A First-Principles Study of Sn Dimer Adsorbed on MgO Surface
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henry, C.R. Surface Studies of Supported Model Catalysts. Surf. Sci. Rep. 1998, 31, 235–325. [Google Scholar] [CrossRef]
- Corain, B.; Schmid, G.; Toshima, N. Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Anderson, J.A.; García, M.F. Supported Metals in Catalysis, 2nd ed.; Catalytic Science Series; Imperial College Press: London, UK, 2012; Volume 11. [Google Scholar]
- Wang, A.; Li, J.; Zhang, T. Heterogeneous Single-Atom Catalysis. Nat. Rev. Chem. 2018, 2, 65–81. [Google Scholar] [CrossRef]
- Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ye, C.; Yan, H.; Li, L.; He, H.; Wang, D.; Li, Y. Single-Atom Site Catalysts for Environmental Catalysis. Nano Res. 2020, 13, 3165–3182. [Google Scholar] [CrossRef]
- Fuente, S.A.; Ferullo, R.M.; Domancich, N.F.; Castellani, N.J. Interaction of NO with Au Nanoparticles Supported on (100) Terraces and Topological Defects of MgO. Surf. Sci. 2011, 605, 81–88. [Google Scholar] [CrossRef]
- Pacchioni, G.; Freund, H. Electron Transfer at Oxide Surfaces. The MgO Paradigm: From Defects to Ultrathin Films. Chem. Rev. 2013, 113, 4035–4072. [Google Scholar] [CrossRef]
- Hemmingson, S.L.; Campbell, C.T. Trends in Adhesion Energies of Metal Nanoparticles on Oxide Surfaces: Understanding Support Effects in Catalysis and Nanotechnology. ACS Nano 2017, 11, 1196–1203. [Google Scholar] [CrossRef]
- Groß, A. Theoretical Surface Science. A Microscopic Perspective; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Gong, N.; He, H.; Wan, H.; Hou, H.; Zhou, Z.; Yang, Y.; Qin, G.; Yin, A.; Cai, Y.; Sun, X.; et al. Insights into the Electronic Modulation of Bimetallic Pt–Sn Cluster for the Selective Hydrogenation of 1,3-Butadiene. Catal. Sci. Technol. 2023, 13, 3313–3320. [Google Scholar] [CrossRef]
- Recchia, S.; Dossi, C.; Poli, N.; Fusi, A.; Sordelli, L.; Psaro, R. Outstanding Performances of Magnesia-Supported Platinum–Tin Catalysts for Citral Selective Hydrogenation. J. Catal. 1999, 184, 1–4. [Google Scholar] [CrossRef]
- Virnovskaia, A.; Morandi, S.; Rytter, E.; Ghiotti, G.; Olsbye, U. Characterization of Pt, Sn/Mg(Al)O Catalysts for Light Alkane Dehydrogenation by FT-IR Spectroscopy and Catalytic Measurements. J. Phys. Chem. C 2007, 111, 14732–14742. [Google Scholar] [CrossRef]
- Kikuchi, I.; Haibara, Y.; Ohshima, M.; Kurokawa, H.; Miura, H. Dehydrogenation of N-Butane to Butadiene over Pt–Sn/MgO–Al2O3. J. Jpn. Petrol. Inst. 2012, 55, 33–39. [Google Scholar] [CrossRef]
- Liu, Y.; Zong, X.; Patra, A.; Caratzoulas, S.; Vlachos, D.G. Propane Dehydrogenation on PtxSny (x, y ≤ 4) Clusters on Al2O3(110). ACS Catal. 2023, 13, 2802–2812. [Google Scholar] [CrossRef]
- Chen, S.; Chang, X.; Sun, G.; Zhang, T.; Xu, Y.; Wang, Y.; Pei, C.; Gong, J. Propane Dehydrogenation: Catalyst Development, New Chemistry, and Emerging Technologies. Chem. Soc. Rev. 2021, 50, 3315–3354. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Deng, G.-M.; Li, W.-C.; Miao, S.; Wang, Q.-N.; Zhang, W.-P.; Lu, A.-H. Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt-Sn Clusters for Propane Dehydrogenation. Angew. Chem. Int. Ed. 2015, 54, 13994–13998. [Google Scholar] [CrossRef]
- Jang, E.J.; Lee, J.; Jeong, H.Y.; Kwak, J.H. Controlling the Acid-Base Properties of Alumina for Stable PtSn-Based Propane Dehydrogenation Catalysts. Appl. Catal. A 2019, 572, 1–8. [Google Scholar] [CrossRef]
- Motagamwala, A.H.; Almallahi, R.; Wortman, J.; Igenegbai, V.O.; Linic, S. Stable and Selective Catalysts for Propane Dehydrogenation Operating at Thermodynamic Limit. Science 2021, 373, 217–222. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Skylla, E.; Dourou, P.; Pippa, N.; Gazouli, M.; Lagopati, N.; Pavlatou, E.A. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. Crystals 2024, 14, 215. [Google Scholar] [CrossRef]
- Chang, J.-R.; Koningsberger, D.C.; Gates, B.C. Structurally Simple Supported Platinum Clusters Prepared from [Pt15(CO)30]2- on Magnesium Oxide. J. Am. Chem. Soc. 1992, 114, 6460–6466. [Google Scholar] [CrossRef]
- Rivera Rocabado, D.S.; Koyama, M. Support-Dependent Modulation of Pt33 Nanoparticles: Insights into Oxygen Interaction, Stability, Electronic Properties, and Geometric Structure. Surf. Sci. 2025, 754, 122686. [Google Scholar] [CrossRef]
- Matczak, P. Theoretical Study of Sn Adsorbed on the MgO(100) Surface with Defects. C. R. Chim. 2018, 21, 669–675. [Google Scholar] [CrossRef]
- Nigam, S.; Majumder, C. Charge Reordering of MgO(100) Surface by Sn Cluster Deposition: Implications for Heterogeneous Catalysis. Appl. Surf. Sci. 2020, 506, 144963. [Google Scholar] [CrossRef]
- Nava, N.; Morales, M.A.; Vanoni, W.; Toledo, J.A.; Baggio-Saitovitch, E.; Viveros, T. Structural Behavior of Pt–Sn Supported on MgO. Hyperfine Interact. 2001, 134, 81–92. [Google Scholar] [CrossRef]
- Shashikala, V.; Jung, H.; Shin, C.-H.; Koh, H.-L.; Jung, K.-D. N-Butane Dehydrogenation on PtSn/Carbon Modified MgO Catalysts. Catal. Lett. 2013, 143, 651–656. [Google Scholar] [CrossRef]
- Wang, X.; Hu, H.; Zhang, N.; Song, J.; Fan, X.; Zhao, Z.; Kong, L.; Xiao, X.; Xie, Z. One-Pot Synthesis of MgAlO Support for PtSn Catalysts over Propane Dehydrogenation. ChemistrySelect 2022, 7, e202104367. [Google Scholar] [CrossRef]
- Lopez, N. Effect of the Basicity of the Support on the Properties of Deposited Metal Atoms. J. Chem. Phys. 2001, 114, 2355–2361. [Google Scholar] [CrossRef]
- Wang, Y.; Florez, E.; Mondragon, F.; Truong, T.N. Effects of Metal–Support Interactions on the Electronic Structures of Metal Atoms Adsorbed on the Perfect and Defective MgO(100) Surfaces. Surf. Sci. 2006, 600, 1703–1713. [Google Scholar] [CrossRef]
- Gao, J.; Ren, Y.; Han, Q.; Wen, H.; Jiang, Z. Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters. Catalysts 2020, 10, 16. [Google Scholar] [CrossRef]
- Zinnatullin, A.L.; Gabbasov, B.F.; Lyadov, N.M.; Yusupov, R.V.; Khaibullin, R.I.; Vagizov, F.G. Endotaxial α-Fe Nanoparticles in the High-Fluence Iron-Implanted Single-Crystal MgO. Crystals 2022, 12, 1095. [Google Scholar] [CrossRef]
- Pacchioni, G. Theory of Metal Clusters on the MgO Surface: The Role of Point Defects. In Nanocatalysis. Nanoscience and Technology; Heiz, U., Landman, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 193–243. [Google Scholar]
- Sementa, L.; Stener, M.; Fortunelli, A. Optical Activity of Metal Nanoclusters Deposited on Regular and Doped Oxide Supports from First-Principles Simulations. Molecules 2021, 26, 6961. [Google Scholar] [CrossRef]
- Tasker, P.W. The Stability of Ionic Crystal Surfaces. J. Phys. C Solid State Phys. 1979, 12, 4977–4984. [Google Scholar] [CrossRef]
- Wander, A.; Bush, I.J.; Harrison, N.M. Stability of Rocksalt Polar Surfaces: An Ab Initio Study of MgO(111) and NiO(111). Phys. Rev. B 2003, 68, 233405. [Google Scholar] [CrossRef]
- Kramer, J.; Ernst, W.; Tegenkamp, C.; Pfnur, H. Mechanism and Kinetics of Color Center Formation on Epitaxial Thin Films of MgO. Surf. Sci. 2002, 517, 87–97. [Google Scholar] [CrossRef]
- Matveev, A.V.; Neyman, K.M.; Yudanov, I.V.; Rosch, N. Adsorption of Transition Metal Atoms on Oxygen Vacancies and Regular Sites of the MgO(001) Surface. Surf. Sci. 1999, 426, 123–139. [Google Scholar] [CrossRef]
- Fuente, S.A.; Belelli, P.G.; Ferullo, R.M.; Castellani, N.J. Adsorption of NO on Au Atoms and Dimers Supported on MgO(100): DFT Studies. Surf. Sci. 2008, 602, 1669–1676. [Google Scholar] [CrossRef]
- Peterka, D.; Tegenkamp, C.; Schröder, K.-M.; Ernst, W.; Pfnür, H. Oxygen Surplus and Oxygen Vacancies on the Surface of Epitaxial MgO Layers Grown on Ag(100). Surf. Sci. 1999, 431, 146–155. [Google Scholar] [CrossRef]
- Sterrer, M.; Fischbach, E.; Heyde, M.; Nilius, N.; Rust, H.-P.; Risse, T.; Freund, H.-J. Electron Paramagnetic Resonance and Scanning Tunneling Microscopy Investigations on the Formation of F+ and F0 Color Centers on the Surface of Thin MgO(001) Films. J. Phys. Chem. B 2006, 110, 8665–8669. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Pacchioni, G. Electronic Structure of F and V Centers on the MgO Surface. J. Phys. Chem. 1995, 99, 17010–17018. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory, 2nd ed.; Wiley: Weinheim, Germany, 2001. [Google Scholar]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon: Oxford, UK, 1990. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Misra, N. Ab Initio Investigations on Planar (MgO)n Clusters (n = 1–5) and Their Hydrogen Adsorption Behaviour. Mol. Simul. 2016, 42, 208–214. [Google Scholar] [CrossRef]
- Reckien, W.; Janetzko, F.; Peintinger, M.F.; Bredow, T. Implementation of Empirical Dispersion Corrections to Density Functional Theory for Periodic Systems. J. Comput. Chem. 2012, 33, 2023–2031. [Google Scholar] [CrossRef]
- Varjovi, M.J.; Tosoni, S. DFT Investigation of X55 (X = Ni, Pd, and Pt) Clusters on Ultrathin Supported MgO Films: Evidence of Oxygen Spillover and Relevance for Catalytic Model Studies. J. Phys. Chem. C 2024, 128, 21331–21342. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Wang, F.-F.; Chen, D.-L.; Zhang, F.; Zhu, W. Theoretical Insights on the Synergistic Effect of Dual Metal Sites Supported on MgO(100) Promoting the Hydrogenation Reaction. J. Phys. Chem. C 2025, 129, 359–368. [Google Scholar] [CrossRef]
- Meier, L.A.; Castellani, N.J. Theoretical Study of Sn Adsorbed on the Au(111) Surface. Comput. Mater. Sci. 2017, 127, 48–59. [Google Scholar] [CrossRef]
- Shen, D.; Liu, Y.; Li, M.; Sun, W.; Tang, S.; Dong, W.; Yang, S. Structural Stability and Lithium Storage Property of Snx Clusters (x ≤ 6) Deposited on Graphene Based on First-Principles Calculation. Diamond Relat. Mater. 2023, 131, 109567. [Google Scholar] [CrossRef]
- Sousa, C.; de Graaf, C.; Lopez, N.; Harrison, N.M.; Illas, F. Ab Initio Theory of Magnetic Interactions at Surfaces. J. Phys. Condens. Matter 2004, 16, S2557. [Google Scholar] [CrossRef]
- Valero, R.; Gomes, J.R.B.; Truhlar, D.G.; Illas, F. Good Performance of the M06 Family of Hybrid Meta Generalized Gradient Approximation Density Functionals on a Difficult Case: CO Adsorption on MgO(001). J. Chem. Phys. 2008, 129, 124710. [Google Scholar] [CrossRef]
- Di Valentin, C.; Ferullo, R.; Binda, R.; Pacchioni, G. Oxygen Vacancies and Peroxo Groups on Regular and Low-Coordinated Sites of MgO, CaO, SrO, and BaO Surfaces. Surf. Sci. 2006, 600, 1147–1154. [Google Scholar] [CrossRef]
- Reveles, J.U.; Köster, A.M.; Khanna, S.N.; Quintanar, C. Surface Oxygen Diffusion into Neutral, Cationic, and Dicationic Oxygen Vacancies on MgO(100) Surfaces. J. Phys. Chem. C 2010, 114, 12265–12270. [Google Scholar] [CrossRef]
- Zamora, A.Y.; Reveles, J.U.; Mejia-Olvera, R.; Baruah, T.; Zope, R.R. FeO2/MgO(100) Supported Cluster: Computational Pursual for a Low-Cost and Low-Temperature CO Nanocatalyst. Chem. Phys. Lett. 2014, 612, 117–123. [Google Scholar] [CrossRef]
- Matczak, P. Effect of Surface Vacancies on the Adsorption of Pd and Pb on MgO(100). Monatsh. Chem. 2018, 149, 1009–1015. [Google Scholar] [CrossRef]
- Evjen, H.M. On the Stability of Certain Heteropolar Crystals. Phys. Rev. 1932, 39, 675–687. [Google Scholar] [CrossRef]
- Wadt, W.R.; Hay, P.J. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Pietro, W.J.; Francl, M.M.; Hehre, W.J.; DeFrees, D.J.; Pople, J.A.; Binkley, J.S. Self-Consistent Molecular Orbital Methods. 24. Supplemented Small Split-Valence Basis Sets for Second-Row Elements. J. Am. Chem. Soc. 1982, 104, 5039–5048. [Google Scholar] [CrossRef]
- Roy, L.E.; Hay, P.J.; Martin, R.L. Revised Basis Sets for the LANL Effective Core Potentials. J. Chem. Theory Comput. 2008, 4, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Matczak, P. Assessment of B3LYP Combined with Various ECP Basis Sets for Systems Containing Pd, Sn, and Pb. Comput. Theoret. Chem. 2012, 983, 25–30. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Del Vitto, A.; Pacchioni, G.; Delbecq, F.; Sautet, P. Au Atoms and Dimers on the MgO(100) Surface: A DFT Study of Nucleation at Defects. J. Phys. Chem. B 2005, 109, 8040–8048. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Becke, A.D. A Multicenter Numerical Integration Scheme for Polyatomic Molecules. J. Chem. Phys. 1988, 88, 2547–2553. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Calculation of Molecular Orbital Composition. Acta Chim. Sin. 2011, 69, 2393–2406. [Google Scholar]
- Keith, T.A. AIMAll 19.10.12; TK Gristmill Software: Overland Park, KS, USA, 2019. [Google Scholar]
- Li, S.; Zee, R.J.V.; Weltner, W., Jr. Magneto-Infrared Spectra of the Si2, Ge2, and Sn2 Molecules in Rare-Gas Matrices. J. Chem. Phys. 1994, 100, 7079–7086. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Xiao, C.; Neyman, K.M.; Pacchioni, G.; Rösch, N. Pd and Ag Dimers and Tetramers Adsorbed at the MgO(001) Surface: A Density Functional Study. Phys. Chem. Chem. Phys. 1999, 1, 4655–4661. [Google Scholar] [CrossRef]
- Sterrer, M.; Risse, T.; Giordano, L.; Heyde, M.; Nilius, N.; Rust, H.-P.; Pacchioni, G.; Freund, H.-J. Palladium Monomers, Dimers, and Trimers on the MgO(001) Surface Viewed Individually. Angew. Chem. Int. Ed. 2007, 46, 8703–8706. [Google Scholar] [CrossRef]
- Simic-Milosevic, V.; Heyde, M.; Nilius, N.; König, T.; Rust, H.-P.; Sterrer, M.; Risse, T.; Freund, H.-J.; Giordano, L.; Pacchioni, G. Au Dimers on Thin MgO(001) Films: Flat and Charged or Upright and Neutral? J. Am. Chem. Soc. 2008, 130, 7814–7815. [Google Scholar] [CrossRef]
- Beniwal, S.; Chai, W.; Metavarayuth, K.; Maddumapatabandi, T.D.; Shakya, D.M.; Henkelman, G.; Chen, D.A. Oxidation of Sn at the Cluster–Support Interface: Sn and Pt–Sn Clusters on TiO2(110). J. Phys. Chem. C 2021, 125, 17671–17683. [Google Scholar] [CrossRef]
- Yu, J.; Su, N.Q.; Yang, W. Describing Chemical Reactivity with Frontier Molecular Orbitalets. JACS Au 2022, 2, 1383–1394. [Google Scholar] [CrossRef]
- Macchi, P.; Sironi, A. Chemical Bonding in Transition Metal Carbonyl Clusters: Complementary Analysis of Theoretical and Experimental Electron Densities. Coord. Chem. Rev. 2003, 238–239, 383–412. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
Adsorption Center | 2S + 1 | Distance | ΔE | Eads | Eadh | ||
---|---|---|---|---|---|---|---|
Sn1-Surface a | Sn2-Surface b | Sn1-Sn2 | |||||
O5c | 1 | 2.267 (2.233) | 2.282 (2.355) | 2.826 (2.808) | 0.00 (0.00) | −2.86 (−2.85) | −3.46 (−3.44) |
3 | 2.318 (2.259) | 2.802 (2.954) | 2.879 (2.857) | 0.92 (0.85) | −1.93 (−2.01) | −1.80 (−1.88) | |
5 | 2.242 (2.195) | 2.887 (3.256) | 3.074 (3.053) | 1.83 (1.71) | −1.03 (−1.15) | −1.96 (−2.10) | |
1 | 2.191 (2.195) | 2.357 (2.447) | 2.750 (2.724) | 0.00 (0.00) | −4.24 (−4.28) | −4.80 (−4.84) | |
3 | 2.193 (2.195) | 2.332 (2.426) | 3.014 (2.970) | 0.96 (1.03) | −3.28 (−3.25) | −3.18 (−3.11) | |
5 | 2.171 (2.170) | 3.129 (3.413) | 3.115 (3.062) | 2.09 (2.07) | −2.15 (−2.21) | −3.04 (−3.04) | |
2 | 2.192 (2.169) | 2.300 (2.390) | 2.819 (2.796) | 0.00 (0.00) | −3.08 (−2.92) | −3.55 (−3.41) | |
4 | 2.108 (2.039) | 2.305 (2.434) | 3.023 (2.987) | 0.82 (0.94) | −2.26 (−1.98) | −2.17 (−1.85) | |
6 | 2.315 (2.294) | 3.062 (3.342) | 3.229 (3.118) | 2.27 (2.27) | −0.81 (−0.64) | −1.65 (−1.45) | |
1 | 2.327 (2.118) | 2.273 (2.364) | 2.893 (2.869) | 0.11 (0.17) | −2.30 (−2.28) | −2.96 (−2.95) | |
3 | 2.325 (2.105) | 2.264 (2.366) | 2.882 (2.865) | 0.00 (0.00) | −2.41 (−2.45) | −2.40 (−2.39) | |
5 | 2.244 (2.244) | 2.299 (2.345) | 3.163 (3.121) | 0.90 (0.98) | −1.51 (−1.47) | −2.45 (−2.37) |
Adsorption Center | 2S + 1 | Sn-Surface a | ΔE | Eads | Eadh | q(Sn) | Nspin(Sn) |
---|---|---|---|---|---|---|---|
O5c | 1 | 2.270 (2.235) | 0.17 (0.18) | −1.64 (−1.83) | −2.80 (−3.00) | −0.114 (−0.131) | 0.000 (0.000) |
3 | 2.276 (2.241) | 0.00 (0.00) | −1.81 (−2.01) | −1.86 (−2.05) | −0.117 (−0.135) | 1.694 (1.691) | |
1 | 2.229 (2.230) | 0.14 (0.14) | −2.82 (−2.94) | −3.85 (−3.96) | −1.369 (−1.381) | 0.000 (0.000) | |
3 | 2.244 (2.246) | 0.00 (0.00) | −2.96 (−3.08) | −2.86 (−2.98) | −1.371 (−1.384) | 1.639 (1.657) | |
2 | 2.204 (2.344) | 0.13 (0.22) | −1.98 (−1.93) | −2.96 (−2.93) | −0.719 (−0.671) | 0.837 (0.866) | |
4 | 2.188 (2.152) | 0.00 (0.00) | −2.11 (−2.15) | −2.00 (−2.05) | −0.697 (−0.699) | 2.300 (2.332) | |
1 | 2.080 (2.300) | 0.14 (0.20) | −1.26 (−1.29) | −2.41 (−2.42) | −0.087 (−0.056) | 0.000 (0.000) | |
3 | 2.326 (2.316) | 0.00 (0.00) | −1.40 (−1.49) | −1.32 (−1.42) | −0.031 (−0.021) | 1.542 (1.573) |
Adsorption Center | 2S + 1 | q(Sn2) | Nspin(Sn1) | Nspin(Sn2) |
---|---|---|---|---|
O5c | 1 | −0.242 (−0.299) | 0.000 (0.000) | 0.000 (0.000) |
3 | −0.167 (−0.207) | 0.639 (0.575) | 1.001 (1.095) | |
5 | −0.149 (−0.194) | 1.457 (1.393) | 1.982 (2.151) | |
1 | −1.462 (−1.508) | 0.000 (0.000) | 0.000 (0.000) | |
3 | −1.470 (−1.515) | 0.809 (0.825) | 0.845 (0.871) | |
5 | −1.437 (−1.486) | 1.537 (1.558) | 1.834 (1.929) | |
2 | −0.753 (−0.779) | 0.473 (0.483) | 0.323 (0.313) | |
4 | −0.768 (−0.806) | 1.499 (1.537) | 0.961 (0.938) | |
6 | −0.688 (−0.698) | 2.071 (2.082) | 2.041 (2.144) | |
1 | −0.032 (−0.077) | 0.000 (0.000) | 0.000 (0.000) | |
3 | −0.025 (−0.075) | 1.126 (1.169) | 0.430 (0.369) | |
5 | −0.054 (−0.064) | 1.890 (1.894) | 1.297 (1.345) |
Adsorption Center | 2S + 1 | ||
---|---|---|---|
O5c | 1 | −3.63 (−3.43) | −1.81 (−1.42) |
3 | −2.70 (−2.58) | −0.89 (−0.57) | |
5 | −1.80 (−1.72) | 0.02 (0.29) | |
1 | −3.87 (−3.78) | −1.86 (−1.77) | |
3 | −2.91 (−2.76) | −0.90 (−0.74) | |
5 | −1.78 (−1.71) | 0.23 (0.30) | |
2 | −3.55 (−3.35) | −1.54 (−1.34) | |
4 | −2.73 (−2.41) | −0.72 (−0.40) | |
6 | −1.28 (−1.08) | 0.73 (0.93) | |
1 | −3.48 (−3.37) | −1.47 (−1.36) | |
3 | −3.60 (−3.54) | −1.59 (−1.53) | |
5 | −2.70 (−2.56) | −0.69 (−0.55) |
2S + 1 | Bond Length | Ebind | ρb | ∇2ρb | Gb/ρb | Hb/ρb | δ |
---|---|---|---|---|---|---|---|
1 | 2.830 | −2.41 | 0.0547 | 0.0050 | 0.1511 | −0.3405 | 2.05 |
3 | 2.823 | −2.58 | 0.0553 | 0.0054 | 0.1516 | −0.3432 | 2.05 |
5 | 2.996 | −1.63 | 0.0350 | 0.0201 | 0.1994 | −0.2427 | 1.35 |
Adsorption Center | 2S + 1 | ρb | ∇2ρb | Gb/ρb | Hb/ρb | δ |
---|---|---|---|---|---|---|
O5c | 1 | 0.0532 (0.0543) | 0.0088 (0.0099) | 0.1511 (0.1498) | −0.3320 (−0.3363) | 1.61 (1.65) |
3 | 0.0505 (0.0518) | 0.0050 (0.0055) | 0.1484 (0.1476) | −0.3180 (−0.3251) | 1.47 (1.51) | |
5 | 0.0320 (0.0330) | (0.0167) (0.0163) | 0.1930 (0.1877) | −0.2203 (−0.2279) | 0.95 (0.94) | |
1 | 0.0550 (0.0566) | 0.0238 (0.0269) | 0.1717 (0.1710) | −0.3446 (−0.3519) | 1.77 (1.86) | |
3 | 0.0414 (0.0434) | 0.0056 (0.0067) | 0.1501 (0.1513) | −0.2651 (−0.2779) | 1.10 (1.19) | |
5 | 0.0323 (0.0347) | 0.0128 (0.0133) | 0.1724 (0.1702) | −0.2156 (−0.2327) | 0.94 (1.01) | |
2 | 0.0527 (0.0543) | 0.0115 (0.0133) | 0.1585 (0.1593) | −0.3326 (−0.3402) | 1.51 (1.58) | |
4 | 0.0393 (0.0424) | 0.0070 (0.0050) | 0.1506 (0.1448) | −0.2584 (−0.2753) | 0.96 (1.04) | |
6 | 0.0250 (0.0293) | 0.0155 (0.0169) | 0.2026 (0.1983) | −0.1695 (−0.2037) | 0.74 (0.84) | |
1 | 0.0501 (0.0514) | 0.0026 (0.0037) | 0.1448 (0.1468) | −0.3180 (−0.3259) | 1.30 (1.33) | |
3 | 0.0503 (0.0521) | 0.0036 (0.0032) | 0.1461 (0.1457) | −0.3202 (−0.3285) | 1.30 (1.32) | |
5 | 0.0293 (0.0310) | 0.0131 (0.0144) | 0.1838 (0.1871) | −0.1993 (−0.2099) | 0.73 (0.79) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matczak, P. A First-Principles Study of Sn Dimer Adsorbed on MgO Surface. Crystals 2025, 15, 410. https://doi.org/10.3390/cryst15050410
Matczak P. A First-Principles Study of Sn Dimer Adsorbed on MgO Surface. Crystals. 2025; 15(5):410. https://doi.org/10.3390/cryst15050410
Chicago/Turabian StyleMatczak, Piotr. 2025. "A First-Principles Study of Sn Dimer Adsorbed on MgO Surface" Crystals 15, no. 5: 410. https://doi.org/10.3390/cryst15050410
APA StyleMatczak, P. (2025). A First-Principles Study of Sn Dimer Adsorbed on MgO Surface. Crystals, 15(5), 410. https://doi.org/10.3390/cryst15050410