Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = pyrolysis–combustion flow calorimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7427 KiB  
Article
Flame Retardant from Eugenol as Green Modifier for Epoxy Resins
by Danuta Matykiewicz, Beata Dudziec and Sławomir Michałowski
Int. J. Mol. Sci. 2025, 26(12), 5861; https://doi.org/10.3390/ijms26125861 - 19 Jun 2025
Viewed by 404
Abstract
A biobased flame retardant, trieugenylphosphate (TEP), was synthesized from eugenol and incorporated at concentrations of 10 and 30 wt.% into the epoxy matrix. Flammability and thermal stability were investigated using the UL-94 test, pyrolysis–combustion flow calorimetry (PCFC), and thermogravimetric analysis (TGA). Thermal and [...] Read more.
A biobased flame retardant, trieugenylphosphate (TEP), was synthesized from eugenol and incorporated at concentrations of 10 and 30 wt.% into the epoxy matrix. Flammability and thermal stability were investigated using the UL-94 test, pyrolysis–combustion flow calorimetry (PCFC), and thermogravimetric analysis (TGA). Thermal and thermomechanical properties were examined by differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). The modified resin with TEP content showed self-extinguishing properties and acceptable thermal and thermomechanical properties. Furthermore, the microcalorimetric method proved that the introduction of the TEP additive to the epoxy matrix reduced the values of pcHRR (414.4 ± 5.5 W/g), THR (29.1 ± 0.6 kJ/g), and HRC (446 ± 7 J/g·K) for the sample tested compared to the unmodified resin. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

23 pages, 10568 KiB  
Article
Bio-Based Flame-Retardant Systems for Polymers Obtained via Michael 1,4-Addition
by Kamila Salasinska, Mateusz Barczewski, Mikelis Kirpluks, Ralfs Pomilovskis, Paweł Sulima, Sławomir Michałowski, Patryk Mietliński, Jerzy Andrzej Przyborowski and Anna Boczkowska
Molecules 2025, 30(12), 2556; https://doi.org/10.3390/molecules30122556 - 11 Jun 2025
Viewed by 689
Abstract
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) [...] Read more.
Phosphorus flame retardants react with cellulose hydroxyl groups via esterification, enhancing the effectiveness of char formation, which is beneficial in terms of the search for bio-sourced flame retardants. The current work assessed the flammability of a new polymer synthesized by Michael 1,4-addition (rP) and modified with developed intumescent flame retardant systems (FRs), in which lignocellulose components, such as sunflower husk (SH) and peanut shells (PS), replaced a part of the synthetic ones. The thermal and thermomechanical properties of the rP, with 20 wt.% each from six FRs, were determined by thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Moreover, the flammability and evolved gas were studied with pyrolysis combustion flow calorimetry (PCFC) and thermogravimetric analysis connected with Fourier transform infrared spectroscopy tests (TGA/FT-IR). The effects were compared to those achieved for unmodified rP and a polymer with a commercially available intumescent flame retardant (IFR). The notable improvement, especially in terms of the heat release rate and heat release capacity, indicates that the system with melamine phosphate (MP) and peanut shells (PS) can be used to decrease the flammability of new polymers. An extensive analysis of the composition and geometry of the ground shells and husk particles preceded the research. Full article
Show Figures

Graphical abstract

19 pages, 5935 KiB  
Article
Towards the Reuse of Fire Retarded Polyamide 12 for Laser Sintering
by Dylan Seigler, Marcos Batistella and José-Marie Lopez-Cuesta
Materials 2024, 17(16), 4064; https://doi.org/10.3390/ma17164064 - 15 Aug 2024
Cited by 1 | Viewed by 1127
Abstract
The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered [...] Read more.
The control of powder aging during Selective Laser Sintering (SLS) processing is one of the challenges to be overcome for the implementation of this technique in serial production. Aging phenomena, because of the elevated temperatures and long processing times, need to be considered when a fraction of the polymer powders present in the build chamber and not used to manufacture the parts are reused at various times. The aim of this study was to investigate the influence of successive reuse of blends of pure Polyamide 12 and its blends with two types of flame retardants (FR): ammonium polyphosphate (APP) and zinc borate (ZB). The composition of the blends was 70/30 (wt/wt) PA 12/FR. Four successive processing stages have been carried out by collecting the remaining powder blend each time. The powders were re-used using the same processing parameters after sieving. DSC measurements showed that the incorporation of FRs entailed a reduction in the processing window up to 4 °C; nevertheless, no further reduction was noted after aging. The TGA curves of aged blends of powders were also similar for pure PA 12 and PA 12 with FR. In addition, initial and reused powders presented a higher degree of crystallinity than the specimens processed from the powders. The heterogeneous character of the PA 12 after LS processing or reprocessing was shown through Pyrolysis Combustion Flow Calorimetry (PCFC) and cone calorimeter (CC) tests. FTIR analysis also showed that post-condensation reactions have occurred. The mode of action of the flame retardants was clearly seen on HRR curves at both tests. The first reuses of PA 12 powders entailed a significant reduction in time to ignition at the cone calorimeter (150 for the initial material to around 90 s for the reused material), indicating the formation of short polymer chains. Only in the case of zinc borate was it noticed that re-used powder was detrimental to the fire performance because of a strong increase in the value of pHRR (between 163 and 220 kW/m2 for reused material instead of 125 kW/m2 for the initial one). Full article
(This article belongs to the Special Issue Nonconventional Technology in Materials Processing-3rd Edition)
Show Figures

Figure 1

15 pages, 4525 KiB  
Article
Synthesis and Characterization of Flame Retarded Rigid Polyurethane Foams with Different Types of Blowing Agents
by Marcin Zemła, Sławomir Michałowski and Aleksander Prociak
Materials 2023, 16(22), 7217; https://doi.org/10.3390/ma16227217 - 17 Nov 2023
Cited by 7 | Viewed by 1751
Abstract
In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second [...] Read more.
In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second one, only water was used as a chemical blowing agent. The systems were modified with the additive phosphorus flame retardant Roflam F5. The obtained modified foams were tested for their flammability and basic properties, such as apparent density, closed-cell contents and analyses of the cell structures, thermal conductivity, mechanical properties, and water absorption. Increasing the content of Roflam F5 caused a decrease in temperature during the combustion of the material and extended the burning time. The addition of 1.0 wt.% phosphorus derived from Roflam F5 caused the modified rigid polyurethane foam to become a self-extinguishing material. The increase in the content of Roflam F5 caused a decrease in the total heat release and the maximum heat release rate during the pyrolysis combustion flow calorimetry. The foams with the highest content of flame retardant and foamed with a chemical-physical and chemical blowing agent had a lower total heat release by 19% and 11%, respectively, compared to reference foams. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

18 pages, 64270 KiB  
Communication
Flame Retardancy Index (FRI) for Polymer Materials Ranking
by Henri Vahabi, Elnaz Movahedifar, Baljinder K. Kandola and Mohammad Reza Saeb
Polymers 2023, 15(11), 2422; https://doi.org/10.3390/polym15112422 - 23 May 2023
Cited by 42 | Viewed by 4170
Abstract
In 2019, we introduced Flame Retardancy Index (FRI) as a universal dimensionless index for the classification of flame-retardant polymer materials (Polymers, 2019, 11(3), 407). FRI simply takes the peak of Heat Release Rate (pHRR), Total Heat Release (THR), and [...] Read more.
In 2019, we introduced Flame Retardancy Index (FRI) as a universal dimensionless index for the classification of flame-retardant polymer materials (Polymers, 2019, 11(3), 407). FRI simply takes the peak of Heat Release Rate (pHRR), Total Heat Release (THR), and Time-To-Ignition (ti) from cone calorimetry data and quantifies the flame retardancy performance of polymer composites with respect to the blank polymer (the reference sample) on a logarithmic scale, as of Poor (FRI ˂ 100), Good (100FRI ˂ 101), or Excellent (FRI ≥ 101). Although initially applied to categorize thermoplastic composites, the versatility of FRI was later verified upon analyzing several sets of data collected from investigations/reports on thermoset composites. Over four years from the time FRI was introduced, we have adequate proof of FRI reliability for polymer materials ranking in terms of flame retardancy performance. Since the mission of FRI was to roughly classify flame-retardant polymer materials, its simplicity of usage and fast performance quantification were highly valued. Herein, we answered the question “does inclusion of additional cone calorimetry parameters, e.g., the time to pHRR (tp), affect the predictability of FRI?”. In this regard, we defined new variants to evaluate classification capability and variation interval of FRI. We also defined the Flammability Index (FI) based on Pyrolysis Combustion Flow Calorimetry (PCFC) data to invite specialists for analysis of the relationship between the FRI and FI, which may deepen our understanding of the flame retardancy mechanisms of the condensed and gas phases. Full article
(This article belongs to the Collection Fire and Polymers)
Show Figures

Graphical abstract

16 pages, 6986 KiB  
Article
Polysiloxanes and Silanes with Various Functional Groups—New Compounds for Flax Fibers’ Modification
by Weronika Gieparda, Marcin Przybylak, Szymon Rojewski and Beata Doczekalska
Materials 2023, 16(10), 3839; https://doi.org/10.3390/ma16103839 - 19 May 2023
Cited by 5 | Viewed by 2173
Abstract
There is an increasing desire to use natural products that will be both effective and biodegradable. The aim of this work is to investigate the effect of modifying flax fibers with silicon compounds (silanes and polysiloxanes), as well as examining the effect of [...] Read more.
There is an increasing desire to use natural products that will be both effective and biodegradable. The aim of this work is to investigate the effect of modifying flax fibers with silicon compounds (silanes and polysiloxanes), as well as examining the effect of the mercerization process on their properties. Two types of polysiloxanes have been synthesized and confirmed by infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Scanning electron microscopy (SEM), FTIR, thermogravimetry analysis (TGA) and pyrolysis-combustion flow calorimetry (PCFC) tests of the fibers were performed. On the SEM pictures, flax fibers purified and covered with silanes were visible after treatment. FTIR analysis showed stable bonds between the fibers and the silicon compounds. Promising results of thermal stability were obtained. It was also found that modification had a positive effect on the flammability. The conducted research showed that the use of such modifications, in the context of using flax fibers for composites, can yield very good results. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

23 pages, 5151 KiB  
Article
One-Step Multifunctionalization of Flax Fabrics for Simultaneous Flame-Retardant and Hydro-Oleophobic Properties Using Radiation-Induced Graft Polymerization
by Jamila Taibi, Sophie Rouif, Bruno Améduri, Rodolphe Sonnier and Belkacem Otazaghine
Polymers 2023, 15(9), 2169; https://doi.org/10.3390/polym15092169 - 2 May 2023
Cited by 4 | Viewed by 2722
Abstract
This study concerns the one-step radiografting of flax fabrics with phosphonated and fluorinated polymer chains using (meth)acrylic monomers: dimethyl(methacryloxy)methyl phosphonate (MAPC1), 2-(perfluorobutyl)ethyl methacrylate (M4), 1H,1H,2H,2H-perfluorooctyl acrylate (AC6) and 1H,1H,2H,2H-perfluorodecyl methacrylate (M8). The multifunctionalization of flax fabrics using a pre-irradiation procedure at 20 and [...] Read more.
This study concerns the one-step radiografting of flax fabrics with phosphonated and fluorinated polymer chains using (meth)acrylic monomers: dimethyl(methacryloxy)methyl phosphonate (MAPC1), 2-(perfluorobutyl)ethyl methacrylate (M4), 1H,1H,2H,2H-perfluorooctyl acrylate (AC6) and 1H,1H,2H,2H-perfluorodecyl methacrylate (M8). The multifunctionalization of flax fabrics using a pre-irradiation procedure at 20 and 100 kGy allows simultaneously providing them with flame retardancy and hydro- and oleophobicity properties. The successful grafting of flax fibers is first confirmed by FTIR spectroscopy. The morphology of the treated fabrics, the regioselectivity of grafting and the distribution of the fluorine and phosphorus elements are assessed by scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). The flame retardancy is evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. The hydro- and oleophobicity and water repellency of the treated fabrics is established by contact angle and sliding angle measurements, respectively. The grafting treatment of flax irradiated at 100 KGy, using M8 and MAPC1 monomers (50:50) for 24 h, allows achieving fluorine and phosphorus contents of 8.04 wt% and 0.77 wt%, respectively. The modified fabrics display excellent hydro-oleophobic and flame-retardant properties with water and diiodomethane contact angles of 151° and 131°, respectively, and a large decrease in peak of heat release rate (pHRR) compared to pristine flax (from 230 W/g to 53 W/g). Relevant results are also obtained for M4 and AC6 monomers in combination with MAPC1. For the flame retardancy feature, the presence of fluorinated groups does not disturb the effect of phosphorus. Full article
Show Figures

Graphical abstract

11 pages, 3070 KiB  
Article
Crude Oil Pyrolysis Studies: Application to In Situ Superheat Steam Enhanced Oil Recovery
by Eric N. Coker, Burl Donaldson, Brian Hughes and Nadir Yilmaz
Energies 2023, 16(3), 1544; https://doi.org/10.3390/en16031544 - 3 Feb 2023
Cited by 7 | Viewed by 2289
Abstract
This work focuses on the occurrence and composition of flammable pyrolysis gases which can be expected from stimulation of heavy oil with superheat steam. These gases can have commodity value or be used to fire a conventional boiler to generate steam vapor for [...] Read more.
This work focuses on the occurrence and composition of flammable pyrolysis gases which can be expected from stimulation of heavy oil with superheat steam. These gases can have commodity value or be used to fire a conventional boiler to generate steam vapor for superheater feed. Seven oil samples taken from different US locations were tested via thermogravimetric analysis (TGA) with off-gas analysis of light hydrocarbons via mass spectrometry (MS). The samples were heated up to 500 °C at 5 °C/min in a gas flow of moist carbon dioxide and held at 500 °C until no further mass loss was noted. Then, carbonaceous residue was exposed to air at 500 °C to determine enthalpy of combustion by differential scanning calorimetry (DSC). To demonstrate that pyrolysis was indeed occurring and not simple de-volatilization, a high-molecular-weight reagent-grade organic molecule, lactose, was first demonstrated to produce components of interest. After treatment under moist CO2 at 500 °C, all samples were found to lose around 90% of mass, and the follow-up combustion process with air further reduced the residual mass to between 2% and 12%, which is presumed to be mineral matter and char. The light hydrocarbons methane, ethane, and propane, as well as hydrogen, were detected through MS during pyrolysis of each oil sample. Heavier hydrocarbons were not monitored but are assumed to have evolved, especially during periods where additional mass loss was occurring in the isothermal process, with minimal light hydrocarbon evolution. These results correspond to a possible concept of subsequent in situ combustion drive with or without heat scavenging following high-temperature pyrolysis from in situ superheat steam injection. Full article
(This article belongs to the Special Issue Enhanced Hydrocarbon Recovery)
Show Figures

Figure 1

18 pages, 12874 KiB  
Article
New Polymer Composites with Aluminum Phosphates as Hybrid Flame Retardants
by Kamil Dziuba, Krystyna Wnuczek, Patryk Wojtachnio, Rodolphe Sonnier and Beata Podkościelna
Materials 2023, 16(1), 426; https://doi.org/10.3390/ma16010426 - 2 Jan 2023
Cited by 8 | Viewed by 2907
Abstract
Polymeric aluminum organophosphates are a class of nanostructured aluminum-based compounds that can be considered organic and inorganic hybrid materials. Aluminum phosphates have attracted considerable interest due to their ability to enhance composite materials’ mechanical characteristics, lightweight, and thermal properties. Extensive studies have shown [...] Read more.
Polymeric aluminum organophosphates are a class of nanostructured aluminum-based compounds that can be considered organic and inorganic hybrid materials. Aluminum phosphates have attracted considerable interest due to their ability to enhance composite materials’ mechanical characteristics, lightweight, and thermal properties. Extensive studies have shown the potential of aluminum organophosphates as a component in the development of fire-retardant materials. Aluminum–organophosphorus hybrid (APH) materials have been prepared by reacting aluminum oxide hydroxide (boehmite) with alkyl and aryl phosphoric acids and used to prepare composites with epoxy resin. Boehmite is an aluminum oxide hydroxide (γ-AlO(OH)) mineral, a component of the aluminum ore bauxite. In this work, the composites based on epoxy resin Epidian 601 and commercial curing agent IDA were obtained. Pure boehmite and APH hybrids were added as flame retardants. FTIR and TGA analysis showed that obtained APH possesses a hybrid structure, high thermostability, and various morphologies. These new APH were incorporated into epoxy resin. The infrared spectroscopy confirmed the structure of hybrids and composites. Pyrolysis combustion flow calorimetry (PCFC) and cone calorimeter analyses were performed to assess the flame retardant properties of the composites. The results showed that the incorporation of 17 wt% APH allows a reduction of heat release rate but to a limited extent in comparison to pure boehmite, which is due to the different decomposition mechanisms of both boehmite and hybrids. The cone calorimetry test showed that residue contents correspond quite well to the mineral fraction from boehmite only. The hybrid APHs appear no more efficient than pure boehmite because the mineral fraction in APH is reduced while phosphate fraction cannot promote significant charring. Full article
(This article belongs to the Special Issue Polymer Biocomposites: From Design to Application)
Show Figures

Figure 1

15 pages, 3405 KiB  
Article
Thermal Characterizations of Waste Cardboard Kraft Fibres in the Context of Their Use as a Partial Cement Substitute within Concrete Composites
by Robert Haigh, Paul Joseph, Malindu Sandanayake, Yanni Bouras and Zora Vrcelj
Materials 2022, 15(24), 8964; https://doi.org/10.3390/ma15248964 - 15 Dec 2022
Cited by 9 | Viewed by 2359
Abstract
The building and construction industry consumes a significant amount of virgin resources and minimizing the demand with alternative waste materials can provide a contemporary solution. In this study, thermal components of kraft fibres (KFs) derived from waste cardboard are investigated. The mechanical properties [...] Read more.
The building and construction industry consumes a significant amount of virgin resources and minimizing the demand with alternative waste materials can provide a contemporary solution. In this study, thermal components of kraft fibres (KFs) derived from waste cardboard are investigated. The mechanical properties containing KFs within concrete composites are evaluated. Metakaolin (MK) and KFs were integrated into concrete samples as a partial substitute for cement. Silica Fume (SF) was applied to the KF (SFKFs) with a view to enhancing the fibre durability. The results indicated that there was a reduction in compressive strength of 44 and 56% when 10% raw and modified KFs were integrated, respectively. Raw, fibre and matrix-modified samples demonstrated a 35, 4 and 24% flexural strength reduction, respectively; however, the tensile strength improved by 8% when the matrix was modified using MK and SFKF. The morphology of the fibres was illustrated using a scanning electron microscope (SEM), with an energy dispersion X-ray spectroscopy (EDS) provision and Fourier transform infrared spectroscopy (FT-IR) employed to gain insights into their chemical nature. The thermal, calorimetric and combustion attributes of the fibres were measured using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and pyrolysis combustion flow calorimetry (PCFC). SFKFs showed a lower heat release capacity (HRC), demonstrating a lower combustion propensity compared to raw KFs. Furthermore, the 45% decreased peak heat release rate (pHRR) of SFKFs highlighted the overall reduction in the fire hazards associated with these materials. TGA results also confirmed a lower mass weight loss of SFKFs at elevated temperatures, thus corroborating the results from the PCFC runs. Full article
Show Figures

Figure 1

20 pages, 5207 KiB  
Article
Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants
by Marcin Zemła, Aleksander Prociak, Sławomir Michałowski, Ugis Cabulis, Mikelis Kirpluks and Kirils Simakovs
Int. J. Mol. Sci. 2022, 23(20), 12386; https://doi.org/10.3390/ijms232012386 - 16 Oct 2022
Cited by 19 | Viewed by 3066
Abstract
In this article, rigid polyurethane foams obtained with the addition of a bio-polyol from rapeseed oil, were modified with the dimethyl propane phosphonate as additive flame retardant and two reactive flame retardants diethyl (hydroxymethyl)phosphonate and diethyl bis-(2-hydroxyethyl)-aminomethylphosphonate. The influence of used flame retardants [...] Read more.
In this article, rigid polyurethane foams obtained with the addition of a bio-polyol from rapeseed oil, were modified with the dimethyl propane phosphonate as additive flame retardant and two reactive flame retardants diethyl (hydroxymethyl)phosphonate and diethyl bis-(2-hydroxyethyl)-aminomethylphosphonate. The influence of used flame retardants on the foaming process and characteristic processing times of tested polyurethane systems were determined. The obtained foams were tested in terms of cell structure, physical and mechanical properties, as well as flammability. Modified foams had worse mechanical and thermal insulation properties, caused by lower cellular density and higher anisotropy coefficient in the cross-section parallel to the foam rise direction, compared to unmodified foam. However, the thermal conductivity of all tested foam materials was lower than 25.82 mW/m∙K. The applied modifiers effectively reduced the flammability of rigid polyurethane foams, among others, increasing the oxygen index above 21.4 vol.%, reducing the total heat released by about 41–51% and the rate of heat release by about 2–52%. A correlation between the limiting oxygen index values and both total heat released parameters from the pyrolysis combustion flow calorimetry and cone calorimetry was observed. The correlation was also visible between the value of the heat release capacity (HRC) parameter obtained from the pyrolysis combustion flow calorimetry and the maximum average rate of heat emission (MARHE) from the cone calorimeter test. Full article
(This article belongs to the Special Issue Polymers from Renewable Resources 2.0)
Show Figures

Figure 1

16 pages, 2348 KiB  
Article
Measurement of the Kinetics and Thermodynamics of the Thermal Degradation for a Flame Retardant Polyurethane-Based Aerogel
by Xinyang Wang, Yan Ding, Zhanwen Chen, Chuyan Tang, Xingyu Ren, Hongyun Hu and Qingyan Fang
Energies 2022, 15(19), 6982; https://doi.org/10.3390/en15196982 - 23 Sep 2022
Cited by 6 | Viewed by 1781
Abstract
The current work aims to study the thermal degradation of the flame retardant polyurethane aerogel (FR_PU_aerogel) through multiple milligram-scale experimental methods. A systemic methodology for measuring the reaction kinetics and thermodynamics of the thermal degradation of FR_PU_aerogel is detailed. Specifically, the thermogravimetric analysis [...] Read more.
The current work aims to study the thermal degradation of the flame retardant polyurethane aerogel (FR_PU_aerogel) through multiple milligram-scale experimental methods. A systemic methodology for measuring the reaction kinetics and thermodynamics of the thermal degradation of FR_PU_aerogel is detailed. Specifically, the thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed simultaneously in inert atmosphere to measure the mass loss and heat flow data, and a numerical framework called ThermaKin2Ds was used to inversely model these experimental data. First, a reaction mechanism with six first-order consecutive reactions was developed based on the inverse analysis of the TGA data. The corresponding reaction kinetics were optimized using the hill climbing optimization algorithm. Subsequently, the heat capacities of each condensed phase component and the heat of the reactions were obtained through inversely modeling the heat flow data. Furthermore, the heat of the complete combustion of each gaseous component were derived based on the heat release rates measured in the milligram-scale combustion calorimeter (MCC) experiments. It is noted that the developed reaction mechanism was further validated against the mass loss data obtained at different heating rates. The parameters determined in this work serve as a core subset of inputs for the pyrolysis model development, which is essential for the quantitative understanding of the ignition and the combustion behavior of solid materials. Full article
(This article belongs to the Special Issue Research in Combustion and Fire Behavior of Solid Materials)
Show Figures

Figure 1

10 pages, 2228 KiB  
Article
Thermal Stability and Flammability Studies of MXene–Organic Hybrid Polystyrene Nanocomposites
by Zhuoran Zhang, Huaixuan Cao, Yufeng Quan, Rong Ma, Emily B. Pentzer, Micah J. Green and Qingsheng Wang
Polymers 2022, 14(6), 1213; https://doi.org/10.3390/polym14061213 - 17 Mar 2022
Cited by 38 | Viewed by 4511
Abstract
Polystyrene (PS) is widely used in the plastics industry, but the application range of PS is limited due to its inherently high flammability. A variety of two-dimensional (2D) nanomaterials have been reported to impart excellent flame retardancy to polymeric materials. In this study, [...] Read more.
Polystyrene (PS) is widely used in the plastics industry, but the application range of PS is limited due to its inherently high flammability. A variety of two-dimensional (2D) nanomaterials have been reported to impart excellent flame retardancy to polymeric materials. In this study, a 2D nanomaterial MXene–organic hybrid (O-Ti3C2) was applied to PS as a nanofiller. Firstly, the MXene nanosheets were prepared by acid etching, intercalation, and delamination of bulk MAX (Ti3AlC2) material. These exfoliated MXene nanosheets were then functionalized using a cationic surfactant to improve the dispersibility in DMF. Even with a small loading of functionalized O-Ti3C2 (e.g., 2 wt%), the resulting PS nanocomposite (PS/O-Ti3C2) showed good thermal stability and lower flammability evidenced by thermogravimetric analysis (TGA) and pyrolysis-combustion flow calorimetry (PCFC). The peak heat release rate (pHRR) was significantly reduced by 32% compared to the neat PS sample. In addition, we observed that the temperature at pHRR (TpHRR) shifted to a higher temperature by 22 °C. By comparing the TGA and PCFC results between the PS/MAX and different weight ratios of PS/O-Ti3C2 nanocomposites, the thermal stability and 2D thermal- and mass-transfer barrier effect of MXene–organic hybrid nanosheets were revealed to play essential roles in delaying the polymer degradation. Full article
(This article belongs to the Special Issue Polymer Composite Analysis and Characterization)
Show Figures

Figure 1

20 pages, 4430 KiB  
Article
Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites
by Przemysław Rybiński, Bartłomiej Syrek, Anna Marzec, Bolesław Szadkowski, Małgorzata Kuśmierek, Magdalena Śliwka-Kaszyńska and Ulugbek Zakirovich Mirkhodjaev
Materials 2021, 14(18), 5245; https://doi.org/10.3390/ma14185245 - 12 Sep 2021
Cited by 21 | Viewed by 3278
Abstract
Due to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we [...] Read more.
Due to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants in polymer composites. We also investigate the effects of mixtures of these carbon and mineral fillers on the thermal, mechanical, and rheological properties of EPDM rubber composites. The thermal properties of the EPDM vulcanizates were analyzed using the thermogravimetric method. Flammability was determined by pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. Full article
(This article belongs to the Special Issue Advanced Polymer Composites: Auxiliaries and Additives)
Show Figures

Figure 1

11 pages, 10304 KiB  
Article
Flame Retardant Functionalization of Microcrystalline Cellulose by Phosphorylation Reaction with Phytic Acid
by Hua-Bin Yuan, Ren-Cheng Tang and Cheng-Bing Yu
Int. J. Mol. Sci. 2021, 22(17), 9631; https://doi.org/10.3390/ijms22179631 - 6 Sep 2021
Cited by 34 | Viewed by 5015
Abstract
The functionalization of microcrystalline cellulose (MCC) is an important strategy for broadening its application fields. In the present work, MCC was functionalized by phosphorylation reaction with phytic acid (PA) for enhanced flame retardancy. The conditions of phosphorylation reaction including PA concentration, MCC/PA weight [...] Read more.
The functionalization of microcrystalline cellulose (MCC) is an important strategy for broadening its application fields. In the present work, MCC was functionalized by phosphorylation reaction with phytic acid (PA) for enhanced flame retardancy. The conditions of phosphorylation reaction including PA concentration, MCC/PA weight ratio and temperature were discussed, and the thermal degradation, heat release and char-forming properties of the resulting PA modified MCC were studied by thermogravimetric analysis and pyrolysis combustion flow calorimetry. The PA modified MCC, which was prepared at 90 °C, 50%PA and 1:3 weight ratio of MCC to PA, exhibited early thermal dehydration with rapid char formation as well as low heat release capability. This work suggests a novel strategy for the phosphorylation of cellulose using PA and reveals that the PA phosphorylated MCC can act as a promising flame retardant material. Full article
(This article belongs to the Special Issue Cellulose and Its Applications)
Show Figures

Figure 1

Back to TopTop