Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = quasi-Z-source inverter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4460 KiB  
Article
Novel Quasi-Z-Source Inverter with High-Frequency AC Link of High-Proportion Renewable-Energy Power System
by Wenjuan Dong, Xingang Wang, DeLiNuEr Azan, Yuwei Wang and Lei Li
Processes 2024, 12(12), 2842; https://doi.org/10.3390/pr12122842 - 11 Dec 2024
Viewed by 982
Abstract
Z-source/quasi-z-source inverters can make up for some limitations of traditional voltage-/current-source inverters. In recent years, more and more research has been carried on z-source/quasi-z-source inverters, but most of them are unable to realize input/output galvanic isolation. The proposal of high-frequency isolated z-source/quasi-z-source inverters [...] Read more.
Z-source/quasi-z-source inverters can make up for some limitations of traditional voltage-/current-source inverters. In recent years, more and more research has been carried on z-source/quasi-z-source inverters, but most of them are unable to realize input/output galvanic isolation. The proposal of high-frequency isolated z-source/quasi-z-source inverters greatly enriches the topological family of this type of converter but places relatively high voltage stress on the capacitors. In this paper, a novel circuit topology of a quasi-z-source inverter with a high-frequency AC link of a new high-proportion power system is proposed. The operating principle and abnormal operating states, such as discontinuous-conduction mode (DCM) operation and abnormal states caused by component failures, are analyzed. The double closed-loop control strategy is analyzed and designed, and a grid-connected photovoltaic system based on the inverter is designed. The experimental results verify that the presented inverter has advantages such as high-frequency electrical isolation, bi-directional power flow, lower voltage stress on the capacitors, etc. Full article
Show Figures

Figure 1

27 pages, 18482 KiB  
Article
Current Compensation for Faulted Grid-Connected PV Arrays Using a Modified Voltage-Fed Quasi-Z-Source Inverter
by Abdullah Abdurrahman Al-Saloli and Faris E. Alfaris
Electronics 2024, 13(21), 4312; https://doi.org/10.3390/electronics13214312 - 2 Nov 2024
Cited by 1 | Viewed by 1214
Abstract
Large-scale photovoltaic (PV) systems are being widely deployed to meet global environmental goals and renewable energy targets. Advances in PV technology have driven investment in the electric sector. However, as the size of PV arrays grows, more obstacles and challenges emerge. The primary [...] Read more.
Large-scale photovoltaic (PV) systems are being widely deployed to meet global environmental goals and renewable energy targets. Advances in PV technology have driven investment in the electric sector. However, as the size of PV arrays grows, more obstacles and challenges emerge. The primary obstacles are the occurrence of direct current (DC) faults and shading in a large array of PV panels, where any malfunction in a single panel can have a detrimental impact on the overall output power of the entire series-connected PV string and therefore the PV array. Due to the abrupt and frequent fluctuations in power, beside the low-PV systems’ moment of inertia, various technical problems may arise at the point of common coupling (PCC) of grid-connected PV generations, such as frequency and voltage stability, power efficiency, voltage sag, harmonic distortion, and other power quality factors. The majority of the suggested solutions were deficient in several crucial transient operating features and cost feasibility; therefore, this paper introduces a novel power electronic DC–DC converter that seeks to mitigate these effects by compensating for the decrease in current on the DC side of the system. The suggested solution was derived from the dual-source voltage-fed quasi-Z-source inverter (VF-qZSI), where the PV generation power can be supported by an energy storage element. This paper also presents the system architecture and the corresponding power switching control. The feasibility of the proposed method is investigated with real field data and the PSCAD simulation platform during all possible weather conditions and array faults. The results demonstrate the feasibility and capability of the proposed scheme, which contributes in suppressing the peak of the transient power-to-time variation (dP/dt) by 72% and reducing its normalized root-mean-square error by about 38%, with an AC current total harmonic distortion (THD) of only 1.04%. Full article
Show Figures

Figure 1

20 pages, 8084 KiB  
Article
Current-Prediction-Controlled Quasi-Z-Source Cascaded Multilevel Photovoltaic Inverter
by Shanshan Lei, Ningzhi Jin and Jiaxin Jiang
Electronics 2024, 13(10), 1824; https://doi.org/10.3390/electronics13101824 - 8 May 2024
Cited by 2 | Viewed by 1299
Abstract
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a [...] Read more.
To address problems that traditional two-stage inverters suffer such as high cost, low efficiency, and complex control, this study adopts a quasi-Z-source cascaded multilevel inverter. Firstly, the quasi-Z-source inverter utilizes a unique impedance network to achieve single-stage boost and inversion without requiring a dead zone setting. Additionally, its cascaded multilevel structure enables independent control of each power unit structure without capacitor voltage sharing problems. Secondly, this study proposes a current-predictive control strategy to reduce current harmonics on the grid side. Moreover, the feedback model of current and system state is established, and the fast control of grid-connected current is realized with the deadbeat control weighted by the predicted current deviation. And a grid-side inductance parameter identification is added to improve control accuracy. Also, an improved multi-carrier phase-shifted sinusoidal PWM method is adopted to address the issue of switching frequency doubling, which is caused by the shoot-through zero vector in quasi-Z-source inverters. Finally, the problems of switching frequency doubling and high harmonics on the grid side are solved by the improved deadbeat control strategy with an improved MPSPWM method. And a seven-level simulation model is built in MATLAB (2022b) to verify the correctness and superiority of the above theory. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

25 pages, 6230 KiB  
Article
Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter
by Vitor Fernão Pires, Armando Cordeiro, Daniel Foito, Carlos Roncero-Clemente, Enrique Romero-Cadaval and José Fernando Silva
Electronics 2024, 13(6), 1113; https://doi.org/10.3390/electronics13061113 - 18 Mar 2024
Cited by 2 | Viewed by 1394
Abstract
The Quasi-Impedance-Source Inverter (Quasi-Z inverter) is an interesting DC-AC converter topology that can be used in applications such as fuel cells and photovoltaic generators. This topology allows for both boost capability and DC-side continuous input current. Another very interesting feature is its reliability, [...] Read more.
The Quasi-Impedance-Source Inverter (Quasi-Z inverter) is an interesting DC-AC converter topology that can be used in applications such as fuel cells and photovoltaic generators. This topology allows for both boost capability and DC-side continuous input current. Another very interesting feature is its reliability, as it limits the current when two switches on one leg are conducting simultaneously. This is due to an extra conduction state, specifically the shoot-through state. However, the shoot-through state also causes a loss of performance, increasing electromagnetic interference and harmonic distortion. To address these issues, this work proposes a modified carrier-based control method for the T-Type single-phase quasi-Z inverter. The modified carrier-based method introduces the use of two additional states to replace the standard shoot-through state. The additional states are called the upper shoot-through and the lower shoot-through. An approach to minimize the number of switches that change state during transitions will also be considered to reduce switching losses, improving the converter efficiency. The proposed modified carrier-based control strategy will be tested using computer simulations and laboratory experiments. From the obtained results, the theoretical considerations are confirmed. In fact, through the presented results, it is possible to understand important improvements that can be obtained in the THD of the output voltage and load current. In addition, it is also possible to verify that the modified carrier method also reduces the input current ripple. Full article
Show Figures

Figure 1

26 pages, 27856 KiB  
Article
Novel Space-Vector PWM Schemes for Enhancing Efficiency and Decoupled Control in Quasi-Z-Source Inverters
by Ivan Grgić, Mateo Bašić, Dinko Vukadinović and Ivan Marinović
Energies 2024, 17(6), 1387; https://doi.org/10.3390/en17061387 - 13 Mar 2024
Cited by 4 | Viewed by 1630
Abstract
This paper investigates the development of pulse width modulation (PWM) schemes for three-phase quasi-Z-source inverters (qZSIs). These inverters are notable for their voltage boost capability, built-in short-circuit protection, and continuous input current, making them suitable for low-voltage-fed applications like photovoltaic or fuel cell-based [...] Read more.
This paper investigates the development of pulse width modulation (PWM) schemes for three-phase quasi-Z-source inverters (qZSIs). These inverters are notable for their voltage boost capability, built-in short-circuit protection, and continuous input current, making them suitable for low-voltage-fed applications like photovoltaic or fuel cell-based systems. Despite their advantages, qZSIs confront challenges such as increased control complexity and a larger number of passive components compared to traditional voltage source inverters (VSIs). In addition, most existing PWM schemes for qZSIs lack the capability for independent control of the amplitude modulation index and duty cycle, which is essential in closed-loop applications. This study introduces innovative space-vector PWM (SVPWM) schemes, addressing issues of independent control, synchronization, and unintentional short-circuiting in qZSIs. It evaluates several established continuous and discontinuous PWM schemes, and proposes two novel decoupled SVPWM-based schemes that integrate dead time and in which the shoot-through occurrence is synchronized with the beginning of the zero switching state. These novel schemes are designed to reduce switching losses and improve qZSI controllability. Experimental validation is conducted using a custom-developed electronic circuit board that enables the implementation of a range of PWM schemes, including the newly proposed ones. The obtained results indicate that the proposed PWM schemes can offer up to 6.8% greater efficiency and up to 7.5% reduced voltage stress compared to the closest competing PWM scheme from the literature. In addition, they contribute to reducing the electromagnetic interference and thermal stress of the related semiconductor switches. Full article
Show Figures

Figure 1

15 pages, 4566 KiB  
Article
New Multicell Switched-Inductor Quasi-Z-Source Inverter
by Renxi Gong, Jing Tang, Xingyuan Wan and Hao Wu
Electronics 2023, 12(18), 3814; https://doi.org/10.3390/electronics12183814 - 9 Sep 2023
Viewed by 1316
Abstract
To address the problems of quasi-Z-source inverters with limited boosting ability and high voltage stress, a novel class of multicell switched-inductor quasi-Z-source inverters is proposed. The new inverter is based on the quasi-Z-source inverter in which the inductors in the impedance source network [...] Read more.
To address the problems of quasi-Z-source inverters with limited boosting ability and high voltage stress, a novel class of multicell switched-inductor quasi-Z-source inverters is proposed. The new inverter is based on the quasi-Z-source inverter in which the inductors in the impedance source network are replaced by a multicell switched-inductors. In this paper, a detailed description of the topology and operating principle of the new inverter is first made. Then, a deep comparison of the proposed topology with the existing topologies is performed by selecting the appropriate number of switched-inductor units. Finally, to verify the feasibility and superiority of the proposed new topology, a great number of simulations and experiments are conducted. The results demonstrate that, compared to the original quasi-Z-source inverter and existing modified topologies, the boosting capacity of the proposed new inverter increases significantly with the number of cascaded switched-inductor units, and its voltage stress across the capacitors and current ripple through the inductors are effectively reduced. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

28 pages, 7611 KiB  
Article
Three-Leg Quasi-Z-Source Inverter with Input Ripple Suppression for Renewable Energy Application
by Chuanyu Zhang, Chuanxu Cao, Ruiqi Chen and Jiahui Jiang
Energies 2023, 16(11), 4393; https://doi.org/10.3390/en16114393 - 29 May 2023
Cited by 20 | Viewed by 2189
Abstract
Single-phase inverters are widely employed in renewable energy applications. However, their inherent 2ω-ripple power can substantially affect system performance, leading to fluctuations in the maximum power points (MPP) of photovoltaic (PV) systems and shortening the lifespans of fuel cell (FC) systems. To alleviate [...] Read more.
Single-phase inverters are widely employed in renewable energy applications. However, their inherent 2ω-ripple power can substantially affect system performance, leading to fluctuations in the maximum power points (MPP) of photovoltaic (PV) systems and shortening the lifespans of fuel cell (FC) systems. To alleviate input ripple, a three-leg quasi-Z-source inverter (QZSI) and its associated control strategy are proposed. The QZSI consists of a quasi-Z-source network, an H-Bridge inverter, and an active power filter (APF). The active filtering structure comprises filtering capacitors and the third bridge leg. The proposed control strategy consists of three loops: open-loop simple boost control, output voltage control, and 2ω-ripple suppression control. Open-loop simple boost control is utilized for shoot-through state modulation, output voltage control is applied to the two bridge-legs of the H-Bridge, and the additional third bridge-leg adopts a quasi-PR control (QPR) method that injects specific frequency harmonic voltage and suppresses newly generated low-frequency components of the input current. This method effectively avoids the drawbacks of utilizing passive filtering strategies, such as high-value impedance networks, low power density, and weak system stability. A simulation platform of 300W 144VDC/110VAC50Hz is constructed. The simulation results indicate that the addition of the third bridge leg under full load conditions reduces the input-side inductor current ripple ΔI from 1.89 A with passive filtering to 0.513 A, representing a reduction of 72.86%. The second harmonic ripple of the input current is reduced from 18.2% to 4.5%, and the fourth harmonic ripple is reduced from 16.5% to 2.1%. The DC bus voltage ripple ΔVPN falls from 70.75 V to 6.54 V, representing a reduction of 90.76%. The Total Harmonic Distortion (THD) of the output voltage and current are both less than 1%. The simulation results validated the feasibility of the proposed approach. Full article
Show Figures

Figure 1

17 pages, 4835 KiB  
Article
Comparison of FCS-MPC Strategies in a Grid-Connected Single-Phase Quasi-Z Source Inverter
by Jorge L. Saavedra, Carlos R. Baier, Esteban I. Marciel, Marco Rivera, Alvaro Carreno, Jesús C. Hernandez and Pedro E. Melín
Electronics 2023, 12(9), 2052; https://doi.org/10.3390/electronics12092052 - 29 Apr 2023
Cited by 6 | Viewed by 2668
Abstract
This paper compares two finite-control-set model predictive control (FCS-MPC) strategies in the context of a grid-connected single-phase quasi-Z source inverter (SP-qZSI). Both schemes use discrete-time models of the inductor current and capacitor voltage for the DC side, as well as the output current [...] Read more.
This paper compares two finite-control-set model predictive control (FCS-MPC) strategies in the context of a grid-connected single-phase quasi-Z source inverter (SP-qZSI). Both schemes use discrete-time models of the inductor current and capacitor voltage for the DC side, as well as the output current on the AC side. To enhance the converter’s performance, given the non-minimum phase characteristics of the DC side, a long prediction horizon is implemented for the predictive control. However, a horizon of this nature can be highly demanding in terms of processing load, rendering it inapplicable for some microcontrollers. To address this issue and mitigate the processing load, an alternative control strategy is presented that divides the total number of candidate solutions to be evaluated into smaller segments. The performance of the two control strategies is compared using total harmonic distortion (THD) and simulation times as evaluation metrics. The results indicate that the proposed strategy achieves significantly shorter simulation times than the compared control strategy when increasing the prediction horizon. Additionally, a reduction in the THD was observed in the proposed strategy, reaching an average of 2.8%, which is lower than the compared strategy that exhibited THD close to 3.5%. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

33 pages, 12963 KiB  
Article
A Transformerless Enhanced-Boost Quasi-Z-Source Inverter with Low Input Current Ripple for Stand-Alone RES-Based Systems
by Hamed Tahami, Ehsan Akbari, Adil Hussein Mohammed, Reza Faraji and Sittiporn Channumsin
Energies 2023, 16(6), 2611; https://doi.org/10.3390/en16062611 - 9 Mar 2023
Cited by 7 | Viewed by 2402
Abstract
The main drawback of DC-source-based renewable energy sources (RESs), such as photovoltaic (PV) panels or fuel cells (FCs), is that the voltage generated by a panel or cell is less than the required voltage for connection to a DC–AC inverter for grid applications. [...] Read more.
The main drawback of DC-source-based renewable energy sources (RESs), such as photovoltaic (PV) panels or fuel cells (FCs), is that the voltage generated by a panel or cell is less than the required voltage for connection to a DC–AC inverter for grid applications. In this paper, a single-switched DC–DC boost converter equipped with a quasi-impedance source inverter (QZSI) with a modified switching model is proposed to increase the output voltage of these RESs and convert it to a fixed AC grid voltage for loads. By changing the position of the inductor in a classic step-up converter and using a switched-inductor block, the input current ripple is significantly decreased, and the reliability and long-life of the input sources are increased, which is the main contribution of this work. The quality of the generated AC voltage and the low amount of total harmonic distortion (THD) in the projected topology are significant, and no overshoot and undershoot have been reported for both output voltages and currents under different operating conditions with variable loads. Theoretical analysis, simulation results, and comparison with similar topologies are examined and a prototype with a power of 200 to 400 watts is presented. Experimental results confirm the theoretical studies. Full article
Show Figures

Figure 1

20 pages, 6361 KiB  
Article
Low Computational Burden Predictive Direct Power Control of Quasi Z-Source Inverter for Grid-Tied PV Applications
by Abderahmane Abid, Abualkasim Bakeer, Laid Zellouma, Mansour Bouzidi, Abderezak Lashab and Boualaga Rabhi
Sustainability 2023, 15(5), 4153; https://doi.org/10.3390/su15054153 - 24 Feb 2023
Cited by 8 | Viewed by 2377
Abstract
This paper proposes a simplified predictive direct power control for the grid-tied quasi Z-source inverter. The proposed control implements a model predictive control structure to achieve the maximum obtainable power from the collected PV source. The power delivered to the grid is managed [...] Read more.
This paper proposes a simplified predictive direct power control for the grid-tied quasi Z-source inverter. The proposed control implements a model predictive control structure to achieve the maximum obtainable power from the collected PV source. The power delivered to the grid is managed to compensate for the reactive power and, as needed, to ensure the grid’s stability. A predictive power model for a quasi Z-source inverter is developed in which the proposed control can operate with a fixed switching frequency without a weighting factor. The simplified space vector modulation uses the three appropriate switching vectors that are selected and applied using precalculated switching times during each switching period, in which the required switching vectors are determined only from one sector in the space vector diagram, taking all of the information of the other sectors, which leads to reducing the computational burden. Simulation results and comparative study are used to confirm the proposed control performance for the grid-tied quasi Z-source inverter capable of tracking and generating the maximum power from PV with fast-tracking dynamics, ensuring the ac voltage desired, and better tracking of the active and reactive power reference with the lowest power ripple. The grid current harmonics were tested and conformed to the IEEE-519 standard. Additionally, the proposed simplified PDPC is experimentally validated using the Hardware-in-the-Loop emulator and the C2000TM-microcontroller-LaunchPadXL TMS320F28379D kit, establishing the usability and good result of our proposed control approach in terms of requirements. Full article
Show Figures

Figure 1

24 pages, 10820 KiB  
Article
Hybrid Wind-Solar Power System with a Battery-Assisted Quasi-Z-Source Inverter: Optimal Power Generation by Deploying Minimum Sensors
by Matija Bubalo, Mateo Bašić, Dinko Vukadinović and Ivan Grgić
Energies 2023, 16(3), 1488; https://doi.org/10.3390/en16031488 - 2 Feb 2023
Cited by 8 | Viewed by 2422
Abstract
This paper presents a hybrid renewable energy system (RES) including wind and photovoltaic (PV) power sources. The wind energy subsystem (WES) consists of a squirrel-cage induction generator (SCIG) driven by a variable-speed wind turbine (WT) and corresponding power electronic converter, by means of [...] Read more.
This paper presents a hybrid renewable energy system (RES) including wind and photovoltaic (PV) power sources. The wind energy subsystem (WES) consists of a squirrel-cage induction generator (SCIG) driven by a variable-speed wind turbine (WT) and corresponding power electronic converter, by means of which a speed-sensorless indirect-rotor-field-oriented control of the SCIG is implemented. The outputs of both the WES and PV power source rated 1.5 kW and 3.5 kW, respectively, are connected to the DC bus, with the quasi-Z-source inverter (qZSI) acting as an interlinking converter between the DC bus and the AC grid/load. An advanced pulse-width-modulation scheme is applied to reduce the qZSI switching losses. The considered RES can operate both in grid-tie and island operation, whereas the battery storage system—integrated within the qZSI impedance network—enables more efficient energy management. The proposed control scheme includes successively executed algorithms for the optimization of the WES and PV power outputs under varying atmospheric conditions. A perturb-and-observe PV optimization algorithm is executed first due to the significantly faster dynamics and higher-rated power of the PV source compared to the WES. The WES optimization algorithm includes two distinct fuzzy logic optimizations: one for extraction of the maximum wind power and the other for minimization of the SCIG losses. To reduce the number of the required sensors, all three MPPT algorithms utilize the same input variable—the qZSI’s input power—thus increasing the system’s reliability and reducing the cost of implementation. The performance of the proposed hybrid RES was experimentally evaluated over wide ranges of simulated atmospheric conditions in both the island and grid-tie operation. Full article
(This article belongs to the Special Issue Power Converter Control Applications in Low-Inertia Power Systems)
Show Figures

Figure 1

28 pages, 25618 KiB  
Review
A Comprehensive Review on Common-Mode Voltage of Three-Phase Quasi-Z Source Inverters for Photovoltaic Applications
by Sherif M. Dabour, Noha El-hendawy, Ahmed A. Aboushady, Mohamed Emad Farrag and Essam M. Rashad
Energies 2023, 16(1), 269; https://doi.org/10.3390/en16010269 - 26 Dec 2022
Cited by 8 | Viewed by 2537
Abstract
Inverters with Quasi-Z-Source Networks (QZSN) provide DC-DC boosting and DC-AC conversion in a single stage. It offers reduced cost, complexity, and volume compared with the classical two-stage conversion system, which is composed of a boost converter followed by a Voltage-Source-Inverter (VSI). Further, QZSI [...] Read more.
Inverters with Quasi-Z-Source Networks (QZSN) provide DC-DC boosting and DC-AC conversion in a single stage. It offers reduced cost, complexity, and volume compared with the classical two-stage conversion system, which is composed of a boost converter followed by a Voltage-Source-Inverter (VSI). Further, QZSI provides superior conversion characteristics for single-stage grid-connected photovoltaic transformerless systems. However, the absence of galvanic isolation in these systems makes it possible to allow leakage current through these systems’ parasitic capacitances due to the high-frequency Common-Mode Voltage (CMV) generated by the Pulse Width Modulation (PWM) nature of the inverter output voltages. As a result of this current, critical safety issues may arise with PV systems. Many PWM techniques have been presented in recent years for QZSIs. This paper is intended to provide a comprehensive analysis and review study of the characteristics of most of these PWM techniques in terms of CMV and leakage currents. In this study, closed-form equations have been derived to determine the effective CMV and leakage current analyses for all modulation techniques. Analytical and simulation approaches are used to identify schemes with the lowest CMV and current leakage effects. Moreover, the experimental setup is presented by applying the Simple-Boost Modified Space Vector Modulation (SB-MSVM) technique. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

27 pages, 10124 KiB  
Article
Performance Evaluation of Solar PV-Based Z-Source Cascaded Multilevel Inverter with Optimized Switching Scheme
by Ahmad Faiz Minai, Akhlaque Ahmad Khan, Rupendra Kumar Pachauri, Hasmat Malik, Fausto Pedro García Márquez and Alfredo Arcos Jiménez
Electronics 2022, 11(22), 3706; https://doi.org/10.3390/electronics11223706 - 12 Nov 2022
Cited by 16 | Viewed by 3320
Abstract
AC loads may demand a fixed or variable voltage at their input terminals. When using inverters to power such loads, the response of the inverter must be precisely controlled to suit the demands of the AC loads. Inverters with higher efficiency and sensitivity [...] Read more.
AC loads may demand a fixed or variable voltage at their input terminals. When using inverters to power such loads, the response of the inverter must be precisely controlled to suit the demands of the AC loads. Inverters with higher efficiency and sensitivity will play an increasingly essential role as the need for solar PV applications in prospective green technology grows. To increase power quality and provide a reliable power source, an inverter architecture with harmonic reduction approaches is proposed. The multilevel inverter (MLI), unlike conventional inverters, is developed by cascaded single inverter units and is often used to connect renewable energy sources. As a result, they can be utilized to efficiently reduce harmonics. Among the three topologies, the most widely used in industries is the neutral-point clamped MLI. When the levels are raised, however, they demand a larger number of diodes. When the level of the flying capacitor exceeds three, several capacitors are necessary. As a result, the optimum option for synthesizing the right output voltage from several DC sources is a cascaded multilevel inverter (CMLI). Each link in a CMLI is connected by a single DC source; therefore, there is no voltage imbalance. However, getting equal DC voltages at the input of each unit is once again a limitation. In this work, various existing multilevel inverter topologies including hybrid topologies with different switching strategies are investigated and reported. The performance of a solar PV-based seven-level quasi-Z-source cascaded H-Bridge MLI (qZS-CHBMLI) has been thoroughly examined with the best switching scheme and best topology of multilevel inverters using MATLAB/Simulink. Full article
(This article belongs to the Special Issue Innovative Technologies in Power Converters, 2nd Edition)
Show Figures

Figure 1

17 pages, 7141 KiB  
Article
Design and Control of a Quasi-Z Source Multilevel Inverter Using a New Reaching Law-Based Sliding Mode Control
by Muhammad Awais Rafiq, Abasin Ulasyar, Waqar Uddin, Haris Sheh Zad, Abraiz Khattak and Kamran Zeb
Energies 2022, 15(21), 8002; https://doi.org/10.3390/en15218002 - 27 Oct 2022
Cited by 7 | Viewed by 2553
Abstract
The rapid growth in renewable energies has given rise to their integration into the grid system. These renewable and clean energy sources are dependent on external conditions such as wind speed, solar irradiation, and temperature. For a stable connection between these sources and [...] Read more.
The rapid growth in renewable energies has given rise to their integration into the grid system. These renewable and clean energy sources are dependent on external conditions such as wind speed, solar irradiation, and temperature. For a stable connection between these sources and power grid systems, a controller is necessary to regulate the system’s closed-loop dynamic behavior. A sliding mode control (SMC) using a new reaching law is proposed for the integration of a Modified Capacitor-Assisted Extended Boost (MCAEB) quasi-Z Source 7 level 18 switch inverter with the grid. An SMC-based controller was implemented to regulate the current flow between the inverter and the grid. SMC has the advantages of ease of implementation, robustness, and invariance to disturbance. The simulation results of SMC and the proportional integral (PI) controller are compared in terms of settling time, steady-state error, and total harmonic distortion (THD) during transient response, steady-state response and step response under different operating conditions. A hardware-in-loop (HIL)-based experimental setup of MCAEB quasi-Z source multilevel inverter was implemented using OPAL-RT. The performance of the proposed controller was further validated by implementing it on DSPACE-1202. Full article
Show Figures

Figure 1

15 pages, 5359 KiB  
Article
Dual-Source Bidirectional Quasi-Z-Source Inverter Development for Off-Road Electric Vehicles
by Daouda Mande, João Pedro F. Trovão, Minh C. Ta and Thang Van Do
World Electr. Veh. J. 2022, 13(9), 174; https://doi.org/10.3390/wevj13090174 - 17 Sep 2022
Cited by 7 | Viewed by 3016
Abstract
In this paper, a battery pack and a supercapacitor bank hybrid energy storage system (HESS) with a new control configuration is proposed for electric vehicles (EVs). A bidirectional quasi-Z-source inverter (Bq-ZSI) and a bidirectional DC-DC converter are used in the powertrain of the [...] Read more.
In this paper, a battery pack and a supercapacitor bank hybrid energy storage system (HESS) with a new control configuration is proposed for electric vehicles (EVs). A bidirectional quasi-Z-source inverter (Bq-ZSI) and a bidirectional DC-DC converter are used in the powertrain of the EV. The scheme of the control for the proposed HESS Bq-ZSI using finite control set model predictive control (FCS-MPC) is first deduced to enhance the dynamic performance. With the idea of managing battery degradation mitigation, the fractional-order PI (FOPI) controller is then applied and associated with a filtering technique. The Opal-RT-based real-time simulation is next executed to verify the performance and effectiveness of the proposed HESS control strategy. As a result, the proposed HESS Bq-ZSI with this control scheme provides a quick response to the mechanical load and stable DC link voltage under the studied driving cycle. Moreover, the comparative results also show that the proposed HESS Bq-ZSI equipped with the new control configuration enables the reduction of the root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of the battery current compared to the battery-based inverter. Thus, the proposed HESS Bq-ZSI using these types of controllers can help to improve the EV system performance. Full article
(This article belongs to the Special Issue On-Board and Off-Board Power Electronics for EVs)
Show Figures

Figure 1

Back to TopTop