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Abstract: The power law particle size distribution (PSD) slope parameter is commonly used to
characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine
waters. However, particle size distribution metrics are also very useful for understanding sediment
source and dynamic processes. In this study, a method was proposed to employ the particle size
parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness,
and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to
estimate these parameters. The particle size parameters were estimated using a Mie scattering model,
Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR)
solution method based on the relationship between the power law distribution of the suspended
particles and their optical scattering properties. The estimates were verified by field measurements
in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the
average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated
with more accurate particle size distribution curves. Furthermore, the method was used to monitor
changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the
passage of a strong storm in August 2011. The particle size parameters represented the influence of
a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope,
comprehensively reflected the changes in the near-shore suspended particulate matter. This method
not only established the relationship between remote sensing monitoring and the historical sediment
record, it also extends the power law model to the application of sediment source and dynamic
processes in coastal waters.

Keywords: slope of the power law PSD; particle size parameters; typhoon effect; remote sensing
reflectance; coastal waters; MODIS

1. Introduction

Particle size distribution (PSD) is a fundamental property of natural water particle assemblages
and plays an important indicative role in many fields of marine science [1]. Particle size affects physical
transport and biochemical interactions in seawater [2]. Understanding the relative proportions of small
and large particles at the ocean surface is critical for understanding marine ecology and biogeochemistry.
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The theoretical relationship between the backscattering spectral slope and the power law PSD slope
has been used to derive the seawater surface PSD (hereinafter referred to as the surface PSD) from
ocean color remote sensing images on a global scale. These estimates have been applied to identify
phytoplankton functional groups and to estimate carbon sequestration within the ocean [2,3]; however,
these generally straightforward approaches cannot accommodate the optical complexity of coastal
regions that have waters rich in terrigenous material [4,5].

Coastal areas are characterized by a large range of physical, biochemical, and optical properties
due to the presence of river inputs, freshwater, land, and anthropogenic impacts. This means that the
ocean optical properties in these areas may be different from those of the plankton-dominated ocean
waters [6,7]. In coastal marine environments, mineral particles tend to account for a large proportion
of suspended particulate matter due to river discharge, coastal erosion caused by waves and currents,
and seafloor resuspension [8]. In the open ocean, the abundance of mineral particles is typically low.
There is still no consensus that scattering particles in even the most oligotrophic seas may be organic
or inorganic [9], and current estimation models attribute the optical properties of the surface water
to plankton microorganisms and detrital matter [10]. As a result, these models do not work well in
coastal areas. The influences of extreme weather or human activities render the power law PSD slope
unable to adequately describe the complexity of coastal waters; that is, a simple approximation cannot
fully capture the complexity of sediment re-suspension and transport under the influence of strong
ocean dynamics [11,12].

Geologists often categorize extreme weather events by interpreting the sudden coarsening and
sorting of sediment particles in geological sedimentary sequences as a result of episodic floods and
storm events [13–16]. Many sedimentology studies support the principle that sediment properties
can be used as a proxy for reconstructing sedimentary environments [17–20]. Sediment particle size
is a basic physical property of sediments and its distribution varies with sediment transport and
sediment hydrodynamic characteristics [21]. The sediment particle size parameters (average particle
size, median particle size, sorting, skewness, kurtosis, standard deviation, etc.) are often used to classify
sedimentary environments [22–24]. The particle size distribution curve can directly determine the
migration pattern of each particle size group [25,26] and can be used to characterize environmental and
climatic changes. Unfortunately, collecting on-site measurement data during extreme weather events is
logistically and technically difficult. Additionally, differences in the trajectory, intensity, and velocity of
each storm current across the continental shelf have different effects on the deposition and suspension of
particulate matter. Therefore, it is very difficult to generalize the sedimentary characteristics of extreme
weather at the coastal continental shelf. Remote sensing technologies, which provide monitoring over
a wide spatial coverage with high temporal resolution, are expected to be important for addressing the
sediment particle size distribution problem.

Considering the effects of near-shore mineral particles on scattering and the limitations of the
power law PSD slope, numerous studies have attempted to quantify the PSD and its changes by focusing
on parameters, such as the median particle size, or other non-parametric descriptions [27–30], such as
the particle beam attenuation index or the backscattering attenuation index [31], average particle size [5],
the proportion of sand, silt, and clay [32]. Some studies have calculated the distribution of the PSD angle
scattering model [33]. Although these parameters can better describe the distribution characteristics of
the regional particle size, they remain inadequate indicators of the complex coastal environment.

In this study, the relationship between the backscattering coefficient and the particle size parameters
(including the average particle size, sorting, skewness, kurtosis, and standard deviation) was established
based on the PSD power law model. The particle size distribution curves and parameters describing
the suspended sediment in surface seawater were estimated based on remote sensing reflectance data.
Furthermore, a change in the parameters of surface suspended particulate matter was estimated by
combining field measurements and MODIS images in the vicinity of the Heini Bay of China before
and after the passage of a strong storm in August 2011. The particle size distribution curve and
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its parameters were compared with those in the sedimentary records to obtain indices that could
characterize the impact of the ocean dynamic environmental on the particle size distribution.

2. Materials and Methods

2.1. Theory Background

Light scattering by a single particle depends on its particle size parameters (volume, diameter,
surface area, etc.) [34] and on its refractive index relative to that of the surrounding medium (seawater).
Mie scattering theory can be used to calculate the inherent optical properties of a known individual
particle suspension, assuming that the suspension comprises non-interacting homogeneous spherical
particles [28]. The optical properties of such a suspension follow a Junge-type power law. Mie theory
can quantify the relationship between the particulate backscattering spectrum and the Junge PSD
by providing efficiency factors for scattering (Qbb) [3]. The corresponding coefficient at the given
wavelength is then obtained by integration over all particles of a given size [35]:

bbp(λ) =

Dmax∫
Dmin

π
4

D2Qbb(D,λ, m)N0

(
D
D0

)−ξ
dD, (1)

where N0
(

D
D0

)−ξ
= N(D) is the number of particles per volume of seawater normalized by the size

bin width (units of m–4), D is the particle diameter (m), D0 is a reference diameter, N0 is the particle
differential number concentration at D0 (units of m–4), and ξ is the Junge slope of the PSD. The Junge
slope, ξ, and the reference abundance, N0, are the two parameters of the Junge-type size distribution.
The backscattering efficiency of an individual particle, Qbb(D,λ, m), is a function of the wavelength
of light in vacuo, λ, the diameter of the particle, D, and the particle’s complex index of refraction
relative to the medium, m = n + n′i, where the real part, n, is the ratio of the speed of light in seawater
relative to that in the particle, and the imaginary part, n′, is proportional to the particle material’s bulk
absorption coefficient [36,37].

The number of particles per unit volume within each size class (N(D)) was computed by dividing
the volume percentage content V(D) by the diameter (D) of a volume-equivalent sphere corresponding
to the midpoint of each individual class [38,39]:

N(D) = 6V(D)
(
πD3

)−1
(2)

2.2. Calculations Approach

2.2.1. Particulate Backscattering Coefficient

In coastal areas, the optical properties of seawater components depend considerably on suspended
and dissolved materials that do not covary with phytoplankton pigment concentration and are referred
to as case 2 waters [40]. The total backscattering coefficients of a water body ( bb(λ)) are the sum of the
relevant bulk optical properties associated with each of the various components of a water body [41,42]:

bb(λ) = bbw(λ) + bbc(λ) + bbp(λ), (3)

where bb(λ), bbw(λ), bbc(λ), and bbp(λ) are the backscattering coefficients of total, pure water, planktonic
component, and suspended particles, respectively. According to Morel (1974) [43], the spectral variations
of the scattering coefficient of pure water (bw) follow a (λ)−4.3 law:

bbw(λ) = 0.5bw(500)
(
λ

500

)−4.3
. (4)
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Here, bbw(λ) can be obtained using the experimental results of Smith and Baker (1981) [44] and
Morel et al. (2007) [45]. The experimental and theoretical results show that absorption and scattering by
phytoplankton vary in a complementary manner. Thus, the phytoplankton backscattering coefficient
can be obtained from the chlorophyll concentration and backscattering wavelength dependence using
the method of Sathyendranath and Morel (1989) [41]:

bbc(λ) = 0.005bc(550)
(

ac(550)
ac(λ)

)
, (5)

where scattering by phytoplankton at 550 nm is estimated from the chlorophyll concentration
(C, mg m–3), bc(550) = 0.12C0.63, and ac(λ) is the absorption coefficient of chlorophyll. The total
backscattering coefficient bb(λ) and the total absorption coefficient of chlorophyll ac(λ) used in the
formula were obtained using the QAA_V5 algorithm. The algorithm description and parameter setting
procedures are described in detail in Lee et al. (2002) [46] and Qing et al. (2011) [47].

2.2.2. Backscattering Efficiency

The backscattering efficiency (Qbb(D,λ, m)) was computed using the Bohren and Huffman
(1983) [48] Mie code, based on the Mie scattering theory developed for homogenous spherical particles
(usually called Mie scattering). In the Mie scattering calculation, the relative size is a dimensionless
number that compares the spherical particle diameter (D) to the incident light wavelength (λ); that is,
2πD/λ. The real part (n) of the refractive index (m) was computed as the integration of the percentage
of each mineral with the corresponding refractive indices given by Kerr (1977) [30,49]. For the
imaginary part n’ (λ) of the refractive index, the measured absorption coefficients of a suspended
particle abx(λ) [42,47] were calculated to assess the best n’ (λ) parameterization.

2.2.3. Particle Size Parameters Calculation

The experimental results obtained using a laser particle size analyzer represent the cumulative
percentage f(D) of particles smaller than a certain particle size (D). The relationship between those
results and the volume percentage content V(D) of a certain particle size (D) is as follows:

V(D) =
f (D)i+1 − f (D)i/ log(Di/Di−1)∫ Dmax

Dmin
( f (D)i+1 − f (D)i/ log(Di/Di−1))

× 10−4. (6)

The volume concentration of a continuous size spectrum with n size classes has a physical
constraint,

∑n
i=1 V(Di) = 1, 0 ≤ V(Di) ≤ 1. A formula for calculating the average particle size (D) of

suspended particles is as follows:

D =
∑n

i=1
(V(Di) ×Di). (7)

According to a logarithmic scale method proposed by Krumbein (1934) [50], the formula for
calculating the value of the average particle size (ø) is:

D(o) =
∑n

i=1
(V(Di) × (− log2 Di)). (8)

The sorting (σ) of suspended particles is used as a parameter for judging the particle size
distribution range relative to the average particle size. The evaluation is based on the fact that similarly
sized particles are often dynamically screened to a common pool, and the sorting process tends to be
good. The formula describing the sorting process is:

σ =

√∑n

i=1
(((− log2 Di) − (V(Di) × (− log2 Di)))2 ×V(Di)). (9)
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The skewness (Sk) indicates the symmetry of the grain size distribution curve, in which the
particulate particle size is coarse, as indicated by the positive skewness grain size distribution curve
(Table 1). The skewness is calculated according to:

Sk =
(∑n

i=1

(
(
((
− log2 Di

)
−

(
V(Di) ×

(
− log2 Di

)))3
×V(Di)

))
/σ3. (10)

The kurtosis (KG) is used to measure the degree to which the extreme value of the frequency
distribution curve deviates from the extreme value of the normal distribution. A platykurtic distribution
is one in which most of the values share about the same frequency of occurrence. A leptokurtic
distribution has a higher frequency of particles within the peak range (Table 1). The kurtosis is
calculated according to:

KG =
(∑n

i=1

(
(
((
− log2 Di

)
−

(
V(Di) ×

(
− log2 Di

)))4
×V(Di)

))
/σ4. (11)

To solve Equation (1) numerically, substitution of Equations (2) and (6) into Equation (1) yields
the further derivative Equation (12):

bbp
(
λ j

)
=

3
2
×

∑n

i=1

Qbb
(
Di,λ j, m j

)
Di

×V(Di) × dDi ( j = 1, 2, . . . , S), (12)

where n denotes the number of subintervals that divide the particle size range (Dmin,Dmax). Therefore,
Equation (1) can be described in terms of the discrete subintervals as:

B = A·V, (13)

A =


a1,1 . . . a1,N

a2,1 · · · a j,i · · ·
...

...
as,1 · · · aS,N


(14)

B =
[
b1, . . . , b j, . . . , bS

]T
, (15)

V = [V(D1), · · · , V(Di), · · · , V(DN)]
T, (16)

where A denotes the coefficient matrix, a j,i =
3
2 ×

Qbb(Di,λ j,m j)
Di

, B denotes the backscattering coefficient

matrix, b j = bbp
(
λ j

)
, and S denotes the number of measurement wavelengths.

Table 1. Classification of sorting, skewness and kurtosis [22].

Sorting σ Skewness Sk Kurtosis KG

Very well sorted −1.0 Very platykurtic
0.35 Very negative 0.67

Well sorted −0.30 Platykurtic
0.5 Negative 0.90

Moderately sorted −0.10 Mesokurtic
1.00 Nearly symmetrical 1.11

Poorly sorted 0.10 Leptokurtic
2.00 Positive 1.50

Very poorly sorted 0.3 Very leptokurtic
4.00 Very positive 3.00

Extremely poorly sorted 1.00 Extremely Leptokurtic
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For this first type of Fredholm integral equation, the least squares QR decomposition (LSQR)
algorithm can be used to solve it [32,51,52]. LSQR is one of the iterative regularization methods based
on Lanczos bidiagonalization and QR factorization and first put forward by Paige and Saunders [53]
in 1982 to solve the discrete optimization problems. The solution step is to first convert the arbitrary
coefficient matrix into a square matrix, and then solve the least square solution of equations based on
the bidiagonalization procedure Golub and Kahan (1965) [54].

2.3. Study Area

The above algorithm was verified over a small inner-shelf embayment at the easternmost tip of
the Shandong Peninsula of China facing the Yellow Sea (Figure 1). This bay, Heini Bay, is a relatively
independent sedimentary cell with a single material source primarily from coastal erosion and offshore
suspended particles. The wave climate in this area features tide-dominated intermediate wave energy.
The current velocity during winter is 80% of that during summer. The Yellow Sea littoral current
flows through the nearshore area from N to S [55]. Sorting of the sediment was generally less than
1.4 (poorly sorted), transitioning from less than 0.6 (well sorted) in the nearshore area to 1.2 (poorly
sorted) (Table 1) offshore [56]. The sorting distribution ran nearly parallel to the coast. The seabed
sediments of the bay mostly consisted of muddy silt at water depths of less than 20 m, or coarse sand
and gravel for water depths of 20–30 m, from the northern headland southward [57]. In recent decades,
sediment refinement has occurred in the bay, and the outer sea clayey silt has gradually diffused into
the bay, possibly because of nearby coastal aquaculture activities [56,58,59].
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Figure 1. Map showing the locations at which suspended particle samples were collected in Bohai Sea,
Yellow River mouth, South Yellow Sea, and Heini Bay, as well as the chlorophyll samples collected in
Heini Bay. The core site collection location, sediment trap site, and strong storm track are noted.

This area suffers an annual average of 1.6 tropical cyclones (30% of which land on the coast) [60–62].
On the morning of 8 August 2011, typhoon Muifa passed the eastern shore of the Shandong Peninsula
approximately 100 km east of the study area with a maximum wind speed of 15.1 m s−1 and a significant
wave height (Hs) of 5.8 m (Figure 1). Strong hydrodynamics induced approximately 9 times the settling
particulate matter flux at a depth of 14 m compared to the value observed under normal weather
conditions. An analysis of the sediment particulates indicated a high content of silt and clay with very
little organic matter, and the particle size distribution changed from very poorly sorted to poorly sorted,
from very positive skewness to positive skewness, and from very leptokurtic kurtosis to extremely
leptokurtic kurtosis [62,63].

2.4. Sampling

During the passage of the typhoon Muifa, a time-series sediment trap (PARFLUX Mark78H-21,
McLane Corporation, East Falmouth, MA, USA) was placed on a subsurface mooring at a depth of 14 m
from 5 to 26 August 2011 (Figure 1). Nineteen settling particulate matter samples were collected every
24 h from 5 to 23 August 2011 (the samples from 24 to 26 August 2011 were contaminated and could
not be used). To determine the sediment characteristics from historical sedimentary records, a short
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sediment core (HN01) sample, collected in June 2006, was analyzed. Details of the data collection and
analysis methodology can be found in Liu et al. (2015) [62] and Liu et al. (2016; 2019) [56,63].

26 samples of suspended particulate matter were collected from a surface water depth of within
0.5 m between 13 and 21 November 2004, or between 28 April and 7 May 2006. The surface chlorophyll
concentration and its corresponding spectral reflectance data were collected before the passage of the
typhoon on 8 August 2011 (Figure 1).

The model relationship was verified by collecting surface suspended sediment particle size
distribution data and surface spectral reflectance data measured during five sampling trips at the
Yellow River mouth on 19–27 June 2004 and September 2012 (51 stations), the South Yellow Sea on
19 March–23 April 2003, and Bohai Sea in June 2018 and in September 2018 (Figure 1).

2.5. Sample Processing

A particle size analysis of the suspended sediment samples was conducted using a Cilas 940L
laser particle size meter (0.38–2000 µm) produced by Cilas, France. The particle size parameters were
calculated using the moment method [23] to provide the average particle size, median particle size,
sorting, skewness, and kurtosis. The sediment types were named based on Shepard (1954) [64].

The analysis and identification of detrital and clay minerals of suspended particulate matter
was completed between December 2006 and April 2007 at the Marine Geological Testing Center of
the Ministry of Land and Resources. The light and heavy minerals of the samples were identified
using a binocular stereoscope, polarizing microscope, and by microanalysis [65]. A total of 300–500
particles were recorded using the strip number particle method, and the particle contents of the
light and heavy minerals were calculated. The clay minerals were tested using a D/Max-rA X-ray
diffractometer (Rigaku, Tokyo, Japan), details of the samples processes methodology can be found in
Hu et al. (2018) [66]. After testing, the scanning images obtained were analyzed and compared with
the relevant data to identify the clay mineral family to which the materials belonged. The Toussaint
and Boniforti (2001) [67] method was used to assign the peak areas of the three characteristic diffraction
peaks to four minerals: smectite, illite, chlorite, and kaolinite [68]. These data were used to calculate a
semi-quantitative estimate of the clay mineral content [69].

2.6. MODIS Images

To compare the measured nearshore chlorophyll concentration with the estimated chlorophyll
concentration by satellite, the MODIS image on 13 August 2011 in Heini Bay, China were selected and
compared with the field measured chlorophyll concentration on 8 August 2011. The backscattering
coefficients calculated from MODIS satellite data collected on 21 November 2004 and 2 May 2006 in
Heini Bay, China were used for comparison with the results of Mie scattering calculations. The MODIS
images on 4 August 2011, 17 August 2011, 23 August 2011, 26 August 2011, and 21 November 2011 in
Heini Bay, China is used to retrieve particle size parameters of suspended particles and to monitor the
influence range of typhoon.

3. Results

3.1. Parameter Determination

The chlorophyll concentration measured before the passage of typhoon Muifa on 8 August 2011,
revealed the chlorophyll concentration measured in situ has a good correlation with the measured
remote sensing reflectivity at 350–720 nm (Figure 2a). However, the comparison with MODIS inversion
results on 13 August 2011 shows that MODIS overestimated the chlorophyll concentration value,
which may be caused by the asynchronization of measurement and image time (Figure 2b). Therefore,
the chlorophyll concentration data in this study were mainly obtained by using the inversion model
constructed by measured data.
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Figure 2. Variation of correlation coefficient between reflectance and chlorophyll concentration
measured In situ with wavelength in Heini Bay on 8 August 2011 (a), and the correlation between in
situ measured chlorophyll concentration and MODIS inversion on 13 August 2011 (b).

The Calis 940 L laser particle size analyzer sorts particles into 101 size ranges that are logarithmically
distributed across a continuous size spectrum 0.38–2000 µm. Sixty-three of these particle size intervals
were set to less than 100 µm. In this study, the particle size range was 0.5 to 95 µm. The final input
required for the Mie scattering calculation of mineral particles was the particle size distribution and
complex refractive index. The suspended particle sizes in this study area ranged from 0.5 to 71 µm,
with significant peaks at 30 µm. The particle size distribution was dominated by single peaks, with a
few secondary peaks. The concentration of suspended particulate matter ranged from 8.36 to 71.56 mg
L−1, with an average of 23.16 mg L−1. Among the mineral particles present in this area, 96% were light
minerals and 4% were heavy minerals. The light minerals were mainly feldspar (56%), quartz (28%),
mica (0.58%), and carbonate (mainly calcite, 15%). Some stations contained trace amounts of chlorite
and weathered mica. The heavy mineral components contributed 0–4% of the samples and were
mainly common hornblende (39%), biotite (26%), green curtain (24%), and partial chlorite (11%) [70].
Based on Kerr (1977) [49], the real part of each mineral refractive index was calculated to be 1.144.
Typical values vary between 1.03 and a theoretical upper limit of 1.158 for organic particles [71,72],
depending on hydration, and between 1.07 and 1.22 for various minerals [28].

3.2. Calculation of the Backscattering Coefficient

The distribution function describing the volume percentages of suspended particulate matter
obtained from on-site sampling and the backscattering efficiencies estimated by Mie scattering theory
were used to estimate the backscattering coefficients of the suspended particulate matter using
Equation (9). The input parameters provided in QAA V5 and Section 3.1 were used to estimate the
backscattering coefficients of the suspended particulate matter over the wavelength range 412–865 nm
in the MODIS satellite images. An example of a MODIS image taken on 21 November 2004 is presented
herein. The estimation results, which did not consider absorption, indicated that the backscattering
efficiency factor in this region oscillated with increasing particle diameter. For a fixed particle size,
the backscattering efficiency factor decreased with increasing complex refractive index. Once the
absorption was considered, however, the backscattering efficiency factor increased with the number of
particles, and the particle diameters in this region were concentrated at about 30 µm.

A comparison of the backscattering coefficients estimated by Mie scattering theory and those
retrieved by the MODIS images (Figure 3) revealed that the wavelengths 412, 443, 645, 745, and 858 nm
were not sensitive to changes in the Mie scattering refractive index. By contrast, in several other
sensitive bands, the range over which the backscattering coefficients estimated by Mie scattering
varied was smaller than that estimated by the MODIS inversion. The values and ranges of the
backscattering coefficients of the suspended particulate matter measured in this region [42] indicated
that the estimated backscattering coefficients based on Mie scattering and the QAA algorithm were
closer to the measured results. The two algorithms did deviate from the measured results; however,
possibly due to atmospheric correction errors in the MODIS remote sensing reflectance product, the
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selection of empirical parameters in the QAA algorithm, and a lack of synchronization over the
field-measured data.
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Figure 3. Comparison of the backscattering coefficients estimated by the Mie calculations and the
MODIS images on 21 November 2004.

3.3. Calculation of the Suspended Particle Size Parameters

The backscattering efficiency and backscattering coefficient estimated by the Mie scattering and
QAA algorithms in the previous section were next verified. The parameters describing the suspended
particles, including the average particle size, sorting, skewness, and kurtosis, were calculated using the
LSQR solution equation using the backscattering coefficient retrieval from the MODIS images and the
backscattering efficiency factor estimated by Mie scattering. During the calculation process, the MODIS
images were selected from 12 wavebands ranging from 412 nm to 868 nm, and the wavebands were
selected mainly based on the light scattering characteristics of the visible and near-infrared wavebands
in coastal waters in previous studies [28,73]. The results showed that the average particle size of
suspended particles was correlated with the simulated backscattering coefficient (Figure 4). In this
paper, the power exponential relationship between the average particle size and backscattering was
assumed, and the dependence of backscattering on the wavelength was better in the visible light band
than in the near-infrared band.
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Figure 4. Relationship between the average suspended particle size and the backscattering coefficient
estimated by Mie scattering.

The sorting, skewness, and kurtosis of the suspended particles did not depend on the backscattering
coefficient. Therefore, we used the LSQR solution to estimate the particle size parameters and compared
the calculated results with the measured results. The estimated sorting and kurtosis results agreed well
with the measured results. The estimated sorting results agreed most closely with the experimental
results, whereas the estimated skewness results were larger than the experimental results, indicating that
the coarse particle content was overestimated (Figure 5).
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Figure 5. Comparison of the estimated sorting and kurtosis values of the suspended particles with the
in situ measurements.

4. Discussion

4.1. Effects of the Mie Scattering input Parameters

During the seaweed farming season, the organic component of suspended particulate matter
in this region can reach up to 20%, whereas during the non-farming season, it can be as low as
3.9% [56]. The results of previous laboratory experiments suggest that the scattering coefficient of
suspended particles increases with increasing concentration, whereas the absorption decreases [74].
The range of refractive indices can be estimated in advance according to the scale and content of these
suspended particles [75]. The mineral composition test results over this area revealed that the materials
in this area mainly originated from the long-distance transport of materials from the Yellow River [58].
The suspended material composition in this area was similar to that in the South Yellow Sea, as indicated
by the inorganic particulate matter absorption coefficient measured from the South Yellow Sea, which,
in 2004, was less than 0.4 m−1 [42,47]. The range of the imaginary part of the refractive index could be
obtained by optimizing the absorption coefficient [76,77]. Finally, these parameters were used in the Mie
scattering estimation model. The measured suspended particle size distribution function was then used
to estimate the backscattering coefficients of the suspended particles, which were in good agreement
with the results obtained from the MODIS image. The composition, content, and distribution of mineral
particles were used to obtain the backscattering input parameters, which indicated interdependence
between the near-shore mineral particles and the inherent optical characteristic parameters of the water
body. The particle size parameters (average particle size, sorting, skewness, and kurtosis) were used to
characterize the particle distribution characteristics, and their changes altered the optical properties of
the water. These results established an estimation relationship.

4.2. Estimation of the Particle Size Distribution

The relationship between the optical properties of water and the size distribution characteristics
of the mineral particles was used to calculate the particle size distribution of particulate matter
using the method of simulated estimation. An input wavelength range of 400 nm to 900 nm was
used (the range used in previous studies [52], and 100 nm was set as the interval). The simulation
results, however, were poor. This study further selected 19 bands between 400 nm and 2135 nm,
corresponding to the MODIS band, as the input bands. The strong absorption effect of water on the
MODIS data beyond 900 nm was considered by assuming that the reflectances of the 19 bands were
non-zero. The measured particle volume percentage distribution was used as the input parameter,
and the backscattering coefficient of the particles was calculated. The backscattering coefficient and
the estimated backscattering efficiency factor were used to obtain the simulated particle volume
percentage content using the LSQR solution equation. The results estimated using the measured
PSD as input parameters differed from the measured results as a result of the number and spacing
of the selected bands. We extended the simulation parameters to 412 nm and used 50 nm intervals
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to find better agreement between the 39-waveband simulation at 1830 nm and the measured results.
An oscillation observed at < 20 µm did not disappear with the use of a greater number of bands.
The > 53 µm estimation error was relatively large, possibly due to the selection of the Mie scattering
input parameters (Figure 6).
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Figure 6. Comparison of the simulated typical particle size percentage distribution curves over the
study area with the measurement results. The simulated V (D) was 18 wavebands. (a–d) denote the
four types of particle size distribution curves measured from 13 to 21 November 2004 in Heini Bay.

The above experiments revealed that a relatively satisfactory model could be obtained using 39
bands separated by intervals of 50 nm. Certain assumptions in this simulation were not valid in the
actual spectral measurements; therefore, we concluded that the band input limitations prevented direct
calculation of the distribution curve of particles using the method of least squares.

Under many conditions, the PSD and its variations may be sufficiently quantified by focusing on
such parameters as the median particle size of the PSD or other non-parametric descriptors, rather than
by pursuing an accurate description of the PSD. This approach has been shown to provide sufficient
information [5]. Therefore, the main purpose of this study was to obtain parameters that characterized
the particle size distribution curve trends. Field measurements of the spectral data and MODIS images
of the band set, with a total of 12 bands (412, 443, 469, 490, 530, 550, 645, 667, 680, 748, 858, 868 nm)
were selected as input bands to estimate the particle size parameters. We estimated the particle size
parameters of suspended particulate matter in the study area on 21 November 2004 (Figure 4) and
found a strong correlation between the average particle size and the backscattering coefficient, which
could be estimated without the least squares method. The sorting and kurtosis estimates were better,
whereas the skewness estimates were worse. The estimated results were verified by selecting the
reflectivity and particle size data measured on site over the periods 19–27 June 2004 and September
2012 in the Yellow River estuary, 12–23 June 2018, and 15 October through 12 November 2018 in the
Bohai Sea, and 2–27 September 2003 in the Yellow Sea (Figure 7). The mineral composition and particle
absorption coefficient in the Yellow River estuary and the Bohai Sea reported by Luo (2018) [78] were
used in this work.
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Figure 7. Comparison of the measured sorting and kurtosis values of the suspended particles with
the estimated values from 19–27 June 2004 (a,b) and September 2012 (c,d) in the Yellow River estuary;
in May (e,f) and September 2018 (g,h) in the Bohai Sea; and in the South Yellow Sea from 19 March to
23 April 2003 (i,j).
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The validated calculated sorting and kurtosis particle size parameters agreed well with the
measured results (Figure 7). The MODIS band settings, therefore, can be used as input parameters to
estimate the sorting and kurtosis particle size parameters.

4.3. Estimated Particle Size Parameters around the Typhoon Impact

The distribution of sediment grain size, a basic physical property, varies with the hydrodynamic
characteristics of sediment transport and deposition [21]. The sorting, skewness, and kurtosis of the
particle size parameters are good indicators of the particulate matter changes after an environmental
event. For example, during the passage of the typhoon Muifa in this study area on 8 August
2011, the suspended particle sizes monitored by the near-shore sediment trap revealed delayed
coarsening, better sorting, more positive skewness, and more leptokurtic kurtosis. These characteristics
suggested that the passage of the typhoon prolonged the in situ particle suspension time or moved
the particles to the surrounding sea, resulting in a relative increase in the coarse particle composition
of the local suspended particles. Power-law PSD slope is also used to characterize the changes of
suspended particles before and after the passage of typhoon Muifa, indicating that the PSD slope of
suspended particles decreases during typhoon transit, which means the content of coarse particles
increases. The significance of this feature is the same as that of the skewness indicator (Figures 3
and 8 in Liu et al. 2019 [63]). However, only the PSD slope parameter, as an indicator, is limited in
identifying the environmental dynamic conditions that affect particle changes. We fully explained
the environmental dynamic conditions of the particulate matter using the three indices of the average
particle size, sorting, and kurtosis. These three parameters could also be obtained from a sediment
core sample [56,63], which can provide a link between the distribution characteristics of the modern
sediments monitored by remote sensing and the historical sedimentary record.
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Figure 8. Variations in the average particle size, sorting, kurtosis and Junge-type power law slope
obtained from the sediment trap sample during the passage of typhoon Muifa on 8 August 2011.

4.4. Monitoring the Typhoon Impact Range

The analysis results discussed above were used to invert and estimate the average particle size
(ø), sorting, and kurtosis of the suspended sediment in the waters around Heini bay before and after
the passage of typhoon Muifa on 8 August 2011. The average particle size inversion revealed that
the average particle size over the entire studied area was 4–5 ø on 4 August 2011 before the arrival
of the typhoon (Figure 9), slightly coarser than the average particle size of 5–6 ø obtained during the
winter survey in 2004. The results estimated from the 17 August 2011 imaging data indicated that
the suspended particulate matter over a large area of the sea was coarsened to 3–4 ø, and by 23 and
26 August 2011, the particle sediment has been re-refined to 5–6 ø (Figure 9). Please note that the



Remote Sens. 2020, 12, 2581 16 of 22

image collected closest to the typhoon passage and unobstructed by clouds was collected on 17 August
2011. The typhoon transit also changed the characteristics of the suspended particulate distribution
curve from 10 to 18 August 2011 in that the grain size distribution curve over this area displayed a
leptokurtic peak from strong to weak (see Figure 4 in Liu et al., 2019 [63] for details). The results were
verified by comparing MODIS data with good image quality, collected on 21 November 2011, and the
sampling data collected on 28 November 2011 (see Figure 5 in Liu et al., 2019 [63] for details). It was
found that three months after the passage of the typhoon, the surface suspended sediment comprised
mainly fine particles. (Please note that the northeastern part of the image was affected by clouds, so the
estimation accuracy was slightly reduced). This distribution was consistent with the coarsening of
suspended sediment particles during extreme weather events.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 24 
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Similarly, the sorting retrieval results of suspended particulate matter revealed that on 4 August
2011, before the passage of the typhoon, the sorting of suspended sediment was 1.5–4 (Figure 10),
which was poor to very poor (Table 1). These results resembled the field survey results (Figure 8).
On 17 August 2011, after the passage of typhoon, the sorting of suspended sediment improved
significantly, and the sorting across most areas in the coastal sea and the outer sea was moderate to
good (Table 1). On 23 and 26 August 2011, the sorting gradually worsened. On 21 November 2011,
three months after the typhoon passage, the sorting of suspended sediment returned to the poor state
under normal weather conditions. The characteristics of this time series are consistent with prior
observations that a typhoon will improve the sorting of suspended sediment.
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The kurtosis of the suspended particulate matter on 4 August before the passage of the typhoon
was 1.5–3 (Figure 11), indicating a very leptokurtic type (Table 1). The average value was similar
to the measured results (Figure 8). On 17 August 2011, after the typhoon passage, kurtosis in this
area was 3–6 or greater than 6, except over a large area in the coastal sea, which belonged to the
extremely leptokurtic type (Table 1). These results were in agreement with the characteristics of
extreme coarsening among suspended matter caused by the passage of a typhoon. The sediments in the
headland of bedrock were mostly coarse particles, and the influence of the typhoon on the suspended
sediment was not significant. This observation was consistent with the non-significant changes
observed in the near-shore particulate matter, as demonstrated in Figure 5 of Liu et al. (2019) [63].
With the gradual weakening of the typhoon’s influence, the leptokurtic characteristics of the suspended
grain size distribution curve gradually weakened on 23 and 26 August 2011. Similarly, the changes
along the coastal waters remained insignificant. On 21 November 2011, three months after the typhoon
passage, the kurtosis of the suspended particles was characterized by a platykurtic type of less than 0.9
(Table 1). These change characteristics also indicated that in the absence of a strong dynamic influence
in the area, the suspended particle size distribution curve, which was platykurtic type (Table 1),
was consistent with the particle size characteristics under normal weather conditions (see Figures 4
and 10 in Liu et al., 2019 [63] for details).

In summary, the MODIS estimates of the average particle size (ø), sorting, and kurtosis in the
surface suspended sediment in the area near Heini Bay before and after the passage of typhoon Muifa
in August 2011 indicate that the influence of the typhoon increased the average particle size, reduced
the sorting coefficient, and shifted the distribution curve of particulate matter toward the leptokurtic
type. The strong dynamic effect of the typhoon did not significantly affect the coarse sediment near
the shore, although the typhoon significantly affected a large area in its pathway. The estimation
results indicated that the typhoon created a strong ocean power that resuspend the coarse sediment
of the seabed, thereby improving the sorting of suspended sediment. The estimated particle size
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parameter characteristics were comparable to the experimental sediment characteristics measured
from the sediment trap sample (as described in Figures 3 and 4 in Liu et al., 2019 [63]). The estimated
characteristics of the sediment particle size parameters also agreed with the experimental seabed
historical sediment records (see Figure 10 in Liu et al., 2019 [63] for details). Because the field-measured
data used in this study only covered the coastal waters of Heini Bay, the image-based estimates of the
typhoon transit only encompassed the waters around Heini Bay. The image quality and other factors
could be improved in future studies to survey the full typhoon impact area. To improve the inversion
of the water-bearing components in other environments, including coastal and estuarine systems,
the algorithms should be optimized using in situ regional measurements of optical and biogeochemical
water characteristics. Nevertheless, for the purposes of monitoring in this study, the sediment particle
size parameters estimated from remote sensing images do indeed reflect the environmental impact of
strong marine dynamic events over a specific region.Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 24 
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5. Conclusions

In this study, we calculated the particle size parameters often used in sedimentary geology based
on the suspended particle optical properties and Junge power law distribution relationship. We found
that the average suspended particulate matter grain size (ø value), sorting, and kurtosis values obtained
from MODIS remote sensing image estimation methods agreed well with the experimental values.
During the estimation process, the mineral composition of the suspended particulate matter in the
region should be obtained first to determine the real part of the complex refractive index used in the Mie
scattering model. The absorption and scattering coefficients of the water components may be estimated
using the QAA analysis algorithm. Therefore, the model is universal in its applicability. The results
were verified in several coastal areas of China and were found to be satisfactory. On the other hand,
the LSQR method used in the model may simulate a better particle distribution curve in the short-wave
infrared band with 39 bands of visible light up to 1830 nm (50 nm intervals). Given experimental
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limitations, however, the water color in the MODIS data may be used together with the terrestrial
application band to improve the results. Therefore, the estimation accuracy is greatly affected by the
number of wavebands included.

We selected images before and after the passage of a typhoon to estimate changes in the particle
size parameters describing surface suspended sediment in a coastal area under the influence of strong
ocean dynamics. Field measurements revealed that these three parameters accurately represented
changes in the suspended particulate matter in coastal waters. The study also found that the power law
PSD slope could be interpreted as an indicator of the skewness. These parameters, therefore, could be
used together to characterize suspended particulate matter variations in coastal areas, compensating
for the uncertainty of a single indicator of the PSD slope. The quality of images collected during the
passage of a typhoon will be limited by the presence of typhoon weather clouds and other factors.
This method, therefore, requires further verification with consideration for human activities and other
variable environmental effects. Nevertheless, the method of estimating the particle size parameters in
sedimentary geology using remote sensing proposed in this paper is of practical value for establishing
the relationship between parameters in remote sensing monitoring and in the sedimentary records.
This method also provides a new application of the power law model in the near-shore environment.
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27. Stramski, D.; Babin, M.; Woźniak, S.B. Variations in the optical properties of terrigenous mineral-rich
particulate matter suspended in seawater. Limnol. Oceanogr. 2007, 52, 2418–2433. [CrossRef]

28. Doxaran, D.; Ruddick, K.; McKee, D.; Gentili, B.; Tailliez, D.; Chami, M.; Babin, M. Spectral variations of
light scattering by marine particles in coastal waters, from the visible to the near infrared. Limnol. Oceanogr.
2009, 54, 1257–1271. [CrossRef]

29. Zhang, X.; Gray, D.J. Backscattering by very small particles in coastal waters. J. Geophys. Res. Ocean. 2015,
120, 6914–6926. [CrossRef]

30. Pinet, S.; Martinez, J.-M.; Ouillon, S.; Lartiges, B.; Villar, R.E. Variability of apparent and inherent optical
properties of sediment-laden waters in large river basins–lessons from in situ measurements and bio-optical
modeling. Opt. Express 2017, 25, A283–A310. [CrossRef]

31. Tao, J.; Hill, P.S.; Boss, E.S.; Milligan, T.G. Variability of Suspended Particle Properties Using Optical
Measurements within the Columbia River Estuary. J. Geophys. Res. Ocean. 2018, 123, 6296–6311. [CrossRef]

32. Zhang, Y.; Huang, Z.; Chen, C.; He, Y.; Jiang, T. Particle size distribution of river-suspended sediments
determined by in situ measured remote-sensing reflectance. Appl. Opt. 2015, 54, 6367–6376. [CrossRef]

33. Zhang, X.; Stavn, R.H.; Falster, A.U.; Gray, D.; Gould, R.W., Jr. New insight into particulate mineral and
organic matter in coastal ocean waters through optical inversion. Estuar. Coast. Shelf Sci. 2014, 149, 1–12.
[CrossRef]

34. Bader, H. The hyperbolic distribution of particle sizes. J. Geophys. Res. 1970, 75, 2822–2830. [CrossRef]

http://dx.doi.org/10.1029/2003JC002098
http://dx.doi.org/10.1029/2010JC006256
http://dx.doi.org/10.1016/0025-3227(94)90083-3
http://dx.doi.org/10.1177/0959683616660165
http://dx.doi.org/10.1016/j.margeo.2018.06.013
http://dx.doi.org/10.1007/s11430-006-0604-1
http://dx.doi.org/10.1016/j.margeo.2017.01.002
http://dx.doi.org/10.1016/j.geomorph.2018.07.002
http://dx.doi.org/10.1016/j.ecss.2013.04.006
http://dx.doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
http://dx.doi.org/10.1016/j.margeo.2016.09.005
http://dx.doi.org/10.1016/S0025-3227(03)00211-1
http://dx.doi.org/10.1016/j.yqres.2011.03.002
http://dx.doi.org/10.4319/lo.2007.52.6.2418
http://dx.doi.org/10.4319/lo.2009.54.4.1257
http://dx.doi.org/10.1002/2015JC010936
http://dx.doi.org/10.1364/OE.25.00A283
http://dx.doi.org/10.1029/2018JC014093
http://dx.doi.org/10.1364/AO.54.006367
http://dx.doi.org/10.1016/j.ecss.2014.06.003
http://dx.doi.org/10.1029/JC075i015p02822


Remote Sens. 2020, 12, 2581 21 of 22

35. Hulst, H.C.V.D. Light Scattering By Small Particles. Phys. Today 1957, 10. [CrossRef]
36. Bricaud, A.; Morel, A. Light attenuation and scattering by phytoplanktonic cells: A theoretical modeling.

Appl. Opt. 1986, 25, 571–580. [CrossRef] [PubMed]
37. Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic: San Diego, CA, USA, 1994; p. 592.
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