Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = quantum theory of atoms-in-molecules (QTAIM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4231 KiB  
Article
Design and Synthesis of a New Photoluminescent 2D Coordination Polymer Employing a Ligand Derived from Quinoline and Pyridine
by Andrzej Kochel, Małgorzata Hołyńska, Aneta Jezierska and Jarosław J. Panek
Crystals 2025, 15(8), 691; https://doi.org/10.3390/cryst15080691 - 30 Jul 2025
Viewed by 321
Abstract
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied [...] Read more.
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied ligand promotes the formation of coordination polymers rather than mononuclear species. The obtained 2D coordination polymer is photoluminescent with bathochromic/hypsochromic shifts in ligand absorption bands leading to a single absorption band at 465 nm. Density Functional Theory was employed to provide a theoretical description of the possible conformational changes within the ligand, with emphasis on the difference between the ligand conformation in its hydrochloride salt and in the polymer. Two models of polymer fragments were constructed to describe the electronic structure and non-covalent interactions. The Quantum Theory of Atoms in Molecules (QTAIM) was applied for this purpose. Using the obtained results, we were able to develop potential energy profiles for various conformations of the ligand. For the set of the studied systems, we detected non-covalent interactions, which are responsible for the spatial conformation. Concerning the models of polymers, electron spin density distribution has been visualized and discussed. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

19 pages, 1941 KiB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 414
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

20 pages, 4322 KiB  
Article
The 1D Hybrid Material Allylimidazolium Iodoantimonate: A Combined Experimental and Theoretical Study
by Hela Ferjani, Rim Bechaieb, Diego M. Gil and Axel Klein
Inorganics 2025, 13(7), 243; https://doi.org/10.3390/inorganics13070243 - 15 Jul 2025
Viewed by 462
Abstract
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void [...] Read more.
The one-dimensional (1D) Sb(III)-based organic–inorganic hybrid perovskite (AImd)21[SbI5] (AImd = 1-allylimidazolium) crystallizes in the orthorhombic, centrosymmetric space group Pnma. The structure consists of corner-sharing [SbI6] octahedra forming 1D chains separated by allylimidazolium cations. Void analysis through Mercury CSD software confirmed a densely packed lattice with a calculated void volume of 1.1%. Integrated quantum theory of atoms in molecules (QTAIM) and non-covalent interactions index (NCI) analyses showed that C–H···I interactions between the cations and the 1[SbI5]2− network predominantly stabilize the supramolecular assembly followed by N–H···I hydrogen bonds. The calculated growth morphology (GM) model fits very well to the experimental morphology. UV–Vis diffuse reflectance spectroscopy allowed us to determine the optical band gap to 3.15 eV. Density functional theory (DFT) calculations employing the B3LYP, CAM-B3LYP, and PBE0 functionals were benchmarked against experimental data. CAM-B3LYP best reproduced Sb–I bond lengths, while PBE0 more accurately captured the HOMO–LUMO gap and the associated electronic descriptors. These results support the assignment of an inorganic-to-organic [Sb–I] → π* charge-transfer excitation, and clarify how structural dimensionality and cation identity shape the material’s optoelectronic properties. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Graphical abstract

30 pages, 5633 KiB  
Article
New 1,2,4-Triazole Derivatives with a N-Mannich Base Structure Based on a 4,6-Dimethylpyridine Scaffold as Anticancer Agents: Design, Synthesis, Biological Evaluation, and Molecular Modeling
by Piotr Świątek, Teresa Glomb, Benita Wiatrak, Paulina Nowotarska, Tomasz Gębarowski, Kamil Wojtkowiak, Aneta Jezierska and Małgorzata Strzelecka
Int. J. Mol. Sci. 2025, 26(14), 6572; https://doi.org/10.3390/ijms26146572 - 8 Jul 2025
Viewed by 466
Abstract
A series of novel N-Mannich bases derived from a dimethylpyridine–1,2,4-triazole hybrid was synthesized and evaluated in vitro for cytotoxic activity on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, and HT-29). Compound 6 bearing a phenyl group at the N-4 position [...] Read more.
A series of novel N-Mannich bases derived from a dimethylpyridine–1,2,4-triazole hybrid was synthesized and evaluated in vitro for cytotoxic activity on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, and HT-29). Compound 6 bearing a phenyl group at the N-4 position and a 4-methylphenyl piperazine moiety at the N-2 position of the 1,2,4-triazole-3-thione scaffold exerted good cytotoxic activities on EPG and Caco-2 cell lines, along with pronounced selectivity, showing lower cytotoxicity against normal colonic epithelial cells (CCD 841 CoTr). Further evaluation revealed the good ability of compound 6 to inhibit the efflux function of P-glycoprotein in P-gp-expressing cell lines (HT-29, LoVo, and LoVo/Dx). Moreover, compound 6 induced apoptotic cell death through a significant increase in the caspase-3 and p53 protein levels in HT-29 cells. Finally, the molecular docking method was applied to explain our experimental findings. The molecular modeling study based on Density Functional Theory (DFT) and the Quantum Theory of Atoms in Molecules (QTAIM) analysis provided insight into the geometric and electronic structure properties of the compounds. Full article
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Targeted Drug Delivery of Anticancer Agents Using C5N2 Substrate: Insights from Density Functional Theory
by Syeda Huda Mehdi Zaidi, Muhammad Ajmal, Muhammad Ali Hashmi and Ahmed Lakhani
Chemistry 2025, 7(3), 98; https://doi.org/10.3390/chemistry7030098 - 13 Jun 2025
Viewed by 633
Abstract
Cancer has a threatening impact on human health, and it is one of the primary causes of fatalities worldwide. Different conventional treatments have been employed to treat cancer, but their non-specific nature reduces their therapeutic efficacy. This study employs a C5N [...] Read more.
Cancer has a threatening impact on human health, and it is one of the primary causes of fatalities worldwide. Different conventional treatments have been employed to treat cancer, but their non-specific nature reduces their therapeutic efficacy. This study employs a C5N2-based targeted drug carrier to study the delivery mechanism of anticancer drugs, particularly cisplatin, carmustine, and mechlorethamine, using density functional theory (DFT). The geometries of the drugs, the C5N2 substrate, and the drug@C5N2 complexes were optimized at the PBE0-D3BJ/def2SVP level of theory. Interaction energy was computed for the complexes which follow the trend, i.e., cisplatin@C5N2 (−27.60 kcal mol−1) > carmustine@C5N2 (−19.69 kcal mol−1) > mechlorethamine@C5N2 (−17.79 kcal mol−1). The non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analyses confirmed the presence of van der Waals forces between the carmustine@C5N2 and mechlorethamine@C5N2 complexes, while weak hydrogen bonding has also been observed between the cisplatin@C5N2 complex. Electron localization function (ELF) analysis was performed to analyze the degree of delocalization of electrons within the complexes. The electronic properties of the analytes and the C5N2 substrate confirmed the enhanced reactivity of the complexes and illustrated electron density shift between the drugs and the C5N2 sheet. Recovery time was determined to assess the biocompatibility and the desorption behavior of the drugs. Moreover, negative solvation energies and increased dipole moments in a solvent phase manifested enhanced solubility and easy circulation of the drugs in biological media. Subsequently, this study illustrates that cisplatin@C5N2, carmustine@C5N2, and mechlorethamine@C5N2 complexes can be utilized as efficient drug delivery systems. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

14 pages, 1718 KiB  
Article
Theoretical Insights into the Chemical Bonding, Electronic Structure, and Spectroscopic Properties of the Lanarkite Pb2SO5 Structure
by Guilherme S. L. Fabris, Mateus M. Ferrer, Claudio R. R. Almeida, Carlos A. Paskocimas, Julio R. Sambrano and Felipe A. La Porta
Physchem 2025, 5(2), 22; https://doi.org/10.3390/physchem5020022 - 4 Jun 2025
Viewed by 1445
Abstract
A comprehensive investigation of the chemical bonding, electronic structure, and spectroscopic properties of the lanarkite-type Pb2SO5 (PSO) structure was conducted, for the first time, using density functional theory simulations. Thus, different functionals, PBE, PBE0, PBESOL, PBESOL0, BLYP, WC1LYP, and B3LYP, [...] Read more.
A comprehensive investigation of the chemical bonding, electronic structure, and spectroscopic properties of the lanarkite-type Pb2SO5 (PSO) structure was conducted, for the first time, using density functional theory simulations. Thus, different functionals, PBE, PBE0, PBESOL, PBESOL0, BLYP, WC1LYP, and B3LYP, were used, and their results were compared to predict their fundamental properties accurately. All DFT calculations were performed using a triple-zeta valence plus polarization basis set. Among all the DFT functionals, PBE0 showed the best agreement with the experimental and theoretical data available in the literature. Our results also reveal that the [PbO5] clusters were formed with five Pb–O bond lengths, with values of 2.29, 2.35, 2.57, 2.60, and 2.79 Å. Meanwhile, the [SO4] clusters exhibited uniform S–O bond lengths of 1.54 Å. Also, a complete topological analysis based on Bader’s Quantum Theory of Atoms in Molecules (QTAIM) was applied to identify atom–atom interactions in the covalent and non-covalent interactions of the PSO structure. Additionally, PSO has an indirect band gap energy of 4.83 eV and an effective mass ratio (mh*/me*) of about 0.192 (PBE0) which may, in principle, indicate a low degree of recombination of electron–hole pairs in the lanarkite structure. This study represents the first comprehensive DFT investigation of Pb2SO5 reported in the literature, providing fundamental insights into its electronic and structural properties. Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Figure 1

28 pages, 3280 KiB  
Article
Structural, Computational, and Biomolecular Interaction Study of Europium(III) and Iron(III) Complexes with Pyridoxal-Semicarbazone Ligand
by Violeta Jevtovic, Stefan Perendija, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien, Jasmina Dimitrić Marković and Dušan Dimić
Int. J. Mol. Sci. 2025, 26(11), 5289; https://doi.org/10.3390/ijms26115289 - 30 May 2025
Viewed by 531
Abstract
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one [...] Read more.
The coordination chemistry, structural characterization, and biomolecular interactions of europium(III) and iron(III) complexes with the pyridoxal-semicarbazone (PLSC) ligand were thoroughly examined using experimental and computational approaches. Single-crystal X-ray diffraction revealed that the europium complex exhibits a nine-coordinate geometry with one protonated and one deprotonated PLSC ligand and nitrato and aqua ligands. In contrast, the iron complex adopts a six-coordinate structure featuring a monoprotonated PLSC, two chlorido, and an aqua ligand. Hirshfeld surface analysis confirmed the significance of intermolecular contacts in stabilizing the crystal lattice. Theoretical geometry optimizations using DFT methods demonstrated excellent agreement with experimental bond lengths and angles, thereby validating the reliability of the chosen computational levels for subsequent quantum chemical analyses. Quantum Theory of Atoms in Molecules (QTAIM) analysis was employed to investigate the nature of metal–ligand interactions, with variations based on the identity of the donor atom and the ligand’s protonation state. The biological potential of the complexes was evaluated through spectrofluorimetric titration and molecular docking. Eu-PLSC displayed stronger binding to human serum albumin (HSA), while Fe-PLSC showed higher affinity for calf thymus DNA (CT-DNA), driven by intercalation. Thermodynamic data confirmed spontaneous and enthalpy-driven interactions. These findings support using PLSC-based metal complexes as promising candidates for future biomedical applications, particularly in drug delivery and DNA targeting. Full article
Show Figures

Figure 1

28 pages, 9047 KiB  
Article
Synergistic Density Functional Theory and Molecular Dynamics Approach to Elucidate PNIPAM–Water Interaction Mechanisms
by Noor Alomari, Santiago Aparicio, Paul Meyer, Yi Zeng, Shuang Cui, Alberto Gutiérrez and Mert Atilhan
Materials 2025, 18(11), 2498; https://doi.org/10.3390/ma18112498 - 26 May 2025
Viewed by 679
Abstract
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(N-isopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) [...] Read more.
This study employs Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations to investigate interactions between water molecules and Poly(N-isopropylacrylamide) (PNIPAM). DFT reveals preferential water binding sites, with enhanced binding energy observed in the linker zone. Quantum Theory of Atoms in Molecules (QTAIM) and electron localization function (ELF) analyses highlight the roles of hydrogen bonding and steric hindrance. MD simulations unveil temperature-dependent hydration dynamics, with structural transitions marked by changes in the radius of gyration (Rg) and the radial distribution function (RDF), aligning with DFT findings. Our work goes beyond prior studies by combining a DFT, QTAIM and MD simulations approach across different PNIPAM monomer-to-30mer structures. It introduces a systematic quantification of pseudo-saturation thresholds and explores water clustering dynamics with structural specificity, which have not been previously reported in the literature. These novel insights establish a more complete molecular-level picture of PNIPAM hydration behavior and temperature responsiveness, emphasizing the importance of amide hydrogen and carbonyl oxygen sites in hydrogen bonding, which weakens above the lower critical solution temperature (LCST), resulting in increased hydrophobicity and paving the way for understanding water sorption mechanisms, offering guidance for future applications such as dehumidification and atmospheric water harvesting. Full article
(This article belongs to the Special Issue Development and Research on Theoretical Chemistry in Materials)
Show Figures

Figure 1

17 pages, 5659 KiB  
Article
Supramolecular Organization of Diaryliodonium Dicyanoargentates(I) Provided by Iodine(III)–Cyanide Halogen Bonding
by Irina S. Aliyarova, Anastasiia V. Koziakova, Daniil M. Ivanov, Natalia S. Soldatova and Pavel S. Postnikov
Inorganics 2025, 13(5), 157; https://doi.org/10.3390/inorganics13050157 - 9 May 2025
Viewed by 864
Abstract
Three diaryliodonium dicyanoargentates(I), [MesIAr][Ag(CN)2] (Ar = Ph 1, Mes 2, 4-MeC6H4 3; Mes = 2,4,6-Me3C6H2), were prepared by anion metathesis. The X-ray structural analyses for these crystals revealed [...] Read more.
Three diaryliodonium dicyanoargentates(I), [MesIAr][Ag(CN)2] (Ar = Ph 1, Mes 2, 4-MeC6H4 3; Mes = 2,4,6-Me3C6H2), were prepared by anion metathesis. The X-ray structural analyses for these crystals revealed C–IIII∙∙∙N≡C halogen bonds (abbreviated as XB) between I atoms of diaryliodonium cations and N atoms of cyano groups, which provide different supramolecular organization. The noncovalent nature of these interactions was studied by density functional theory (DFT) calculations and topological analysis of the electron density distribution in the framework of the quantum theory of atoms in molecules (QTAIM) at the PBE-D3/jorge-DZP-DKH level of theory both in gas phase and crystal models. The philicities of partners in these contacts were confirmed by electron localization function (ELF) projections, electron density/electrostatic potential (ED/ESP) profiles, and Hirshfeld surfaces analysis. An analysis of the available crystallographic data from the literature allows us to find other examples of σ-hole interactions including the dicyanoargentate(I) anion, and the C–X∙∙∙N≡C (X = Br, I, Te) bonding were also confirmed theoretically. Full article
Show Figures

Graphical abstract

17 pages, 2692 KiB  
Article
A First-Principles Study of Sn Dimer Adsorbed on MgO Surface
by Piotr Matczak
Crystals 2025, 15(5), 410; https://doi.org/10.3390/cryst15050410 - 28 Apr 2025
Viewed by 382
Abstract
A detailed characterization of metal clusters bound at the surface of crystalline metal oxide supports is crucial for identifying their structure–property relationships relevant to practical applications. Theoretical investigations based on first-principles calculations have proven to be helpful in characterizing supported metal clusters. In [...] Read more.
A detailed characterization of metal clusters bound at the surface of crystalline metal oxide supports is crucial for identifying their structure–property relationships relevant to practical applications. Theoretical investigations based on first-principles calculations have proven to be helpful in characterizing supported metal clusters. In this work, the adsorption of an Sn dimer on the regular and defective (100) surfaces of MgO crystal was studied by means of density functional theory (DFT) calculations. The investigated defects included Fs0, Fs+, and Fs2+ oxygen vacancies on MgO(100). From the results of the calculations, it is clear that the adsorption of Sn2 at the Fs0 and Fs+ centers is stronger than that occurring on the defect-free MgO(100) surface. While the triplet spin multiplicity of a free Sn dimer tends to be preserved upon its adsorption at the Fs2+ center, spin quenching is favored for the dimer adsorbed at the regular O2− and defective Fs0 and Fs+ centers. The topological analysis of the electron density for the adsorbed dimer was carried out within the quantum theory of atoms in molecules (QTAIM). The calculated values of QTAIM parameters for the Sn-Sn bond of the adsorbed dimer do not differ radically from the corresponding values for the dimer in the gas phase. Full article
Show Figures

Figure 1

19 pages, 2363 KiB  
Article
The Effect of Central Metal Ions (Dy, Er, Ni, and V) on the Structural and HSA-Binding Properties of 2-Hydroxy-3-methoxybenzaldehyde Semicarbazone Complexes
by Violeta Jevtovic, Jelena M. Živković, Aleksandra A. Rakić, Aljazi Abdullah Alrashidi, Maha Awjan Alreshidi, Elham A. Alzahrani, Odeh A. O. Alshammari, Mostafa Aly Hussien and Dušan Dimić
Inorganics 2025, 13(3), 95; https://doi.org/10.3390/inorganics13030095 - 20 Mar 2025
Viewed by 757
Abstract
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were [...] Read more.
2-Hydroxy-3-methoxybenzaldehyde semicarbazone (HMBS) is a multidentate ligand with interesting coordination behavior that depends on the central metal ion and the overall complex geometry. In this contribution, the structural characteristics of five HMBS-containing complexes with different metal ions (Dy, Er, Ni, and V) were investigated. Four binuclear and one mononuclear complex were selected from the Cambridge Structural Database. The crystallographic structures and intermolecular interactions in the solid state were analyzed, and the effect of central metal ions was elucidated. The different contributions of the most numerous contacts were explained by examining additional ligands in the structure. Density functional theory (DFT) optimizations were performed for the selected complexes, and the applicability of different computational methods was discussed. The Quantum Theory of Atoms in Molecules (QTAIMs) approach was employed to identify and quantify interactions in nickel and vanadium complexes, highlighting the role of weak intermolecular interactions between ligands in stabilizing the overall structure. Molecular docking studies of the interaction between these complexes and Human Serum Albumin (HSA) demonstrated that all compounds bind within the active pocket of the protein. The overall size and presence of aromatic rings emerged as key factors in the formation of stabilizing interactions. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

18 pages, 3447 KiB  
Article
A Geometric Berry Phase Angle Induced in Im-3m H3S at 200 GPa by Ultra-Fast Laser Pulses
by Genwei Hong, Xinjie Zhou, Huan He, Tianlv Xu, Herbert Früchtl, Tanja van Mourik, Yaxin Zhai, Steven R. Kirk and Samantha Jenkins
Symmetry 2025, 17(2), 299; https://doi.org/10.3390/sym17020299 - 16 Feb 2025
Cited by 1 | Viewed by 847
Abstract
We investigated Im-3m H3S at 200 GPa, a pressure regime where crystalline H3S is widely considered to be a superconductor. Simulated circularly polarized 10 femtosecond (fs) laser pulses were applied and we quantified the effects on the electron dynamics [...] Read more.
We investigated Im-3m H3S at 200 GPa, a pressure regime where crystalline H3S is widely considered to be a superconductor. Simulated circularly polarized 10 femtosecond (fs) laser pulses were applied and we quantified the effects on the electron dynamics both during the application of the ultra-fast laser pulse and 5.0 fs after the pulse was switched off. In addition, the carrier-envelope phase (CEP) angle ϕ, which quantifies the relationship between the time-varying direction of electric (E)-field and the amplitude envelope, is employed to control the time evolution of the wavefunction ψ(r). This is undertaken for the first application of Next Generation Quantum Theory of Atoms in Molecules (NG-QTAIM) to the solid state. Ultra-fast phenomena related to superconductivity are discovered in the form of a geometric Berry phase angle associated with the H--H bonding in addition to very high values of the chirality–helicity function that correspond to values normally found in chiral molecules. Future applications are discussed, including chiral spin selective phenomena in addition to high-temperature superconductivity and organic superconductors where phonons do not play a significant role. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

15 pages, 2686 KiB  
Article
Quantum-Chemical Investigations on the Structure and Stability of Mixed Trimers Containing HC3N in Combination with H2C2 and/or HCN Analyzed by QTAIM, NBO and SAPT Methods
by Andrea Pietropolli Charmet, Paolo Stoppa, Alessandra De Lorenzi and Patrizia Canton
Symmetry 2025, 17(1), 140; https://doi.org/10.3390/sym17010140 - 18 Jan 2025
Viewed by 918
Abstract
The present work deals with the computational study of HC3N··HCN··H2C2-, (HC3N)2··H2C2-, and HC3N··(H2C2 [...] Read more.
The present work deals with the computational study of HC3N··HCN··H2C2-, (HC3N)2··H2C2-, and HC3N··(H2C2)2-mixed trimers. The different equilibrium structures of the different low-lying minima on the corresponding potential energy surface (PES) were accurately determined, and the relative stabilities were computed by extrapolation procedures to the complete basis set limit. For each mixed trimer, the non-covalent interactions ruling the structure of the most stable isomer were analyzed using the QTAIM (Quantum Theory of Atoms in Molecules) approach. Additional insights into these interactions were provided by the Natural Bond Orbital (NBO) and Symmetry-Adapted Perturbation Theory (SAPT) methods. These results can be used to assist further theoretical investigations and experimental studies on the formation of larger molecules potentially relevant in astrochemistry. Full article
(This article belongs to the Special Issue Chemistry: Symmetry/Asymmetry—Feature Papers and Reviews)
Show Figures

Figure 1

19 pages, 1809 KiB  
Article
Quantum Chemical Topological Analysis of [2Fe2S] Core in Novel [FeFe]-Hydrogenase Mimics
by Piotr Matczak
Crystals 2025, 15(1), 52; https://doi.org/10.3390/cryst15010052 - 3 Jan 2025
Viewed by 948
Abstract
Synthetic mimics of the active site of [FeFe]-hydrogenase enzymes are important in the context of catalytic hydrogen production for future energetic applications. Providing a detailed quantum chemical description of the catalytic center of such mimics contributes to a better understanding of their behavior [...] Read more.
Synthetic mimics of the active site of [FeFe]-hydrogenase enzymes are important in the context of catalytic hydrogen production for future energetic applications. Providing a detailed quantum chemical description of the catalytic center of such mimics contributes to a better understanding of their behavior in hydrogen production processes. In this work, the analysis of bonds in the butterfly [2Fe2S] core in a series of complexes based on recently synthesized [FeFe]-hydrogenase mimics has been carried out using a wide range of quantum chemical topological methods. This series includes hexacarbonyl diiron dithiolate-bridged complexes with the bridging ligand bearing a five-membered carbon ring functionalized with diverse groups. The quantum theory of atoms in molecules (QTAIM) and the electron localization function (ELF) provided detailed characteristics of Fe–Fe and Fe–S bonds in the [2Fe2S] core of the complexes. A relatively small amount of strongly delocalized electron charge is attributed to the Fe–Fe bond. It was established how the topological parameters of the Fe–Fe and Fe–S bonds are affected by the five-membered carbon ring and its functionalization in the bridging dithiolate ligand. Next, one of the first applications of the interacting quantum atoms (IQA) method to [FeFe]-hydrogenase mimics was presented. The pairwise interaction between the metal centers in the [2Fe2S] core turns out to be destabilizing in contrast to the Fe–S interactions responsible for the stabilization of the entire core. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Graphical abstract

15 pages, 2466 KiB  
Article
DFT Investigation of the Mechanism of Methoxycarbonylation of Styrene by Palladium Chloride
by Shanti Gopal Patra, Aritra Saha and Pratim Kumar Chattaraj
Chemistry 2024, 6(6), 1593-1607; https://doi.org/10.3390/chemistry6060096 - 5 Dec 2024
Viewed by 2429
Abstract
The alkoxycarbonylation of styrene by palladium chloride is studied employing the density functional theory (DFT). Initially, [PdCl3] reacts with methanol to form the methoxy-bound intermediate, which undergoes β-hydride elimination to form the key intermediate [PdCl2H]. [...] Read more.
The alkoxycarbonylation of styrene by palladium chloride is studied employing the density functional theory (DFT). Initially, [PdCl3] reacts with methanol to form the methoxy-bound intermediate, which undergoes β-hydride elimination to form the key intermediate [PdCl2H]. Then, a 1,2-insertion reaction to styrene takes place to form linear and branched alkyl coordinated with the PdII. Then, CO coordination followed by a 1,1-insertion reaction leads to the formation of acyl intermediate. Next, the methanolysis leads to the formation of esters. Previous reports with other catalysts suggested the intermolecular/intramolecular transition state (TS) formation with a high activation barrier, and this step was the bottleneck. To the best of our knowledge, this is the first time we have considered a two-step mechanism for the alcoholysis of the ester formation mechanism. After coordination with the metal, the methanol undergoes oxidative addition to form the PdIV square pyramidal intermediate, followed by reductive elimination to form the ester with regeneration of the metal hydride active intermediate. Deeper insight into the nature of bonding at the TSs is obtained through energy decomposition with natural orbital for chemical valence (EDA-NOCV) and quantum theory of atoms in molecules (QTAIM). Full article
(This article belongs to the Section Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

Back to TopTop