.; Smirnov, A. Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data. Remote Sens. Environ. 2010, 114, 230–250. [Google Scholar] [CrossRef]
- Furukawa, K. Eutrophication in Tokyo Bay. Eutrophication Oligotrophication Jpn. Estuaries Present Status Future Tasks 2015, 5–37. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional reflectance of oceanic waters: Accounting for Raman emission and varying particle scattering phase function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, P.Y.; Fougnie, B.; Frouin, R.; Lecomte, P.; Verwaerde, C. SIMBAD: A field radiometer for satellite ocean-color validation. Appl. Opt. 2004, 43, 4055–4069. [Google Scholar] [CrossRef] [PubMed]
- Zibordi, G.; Mélin, F.; Hooker, S.B.; D’Alimonte, D.; Holben, B. An autonomous above-water system for the validation of ocean color radiance data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 401–415. [Google Scholar] [CrossRef]
- Higa, H.; Koibuchi, Y.; Kobayashi, H.; Toratani, M.; Sakuno, Y. Numerical Simulation and Remote Sensing for the Analysis of Blue Tide Distribution in Tokyo Bay in September 2012. J. Adv. Simul. Sci. Eng. 2015, 2, 1–15. [Google Scholar] [CrossRef]
- Higa, H.; Sugahara, S.; Salem, S.I.; Nakamura, Y.; Suzuki, T. An estimation method for blue tide distribution in Tokyo Bay based on sulfur concentrations using Geostationary Ocean Color Imager (GOCI). Estuar. Coast. Shelf Sci. 2020, 235, 10. [Google Scholar] [CrossRef]
- Wang, K.; Nakamura, Y.; Sasaki, J.; Inoue, T.; Higa, H.; Suzuki, T.; Hafeez, M.A. An effective process-based modeling approach for predicting hypoxia and blue tide in Tokyo Bay. Coast. Eng. J. 2022, 64, 458–476. [Google Scholar] [CrossRef]
- Fukagawa, S.; Kuze, H.; Bagtasa, G.; Naito, S.; Yabuki, M.; Takamura, T.; Takeuchi, N. Characterization of seasonal variation of tropospheric aerosols in Chiba, Japan. Atmos. Environ. 2006, 40, 2160–2168. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Shikasho, S.; Mori, K. Numerical prediction of suspended sediment concentrations in the Ariake Sea, Japan, using a time-dependent sediment resuspension and deposition model. Paddy Water Environ. 2005, 3, 13–19. [Google Scholar] [CrossRef]
- Tanaka, K.; Kodama, M. Effects of resuspended sediments on the environmental changes in the inner part of Ariake Bay, Japan. Bull. Fish. Res. Agency Jpn. 2007, 19, 9. [Google Scholar]
- Ito, Y.; Katano, T.; Fujii, N.; Koriyama, M.; Yoshino, K.; Hayami, Y. Decreases in turbidity during neap tides initiate late winter blooms of Eucampia zodiacus in a macrotidal embayment. J. Oceanogr. 2013, 69, 467–479. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G. Band shifting for ocean color multi-spectral reflectance data. Opt. Express 2015, 23, 2262–2279. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Okamura, Y.; Amano, T.; Hiramatsu, M.; Shiratama, K. Operation concept of the second-generation global imager (SGLI). In Proceedings of the Earth Observing Missions and Sensors: Development, Implementation, and Characterization, Incheon, Republic of Korea, 11–14 October 2010; Volume 7862, pp. 56–61. [Google Scholar]
- Toratani, M.; Ogata, K.; Fukushima, H. Atmospheric Correction Algorithm for Ocean Color Version 2. 3 July 2020. Available online: https://suzaku.eorc.jaxa.jp/GCOM_C/data/ATBD/ver2/V2ATBD_O2AB_NWLR_Toratani_r3.pdf (accessed on 28 May 2024).
- Fukushima, H.; Higurashi, A.; Mitomi, Y.; Nakajima, T.; Noguchi, T.; Tanaka, T.; Toratani, M. Correction of atmospheric effect on ADEOS/OCTS ocean color data: Algorithm description and evaluation of its performance. J. Oceanogr. 1998, 54, 417–430. [Google Scholar] [CrossRef]
- Ahn, J.H.; Park, Y.J.; Kim, W.; Lee, B.; Oh, I.S. Vicarious calibration of the geostationary ocean color imager. Opt. Express 2015, 23, 23236–23258. [Google Scholar] [CrossRef] [PubMed]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.I.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of chlorophyll-a algorithms considering different trophic statuses and optimal bands. Sensors 2017, 17, 1746. [Google Scholar] [CrossRef] [PubMed]
- Higa, H.; Ideno, R.; Salem, S.I.; Kobayashi, H. Uncertainty analysis of particle backscattering coefficient measurement for multiple highly turbid water regions in ocean colour remote sensing. Sens. Mater. 2023, 35, 3807–3828. [Google Scholar]
- Azhikodan, G.; Yokoyama, K. Spatio-temporal variability of phytoplankton (chlorophyll-a) in relation to salinity, suspended sediment concentration, and light intensity in a macrotidal estuary. Cont. Shelf Res. 2016, 126, 15–26. [Google Scholar] [CrossRef]
- Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. An update of the quasi-analytical algorithm (QAA_v5). Int. Ocean Color Group Softw. Rep. 2009, 1, 1–9. [Google Scholar]
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; NASA: Washington, DC, USA, 2016. [Google Scholar]
- Antoine, D. OLCI Level 2 Algorithm Theoretical Basis Document Atmospheric Corrections over Case 1 Waters. Available online: https://sentinel.esa.int/documents/247904/349589/OLCI_L2_ATBD_Ocean_Colour_Products_Case-1_Waters.pdf (accessed on 28 May 2024).
Location | Water Region | Coordinates | |
---|---|---|---|
1 | Kemigawa Offshore Tower | Tokyo Bay | 35.611°N, 140.023°E |
2 | Ariake Tower | Ariake Sea | 33.104°N, 130.272°E |
3 | Bahia Blanca | Argentine Sea | 39.148°S, 61.722°W |
4 | Casablanca Platform | Balearic Sea | 40.717°N, 1.358°E |
5 | Galata Platform | Black Sea | 43.045°N, 28.193°E |
6 | Gloria * | Black Sea | 44.600°N, 29.360°E |
7 | Grizzly Bay | Grizzly Bay | 38.108°N, 122.056°W |
8 | Gustav Dalen Tower | Baltic Sea | 58.594°N, 17.467°E |
9 | Helsinki Lighthouse | Gulf of Finland | 59.949°N, 24.926°E |
10 | Irbe Lighthouse | Gulf of Riga | 57.751°N, 21.723°E |
11 | Lake Erie | Lake Erie | 41.826°N, 83.194°W |
12 | Lake Okeechobee * | Lake Okeechobee | 26.902°N, 80.789°W |
13 | Lake Okeechobee N * | Lake Okeechobee | 27.139°N, 80.789°W |
14 | Long Island Sound Coastal Observatory (LISCO) | Long Island Sound | 40.955°N, 73.342°W |
15 | Lucinda | Great Barrier Reef | 18.520°S, 146.386°E |
16 | Martha’s Vineyard Coastal Observatory (MVCO) | East Coast of United States of America | 41.325°N, 70.567°W |
17 | Palgrunden | Lake Vanern | 58.755°N, 13.152°E |
18 | San Marco Platform | Indian Ocean | 2.942°S, 40.215°E |
19 | Section-7 Platform * | Black Sea | 44.546°N, 29.447°E |
20 | Socheongcho | Yellow Sea | 37.423°N, 124.738°E |
21 | South Greenbay | Green Bay (Lake Michigan) | 44.596°N, 87.951°W |
22 | Thornton C-power | North Sea | 51.532°N, 2.955°E |
23 | USC SEAPRISM * | Long Beach | 33.564°N, 118.118°W |
24 | USC SEAPRISM 2 * | Long Beach | 33.564°N, 118.118°W |
25 | Venice | Adriatic Sea | 45.314°N, 12.508°E |
26 | Wave-Current-Surge Information System (WaveCIS) Site CSI-6 | Gulf of Mexico | 28.867°N, 90.483°W |
Center Wavelength | Bandwidth | IFOV | |||
---|---|---|---|---|---|
Channel | VNR, SWI: nm TIR: µm | nm | m | ||
Visible and near-infrared radiometer | Non-polarization channels | VN1 | 380 | 10 | 250 |
VN2 | 412 | 10 | |||
VN3 | 443 | 10 | |||
VN4 | 490 | 10 | |||
VN5 | 530 | 20 | |||
VN6 | 565 | 20 | |||
VN7 | 673.5 | 20 | |||
VN8 | 673.5 | 20 | |||
VN9 | 763 | 12 | |||
VN10 | 868.5 | 20 | |||
VN11 | 868.5 | 20 | |||
Polarization channels | P1 | 673.5 | 20 | 1000 | |
P2 | 868.5 | 20 | |||
Infrared scanner | SWI channels | SW1 | 1050 | 20 | 1000 |
SW2 | 1380 | 20 | |||
SW3 | 1630 | 200 | 250 | ||
SW4 | 2210 | 50 | 1000 | ||
TIR channels | T1 | 10.8 | 0.74 | 250 | |
T2 | 12 | 0.74 |
Wavelength (nm) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AERONET-OC Site | Water Region | Mean | Standard Deviation | |||||||||||||
N | 380 | 412 | 443 | 490 | 530 | 565 | 673.5 | 380 | 412 | 443 | 490 | 530 | 565 | 673.5 | ||
Ariake Tower | Ariake Sea | 96 | - | 0.879 | 1.197 | 1.854 | 2.292 | 2.610 | 0.693 | - | 0.289 | 0.417 | 0.584 | 0.661 | 0.740 | 0.182 |
Bahia Blanca | Argentine Sea | 87 | - | 2.160 | 2.808 | 3.872 | 5.132 | 5.579 | 1.320 | - | 0.245 | 0.268 | 0.399 | 0.426 | 0.509 | 0.184 |
Casablanca Platform | Balearic Sea | 209 | - | 1.026 | 1.046 | 0.960 | 1.466 | 1.031 | 0.142 | - | 0.330 | 0.274 | 0.170 | 0.115 | 0.118 | 0.020 |
Galata Platform | Black Sea | 246 | - | 0.468 | 0.656 | 0.956 | 1.442 | 1.264 | 0.212 | - | 0.301 | 0.411 | 0.543 | 0.499 | 0.409 | 0.073 |
Gustav Dalen Tower | Baltic Sea | 85 | - | 0.155 | 0.223 | 0.394 | 0.665 | 0.778 | 0.219 | - | 0.118 | 0.116 | 0.167 | 0.205 | 0.227 | 0.059 |
Helsinki Lighthouse | Gulf of Finland | 29 | - | 0.139 | 0.201 | 0.360 | 0.534 | 0.653 | 0.243 | - | 0.141 | 0.149 | 0.210 | 0.268 | 0.303 | 0.092 |
Irbe Lighthouse | Gulf of Riga | 71 | - | 0.189 | 0.283 | 0.505 | 0.780 | 0.916 | 0.263 | - | 0.090 | 0.114 | 0.169 | 0.275 | 0.325 | 0.111 |
Kemigawa Offshore Tower | Tokyo Bay | 94 | - | 0.196 | 0.315 | 0.572 | 0.840 | 0.965 | 0.287 | - | 0.142 | 0.210 | 0.361 | 0.531 | 0.577 | 0.125 |
LISCO | Long Island Sound | 103 | - | 0.234 | 0.413 | 0.805 | 1.141 | 1.345 | 0.375 | - | 0.100 | 0.149 | 0.247 | 0.389 | 0.452 | 0.119 |
Lake Erie | Lake Erie | 17 | - | 0.963 | 1.116 | 1.822 | 2.378 | 2.577 | 0.644 | - | 0.289 | 0.360 | 0.490 | 0.917 | 0.999 | 0.268 |
Lake Okeechobee | Lake Okeechobee | 64 | - | 0.403 | 0.559 | 0.831 | 0.648 | 0.729 | 0.367 | - | 0.237 | 0.293 | 0.366 | 0.269 | 0.316 | 0.149 |
USC SEAPRISM | Long Beach | 117 | - | 0.599 | 0.672 | 0.724 | 1.276 | 1.007 | 0.150 | - | 0.484 | 0.548 | 0.536 | 0.135 | 0.101 | 0.022 |
Lucinda | Great Barrier Reef | 78 | - | 1.207 | 1.714 | 2.464 | 3.070 | 2.887 | 0.515 | - | 0.364 | 0.484 | 0.607 | 0.797 | 0.934 | 0.248 |
MVCO | East Coast of | 22 | - | 0.463 | 0.640 | 0.994 | 1.486 | 1.583 | 0.338 | - | 0.172 | 0.255 | 0.411 | 0.522 | 0.575 | 0.134 |
Palgrunden | Lake Vanern | 97 | - | 0.167 | 0.296 | 0.560 | 0.857 | 1.082 | 0.377 | - | 0.094 | 0.103 | 0.158 | 0.254 | 0.318 | 0.108 |
San Marco Platform | Indian Ocean | 53 | - | 0.744 | 1.011 | 1.394 | 1.986 | 1.963 | 0.400 | - | 0.156 | 0.290 | 0.443 | 0.649 | 0.849 | 0.280 |
Socheongcho | Yellow Sea | 82 | - | 0.481 | 0.652 | 0.995 | 1.465 | 1.385 | 0.244 | - | 0.229 | 0.349 | 0.559 | 0.584 | 0.573 | 0.107 |
South Greenbay | Green Bay | 42 | - | 0.279 | 0.390 | 0.810 | 0.752 | 0.871 | 0.413 | - | 0.134 | 0.156 | 0.273 | 0.254 | 0.320 | 0.141 |
Thornton C-power | North Sea | 35 | - | 0.489 | 0.685 | 1.126 | 1.548 | 1.634 | 0.348 | - | 0.322 | 0.495 | 0.845 | 0.942 | 0.951 | 0.193 |
Venice | Adriatic Sea | 224 | - | 0.900 | 1.158 | 1.632 | 2.080 | 1.857 | 0.307 | - | 0.482 | 0.695 | 1.013 | 1.010 | 0.959 | 0.185 |
WaveCIS Site CSI-6 | Gulf of Mexico | 84 | - | 0.345 | 0.473 | 0.793 | 1.147 | 1.237 | 0.286 | - | 0.251 | 0.335 | 0.553 | 0.609 | 0.639 | 0.152 |
Wavelength (nm) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SGLI Site | Water Region | Mean | Standard Deviation | |||||||||||||
N | 380 | 412 | 443 | 490 | 530 | 565 | 673.5 | 380 | 412 | 443 | 490 | 530 | 565 | 673.5 | ||
Ariake Tower | Ariake Sea | 96 | 0.173 | 0.503 | 0.726 | 1.155 | 1.523 | 1.777 | 0.585 | 0.415 | 0.442 | 0.424 | 0.360 | 0.449 | 0.403 | 0.191 |
Bahia Blanca | Argentine Sea | 87 | 0.901 | 1.825 | 2.502 | 3.254 | 3.555 | 3.945 | 2.002 | 0.326 | 0.385 | 0.310 | 0.381 | 0.450 | 0.521 | 0.577 |
Casablanca Platform | Balearic Sea | 209 | 0.547 | 0.942 | 0.964 | 0.828 | 0.495 | 0.256 | 0.027 | 0.312 | 0.422 | 0.358 | 0.238 | 0.389 | 0.123 | 0.028 |
Galata Platform | Black Sea | 246 | 0.283 | 0.562 | 0.695 | 0.883 | 0.767 | 0.618 | 0.125 | 0.366 | 0.469 | 0.485 | 0.509 | 0.456 | 0.371 | 0.173 |
Gustav Dalen Tower | Baltic Sea | 85 | 0.207 | 0.348 | 0.376 | 0.441 | 0.526 | 0.508 | 0.125 | 0.303 | 0.350 | 0.315 | 0.290 | 0.264 | 0.295 | 0.096 |
Helsinki Lighthouse | Gulf of Finland | 29 | 0.108 | 0.246 | 0.206 | 0.272 | 0.408 | 0.459 | 0.129 | 0.266 | 0.320 | 0.273 | 0.205 | 0.257 | 0.287 | 0.079 |
Irbe Lighthouse | Gulf of Riga | 71 | 0.074 | 0.187 | 0.280 | 0.431 | 0.577 | 0.575 | 0.145 | 0.275 | 0.324 | 0.255 | 0.193 | 0.234 | 0.222 | 0.077 |
Kemigawa Offshore Tower | Tokyo Bay | 94 | 0.002 | 0.160 | 0.303 | 0.477 | 0.650 | 0.746 | 0.184 | 0.253 | 0.276 | 0.248 | 0.297 | 0.350 | 0.320 | 0.082 |
LISCO | Long Island Sound | 103 | 0.049 | 0.086 | 0.293 | 0.563 | 0.755 | 0.837 | 0.226 | 0.300 | 0.316 | 0.311 | 0.193 | 0.245 | 0.257 | 0.130 |
Lake Erie | Lake Erie | 17 | 0.304 | 0.623 | 0.833 | 1.406 | 1.878 | 1.985 | 0.484 | 0.448 | 0.607 | 0.655 | 0.574 | 0.498 | 0.473 | 0.199 |
Lake Okeechobee | Lake Okeechobee | 64 | 0.137 | 0.221 | 0.087 | 0.062 | 0.279 | 0.358 | 0.216 | 0.316 | 0.353 | 0.335 | 0.291 | 0.343 | 0.298 | 0.154 |
USC SEAPRISM | Long Beach | 117 | 0.130 | 0.366 | 0.416 | 0.498 | 0.362 | 0.242 | 0.062 | 0.245 | 0.300 | 0.259 | 0.179 | 0.163 | 0.131 | 0.095 |
Lucinda | Great Barrier Reef | 78 | 0.382 | 0.917 | 1.335 | 1.852 | 1.809 | 1.659 | 0.301 | 0.320 | 0.415 | 0.427 | 0.437 | 0.469 | 0.533 | 0.237 |
MVCO | East Coast of | 22 | 0.320 | 0.596 | 0.745 | 0.927 | 1.068 | 1.023 | 0.242 | 0.149 | 0.209 | 0.257 | 0.331 | 0.404 | 0.467 | 0.168 |
Palgrunden | Lake Vanern | 97 | −0.063 | 0.037 | 0.178 | 0.382 | 0.602 | 0.691 | 0.218 | 0.223 | 0.262 | 0.174 | 0.152 | 0.171 | 0.204 | 0.079 |
San Marco Platform | Indian Ocean | 53 | 0.652 | 0.965 | 1.191 | 1.346 | 1.352 | 1.397 | 0.435 | 0.345 | 0.359 | 0.370 | 0.352 | 0.472 | 0.701 | 0.600 |
Socheongcho | Yellow Sea | 82 | 0.134 | 0.408 | 0.542 | 0.747 | 0.729 | 0.609 | 0.112 | 0.232 | 0.261 | 0.261 | 0.353 | 0.342 | 0.328 | 0.058 |
South Greenbay | Green Bay | 42 | −0.012 | 0.310 | 0.167 | 0.523 | 0.769 | 1.229 | 0.426 | 0.689 | 0.918 | 0.758 | 0.758 | 0.546 | 0.766 | 0.426 |
Thornton C-power | North Sea | 35 | 0.179 | 0.353 | 0.498 | 0.826 | 0.917 | 0.967 | 0.239 | 0.257 | 0.341 | 0.443 | 0.644 | 0.676 | 0.655 | 0.171 |
Venice | Adriatic Sea | 224 | 0.441 | 0.863 | 1.089 | 1.366 | 1.289 | 1.060 | 0.200 | 0.347 | 0.452 | 0.542 | 0.680 | 0.685 | 0.633 | 0.168 |
WaveCIS Site CSI-6 | Gulf of Mexico | 84 | 0.176 | 0.337 | 0.467 | 0.663 | 0.770 | 0.784 | 0.207 | 0.258 | 0.329 | 0.368 | 0.429 | 0.480 | 0.487 | 0.151 |
Number of Negative nLw(λ) Values | Percentage of Negative nLw(λ) Values Relative to All Data (%) | |||||||
---|---|---|---|---|---|---|---|---|
SGLI Site | N | 380 nm | 412 nm | 443 nm | 380 nm | 412 nm | 443 nm | |
Galata Platform | Black Sea | 211 | 40 | 14 | 0 | 19 | 7 | 0 |
USC SEAPRISM USC SEAPRISM 2 | Long Beach | 85 | 28 | 2 | 0 | 33 | 3 | 0 |
Bahia Blanca | Argentine Sea | 68 | 1 | 0 | 0 | 2 | 0 | 0 |
Casablanca Platform | Balearic Sea | 157 | 2 | 0 | 0 | 2 | 0 | 0 |
Galata Platform | Balearic Sea | 211 | 31 | 5 | 0 | 15 | 3 | 0 |
Gustav Dalen Tower | Baltic Sea | 73 | 10 | 9 | 0 | 14 | 13 | 0 |
Irbe Lighthouse | Gulf of Riga | 60 | 20 | 16 | 5 | 34 | 27 | 9 |
LISCO | Long Island Sound | 83 | 50 | 28 | 3 | 61 | 34 | 4 |
Lucinda | Great Barrier Reef | 53 | 2 | 0 | 0 | 4 | 0 | 0 |
Palgrunden | Lake Vanern | 84 | 48 | 33 | 10 | 58 | 40 | 12 |
Socheongcho | Yellow Sea | 59 | 11 | 3 | 0 | 19 | 6 | 0 |
Venice | Adriatic Sea | 194 | 12 | 1 | 0 | 7 | 1 | 0 |
WaveCIS Site CSI-6 | Gulf of Mexico | 68 | 12 | 2 | 0 | 18 | 3 | 0 |
Ariake Tower | Ariake Sea | 70 | 21 | 7 | 3 | 30 | 10 | 5 |
Kemigawa Offshore Tower | Tokyo Bay | 82 | 32 | 21 | 1 | 40 | 26 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higa, H.; Muto, M.; Salem, S.I.; Kobayashi, H.; Ishizaka, J.; Ogata, K.; Toratani, M.; Takahashi, K.; Maupin, F.; Victori, S. Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC. Remote Sens. 2024, 16, 3626. https://doi.org/10.3390/rs16193626
Higa H, Muto M, Salem SI, Kobayashi H, Ishizaka J, Ogata K, Toratani M, Takahashi K, Maupin F, Victori S. Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC. Remote Sensing. 2024; 16(19):3626. https://doi.org/10.3390/rs16193626
Chicago/Turabian StyleHiga, Hiroto, Masataka Muto, Salem Ibrahim Salem, Hiroshi Kobayashi, Joji Ishizaka, Kazunori Ogata, Mitsuhiro Toratani, Kuniaki Takahashi, Fabrice Maupin, and Stephane Victori. 2024. "Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC" Remote Sensing 16, no. 19: 3626. https://doi.org/10.3390/rs16193626
APA StyleHiga, H., Muto, M., Salem, S. I., Kobayashi, H., Ishizaka, J., Ogata, K., Toratani, M., Takahashi, K., Maupin, F., & Victori, S. (2024). Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC. Remote Sensing, 16(19), 3626. https://doi.org/10.3390/rs16193626