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Abstract: There is an increasing desire to use natural products that will be both effective and
biodegradable. The aim of this work is to investigate the effect of modifying flax fibers with silicon
compounds (silanes and polysiloxanes), as well as examining the effect of the mercerization process
on their properties. Two types of polysiloxanes have been synthesized and confirmed by infrared
spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Scanning electron mi-
croscopy (SEM), FTIR, thermogravimetry analysis (TGA) and pyrolysis-combustion flow calorimetry
(PCFC) tests of the fibers were performed. On the SEM pictures, flax fibers purified and covered
with silanes were visible after treatment. FTIR analysis showed stable bonds between the fibers and
the silicon compounds. Promising results of thermal stability were obtained. It was also found that
modification had a positive effect on the flammability. The conducted research showed that the use
of such modifications, in the context of using flax fibers for composites, can yield very good results.

Keywords: natural fibers; modification; polysiloxane; silanization; flammability; thermal stability;
scanning electron microscopy; FTIR

1. Introduction

Natural fibers have been gaining popularity for a long time due to their biodegrad-
ability, and thus, their environmentally friendly nature. As a renewable raw material,
natural fibers are used to produce recyclable ecological products, thereby reducing carbon
dioxide emissions and the amount of waste generated by industrial processes. Flax fibers
are used on a large scale by various industries, mainly for the production of textiles, paper
and composites.

This work focused on the appropriate, effective two-step modification (merceriza-
tion followed by silanization) of flax fibers using specially synthesized polysiloxanes
and commercially available silanes with different functional groups for their later use
in composites. Such modification is necessary to obtain good adhesion in the compos-
ite. This has been a known problem for many years—the different polarity of the fibers
and polymers—hydrophilic and hydrophobic, respectively—makes it difficult to combine
them effectively [1]. To obtain a change in the polarity of natural fibers, some chemical
modifications are used, such as: mercerization [2], acetylation [3], acrylation [4], benzoyla-
tion [5], silanization [6], peroxide treatment [7], isocyanate treatment [8,9] and enzymatic
treatment [10].

Two methods of modification, mercerization and silanization, were used in this work.
In the process of mercerization, the reactivity of cellulose is increased by breaking the
hydrogen bonds due to of the action of NaOH. That allows for a better wetting of the
fibers. Moreover, NaOH can transform cellulose-I to cellulose–II [11,12]. Alkaline treatment
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facilitates fiber fragmentation and disaggregation [13] and breaks fiber bundles into smaller
pieces. This, therefore, results in a rough fiber surface, which improves the adhesion of
the fibers to the polymer matrix [14]. There are many reports in the literature on optimal
alkaline treatment conditions for use in natural fibers. These reports are very divergent.
Mishra et al. [15] modified jute and sisal fibers for 2–72 h at room temperature with 5%
NaOH. On the other hand, according to Symington et al. [16], the optimal modification is
using a 2–10% NaOH solution for 10–30 min.

Meanwhile, silanization offers the possibility of using more complex reagents and
introducing appropriate functional groups to achieve a “tailor-made” modification effect. It
is possible to obtain additional benefits depending on the structure of the silicon compound
used for modification. Natural fibers are composed mainly of cellulose, which is rich
in hydroxyl groups. Formation of chemical bonds between these hydroxyl groups and
the modifier offers the possibility of permanent fiber modification [17]. Organosilicon
compounds should contain reactive groups in their structure, e.g., alkoxy or glycidyl
groups, responsible for bonding with cellulose hydroxyl groups, and functional groups that
would give the modified surface specific properties [18]. There are several literature reports
on modification with fluorinated or long-chain chlorosilanes [19] and alkoxysilanes [20].
The silanization process begins with the hydrolysis of the alkoxy groups in the silicone
compound, which are converted into more active silanols as a result of this process. Then,
during condensation, the silanols condense to form a three-dimensional Si-O-Si (siloxane)
structure. The hydrogen bonds with the surface of the fibers are formed by adsorption and
then fixed by subsequent curing. Acid or base can be used to catalyze the hydrolysis and
condensation reactions.

An interesting alternative to the above modifications is the use of polysiloxanes,
which can be attached to the fibers but also cross-linked on their surface. Due to their linear
structure, polysiloxanes can form a hydrophobic layer on the surface of fibers. Polysiloxanes
are a class of materials that consist of a Si–O–Si framework and are characterized by good
thermal and chemical stability and flexibility [21,22].

In our previous work, we focused on the modification of fibers in various forms (fiber,
fabric, roving) using silanes with various functional groups [23]. We also used a two-step
modification process (plasma and silanization) [24].

In this article, modifications of fibers by mercerization, silanization, and a combination
of mercerization and silanization were carried out. The novelty here is certainly the use of
specially designed polysiloxanes with different functional groups to maximize changes in
the surface of the fibers and therefore their potential use in composites.

2. Materials and Methods
2.1. Materials

Flax fibers were prepared by IWNiRZ-PIB (Flax fibers). Other reagents used for modifica-
tion were: isopropanol pure p.a. supplied by POCH® (Gliwice, Poland), ethyl alcohol 96% pure
p.a. supplied by POCH® (Gliwice, Poland), N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane
provided by Unisil Sp. Z o. o. (Tarnów, Poland) and vinyltrimethoxysilane provided by Unisil
Sp. z o. o. (Tarnów, Poland). Polysiloxanes were synthesized according to the method described
in Section 2.2. Poly(dimethyl, hydrogen methyl)siloxane 50/25 was provided by Wacker (Mu-
nich, Germany), while 1-octene and other reagents and solvents for polysiloxanes synthesis
were purchased from Merck (Darmstadt, Germany).

Formulas of the modifiers are shown in Table 1.
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Table 1. Formulas of the modifiers used in the study.

Modifier Abbrev. Chemical Formula

N-(2-Aminoethyl)-3-
aminopropyltrimethoxysilane 15
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Polysiloxanes containing long hydrocarbon chain groups and vinyltrimethoxysilane groups
were synthesized by the hydrosilylation reaction of poly(dimethyl-co-hydromethyl)siloxane,
1-octene, and subsequently vinyltrimethoxysilane. The process was carried out in the pres-
ence of catalyst-Karstedt complex [Pt2{(CH2=CHSiMe2)2O}3]. At first, poly(dimethyl-co-
hydromethyl)siloxane, 1-octene and the catalyst (5 × 10−5 mol Pt per mol Si-H) were
put into a three-neck round-bottom flask with a thermometer, reflux condenser and mag-
netic bar at room temperature. The solution was then heated to appropriate temperature.
Olefin conversion was monitored by FTIR analysis. Upon completion, the appropriate
amount of the second olefin, vinyltrimethoxysilane, was added with a 10% excess. The so-
lution was then kept at the set temperature for another hour. The reaction mixture was then
cooled and the excess olefin was evaporated under reduced pressure. The structure of the
obtained products was confirmed by NMR analysis. In the case of vinyltrimethoxysilane
(PS1), the synthesis proceeded in the same way without 1-octene substitution.

2.3. Fibers Preparation and Modification

Flax fibers were dried at 50–55 ◦C for 24 h. Then, the material was disintegrated on a
knife mill Retsch SM-200 (Haan, Germany) with a sieve that had a mesh size of 3 mm.

2.3.1. Mercerization

The flax fibers were treated with 10% (w/w) NaOH aqueous solution for 10 min at
room temperature. The NaOH/fibers weight ratio was 10:1. The fibers were then washed
repeatedly in fresh distilled water until a neutral pH was obtained. Finally, all treated fibers
were dried at 50 ◦C for 48 h.

2.3.2. Modification with Silanes

After the mercerization process, one method of modifying the fibers was the re-
action with two silanes with different properties—the more polar N-(2-aminoethyl)-3-
aminopropyltrimethoxysilane and the less polar vinyl trimethoxysilane. An ethanol/water
solution in the ratio of 6/4 (v/v) was prepared, to which the appropriate silane was added
in the amount of 5% (w/w). Then, in the case of vinyl silane, the solution was acidified
with acetic acid to pH 4.5. The hydrolysis process was carried out for 1 h. Fibers were then
added and modification was carried out for 2 h at room temperature. The fibers were then
placed in an oven set at 40 ◦C and dried. They were then cured for 10 min at 105 ◦C.

2.3.3. Modifiaction with Polysiloxanes

An alternative method of fiber modification before and after the mercerization process
(other than in the Section 2.3.2.) was silanization with two polysilooxanes with different
functional groups and properties. The first was polisiloxane with alkoxy groups, and the
second was difunctional polysilaxane with akloxy groups and alkyl chains. Modification
with polysiloxanes was carried out in two ways: under the same conditions as modifications
with silanes (ethanol/water solution in the ratio of 6/4 (v/v)) and in the isopropanol/water
solution in the ratio of 19/1 (v/v) (samples marked by “ip”). The appropriate polysiloxane
was added in the amount of 5% (w/w). Then, the solution was acidified with acetic acid to
pH 4.5. The rest of the procedure was performed as in Section 2.3.2. A one-hour hydrolysis
process was carried out. The fibers were then added, and a two-hour reaction was carried
out at room temperature. Next, the fibers were placed in an oven set at 40 ◦C and dried.
Curing was carried out at a temperature of 105 ◦C for 10 min.

2.4. Test Methods
2.4.1. Fourier Transform Infrared Spectrometry (FTIR) Analysis

FTIR spectra of the polysiloxanes were taken on a BRUKER spectrometer, model
Tensor 27 (Billerica, MA, USA), with a Specac Golden Gate single reflection diamond ATR
accessory (Orpington, UK).
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The analysis of FTIR spectroscopy of modified fibers was performed in KBr pellets
using a BRUKER IFS 66v/S spectroscope (Billerica, MA, USA) in the mid-infrared range of
4000–400 cm−1 with a resolution of 2 cm−1.

2.4.2. Nuclear Magnetic Resonance Spectroscopy (NMR)

Spectra of nuclear magnetic resonance 1H NMR (300 MHz), 13C NMR (75 MHz), 29Si
NMR (59 MHz) were obtained on a Varian XL 300 spectrometer (Palo Alto, CA, USA) at
room temperature using CDCl3 as a solvent.

2.4.3. Thermal Stability Tests

Thermogravimetric study (TGA) was performed with TA Instruments, Analyser Q50
(New Castle, DE, USA). A 15 ± 1 mg fiber sample was heated to 700 ◦C at a heating rate of
10 ◦C·min−1 under a nitrogen atmosphere with a constant gas flow rate of 90 mL·min−1.
The mass loss curve and the first derivative of TG (DTG) were determined.

2.4.4. Flammability Tests

Flammability tests were performed using a pyrolytic combustion flow calorimeter
(PCFC) by FTT (Grinstead, UK) for fiber samples weighing 5±1 mg. Testing was carried
out in accordance with ASTM D7309-2007. The heating rate was 1 ◦C·s−1. The pyrolysis
temperature range was 75–500 ◦C, and the combustion temperature was 900 ◦C. The flow
was a mixture of oxygen and nitrogen gases at a ratio of 20:80 cm3·min−1. The maximum
heat release rate (HRRmax) was determined.

2.4.5. Scanning Electron Microscopy

Microscopic test photos of longitudinal views of flax fibers were made with a Hitachi
S-3400N scanning electron microscope (SEM) using a secondary electron detector SE in a
high vacuum mode. Prior to the tests, the fibers were sprayed with a gold layer. The value
of the accelerating voltage was 20 kV, and the working distance was 20 mm. Magnifications
of 500× were selected.

3. Results

First, the obtained polysiloxanes were analyzed by FTIR and NMR methods. Subse-
quently, analyses of raw and modified flax fibers were carried out. The results were divided
into two sections: the results of polysiloxanes synthesis and the results of flax fibers. For
better understanding, Table 2 containing all samples can be found below:

Table 2. All samples prepared in the research.

Sample Code Type of Modification

F Untreated flax fiber
F15 Flax fiber + N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane
F611 Flax fiber + vinyl trimethoxysilane
FPS1 Flax fiber + polysiloxane with alkoxy groups
FPS2 Flax fiber + difunctional polysiloxane with alkoxy groups and alkyl chains

FPS1ip Flax fiber + polysiloxane with alkoxy groups (isopropanol as a solvent)
FPS2ip Flax fiber + difunctional polysiloxane with alkoxy groups and alkyl chains (isopropanol as a solvent)

FM Flax fiber + mercerization
FM15 Flax fiber + mercerization + N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane
FM611 Flax fiber + mercerization + vinyl trimethoxysilane
FMPS1 Flax fiber + mercerization + polysiloxane with alkoxy groups
FMPS2 Flax fiber + mercerization + difunctional polysiloxane with alkoxy groups and alkyl chains

FMPS1ip Flax fiber + mercerization + polysiloxane with alkoxy groups (isopropanol as a solvent)

FMPS2ip Flax fiber + mercerization + difunctional polysiloxane with alkoxy groups and alkyl chains
(isopropanol as a solvent)
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3.1. Results of Polysiloxanes Synthesis

Two polysiloxanes were synthesized via hydrosilylation with vinyltrimethoxysilane,
and one of them additionally with 1-octene. Synthesis was carried out in the presence of
Karstedt’s catalyst. The hydrosilylation process was monitored by FTIR spectroscopy. The
intensity of the characteristic bands for the Si-H and CH=CH2 groups was analyzed. The
process was conducted until the total disappearance of bands characteristic of unsaturated
allyl groups at 3084 and 1650 cm−1, as well as bands characteristic of Si-H bond at 2193
and 855 cm−1 (Figure 1).

1 
 

 

Figure 1. FTIR spectra of the starting mixture (A), after the introduction of hydrocarbon chains (B),
and of the final product (C) for polysiloxane PS2.

The successful synthesis was also confirmed by NMR spectroscopy. Appearance of
specific signals was observed in the NMR spectra of the products. The polisiloxanes PS1
and PS2 were obtained with a yield of 93% and 92%, respectively:

(a) PS1 x = 0, y = 25 Yield = 93% 1H NMR (C6D6, 298 K, 300 MHz) (ppm): 0.14 (CH3);
0.64, 1.15 (CH2); 3.60 (OCH3); 13C NMR (C6D6, 298 K, 75.5 MHz) (ppm): 0.5 (CH3);
1.0 (CH3); 8.2 (CH2Si); 50.5 (OCH3); 29Si NMR (C6D6, 298 K, 59.6 MHz) (ppm): 7.2
(Si(CH3)3); −21.9 (Si(CH3)2); −22.7 (Si(CH2)CH3); −41.0 (Si(OCH3)3)

(b) PS2 x = 15, y = 10 Yield = 92% 1H NMR (C6D6, 298 K, 300 MHz) (ppm): 0,07 (Si(CH3)3);
0.1 (SiCH3); 0.55 (SiCH2); 0.91 (CH2CH3); 1.29 (CH2); 1.31 (CH2); 3.59 (54H, OCH3);
13C NMR (C6D6, 298 K, 75.5 MHz) (ppm): 0.5 (CH3); 1.0 (CH3); 8.2 (CH2Si); 14.1
(CH3); 17.5 (CH2Si); 22.7 (CH2); 23.0 (CH2); 29.3 (CH2); 29.4 (CH2); 31.9 (CH2); 33.4
(CH2); 50.5 (OCH3); 29Si NMR (C6D6, 298 K, 59.6 MHz) (ppm): 7.2 (Si(CH3)3); −22.0
(Si(CH3)2); −22.2 (Si(CH2)CH3); −41.5 (Si(OCH3)3).

3.2. Results of Flax Fibers
3.2.1. Scanning Electron Microscopy Images of Flax Fibers

The effect of the modification and the presence of silanes/polysiloxanes on the sur-
face of flax fibers was confirmed by SEM. Surface morphology of flax fibers before and
after modifications were investigated. Figure 2 shows SEM images of unmodified and
modified flax fibers. Longitudinal electron micrograph images of the fibers were taken in
two magnifications: 500 and 1500 times.
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Microscopic analysis of the surface morphology of the fibers is of great importance for
characterizing the structural changes that have occurred after treatment. The main role of
NaOH treatment is to clean the fiber of impurities and prepare the fiber for further processing.
This is a widely used chemical process which removes noncellulosic components and part of
the amorphous cellulose [25]. In turn, silane treatment is very helpful in removing lignin and
hemicelluloses from natural fibers. In the photos of raw flax fibers, impurities on the fiber are
clearly visible. After the mercerization process, the fibers are visibly cleaned. Aminosilane
and vinylsilane modified fibers, both with and without prior mercerization, are also purified
and covered with a thin layer of silanes. However, there is a clear difference in the photos
of fibers modified with polysiloxanes. The fibers have been evenly covered with a layer
of polysiloxanes, and their surface is smooth and clean. It was observed that the modifier
covered the surface of the fibers in a relatively thick but smooth layer.

Many researchers have noticed that the fibers after NaOH treatment become purified
and more susceptible to the action of silanes. In turn, modification with silane allows
the fibers to be covered with a uniform layer, and as such, the fibers’ microscopic images
show a smoothened surface on the fibers [26]. Puglia et al. [27] reported that NaOH can
remove surface impurities from fibers while silane makes them smoother. SEM images
from Liu et al. [28] showed that the surface morphology of treated corn stalk waste fibers
was slightly rough and relatively clean after silane treatments.

Scanning electron microscopy is a great method for characterizing fibers and the effects
of modifications on their texture. However, to confirm that, in addition to physical changes
on the surface of the fibers, stable bonds between the fibers and the silane have been formed,
it is worthwhile to carry out other analyses. The mere adsorption of silane to the fiber will
not improve the adhesion between the silane and the polymer in the composite [29].

Accuracy of diameter measurement of natural fibers is very difficult to achieve because
natural fibers are irregular in shape and thickness [30]. Mercerization is a process that
“cleans” the fiber of waxes, pectins, etc., which naturally leads to a reduction in the diameter
of the fibers. On the other hand, modification with silanes or polysiloxanes causes the
modifier to bind to the fiber and form a layer covering the fiber, which can lead to an
increase in the diameter of the fibers.

The diameters were tested based on images from a scanning electron microscope.
Despite large divergencies in the size of the fibers (Figure 3), it was observed that after
mercerization, the average diameter of the fibers slightly decreases, while in the case of
modification with silicon compounds, it increases. The largest increase in average diameter
was observed in the case of aminosilane modification. Interestingly, with the mercerization
and polysiloxane 1 modification, a decrease in the diameter of the fibers was observed.

3.2.2. FTIR Tests

Using FTIR spectroscopy, structural changes on the fiber surface after silane treatment
were examined, which confirmed that the silicon compounds were chemically grafted onto
the fiber surface. The following Figure 4a shows the IR spectra for samples modified in
one step (silanization only) and Figure 4b shows the IR spectra for samples modified in
two steps (mercerization and silanization).

Characteristic absorption bands for cellulose molecules appear in all tested
samples [31–33]. The wide band, ranging from about 3000 cm−1 to 3500 cm−1, comes
from the stretching vibrations of the O-H groups in the cellulose. In all cases, the band
after modification is less intense, which indicates the occurrence of bonding between
alkoxysilanes and the fibers.
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The bands in the spectral region of 2800–3000 cm−1 assigned to C–H stretching vibra-
tion are characteristic of alkylene (–CH2–) and alkyl (CH3) groups, which were bound to
fibers because of the modification with silicon compounds. The decrease in the intensity
of these bands in some fiber samples may be caused by the reduction of the crystalline
structure of cellulose. On the other hand, intensity of these bands increases because of the
increased content of CH2 groups in the silanes and polysiloxanes. This band increases espe-
cially after fiber modification with polysiloxane with a long alkyl chain (PS2). Moreover,
in the spectra of samples modified with both types of polysiloxanes, an additional band
appeared at 2962 cm−1 that is ascribed to CH3 groups.

The vibration band visible at 1734 cm−1, resulting from the C=O stretching vibrations
of the acetyl group in hemicellulose and aldehydes in lignin [34], disappears or is slightly
reduced in the case of mercerized fibers. This is due to the degradation of hemicellulose
and the dissolution of lignin during the alkali treatment of fibers.

An absorption band in the range 1630–1650 cm−1 originates from the stretching
vibrations of the O-H group and correspond to absorbed water in crystalline cellulose [35].
Other characteristic bands resulting from vibrations in the cellulose molecule (CH2 bending
vibrations) can be observed in all tested samples with wave number values of approx.
1430 cm−1 and 1370 cm−1.

In the spectra of fibers modified with aminosilane, a weak band at 1570 cm−1, char-
acteristic of primary amino groups, is seen. Furthermore, the spectra of the samples
modified with polysiloxanes contain bands at 801 and 1260 cm−1, originating from Si–O–Si
symmetric stretching vibrations and the Si–O–C stretching vibration shoulder, respectively.

In the region of 1000–1200 cm−1, three characteristic bands appear for the cellulose
molecule. At approx. 1160 cm−1, a band of the asymmetric C−O−C stretching vibrations
in cellulose was observed. At approx. 1110 cm−1, a band of the C−OH skeletal vibration in
cellulose was observed. At approx. 1050 cm−1, C−O−C pyranose ring skeletal vibrations
were ascribed to cellulose. These bands are reduced in all tested samples after modification,
and can be attributed to the reduction in the crystalline structure of the cellulose after
treatment. The band expected at 1018 cm−1 (Si–O–Si) overlapped with this broad region
that corresponds to the characteristic peaks of cellulose [21].
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3.2.3. Thermal Stability Tests of Flax Fibers

Natural fibers consist of hemicellulose, cellulose and lignin. Other ingredients, such as
pectin and waxy substances, are not important in this context. The decomposition of natural
fibers can be divided into four main stages (Yang et al. [36]). The first is the evaporation of
moisture, followed by the decomposition of hemicellulose, and then the decomposition
of cellulose and lignin. For a better understanding of the thermal properties of the fibers
before and after silane treatment, information on the pyrolysis properties of these three
main components is important.

The analysis of the TGA/DTG curves showed that the flax fiber decomposition process
can be divided into three main stages (see Figure 5). In addition, the second stage can
be divided into two substages, which are not clearly visible in all cases since these stages
overlap, but it was decided to determine them for all fiber samples. These steps vary
depending on the modification used.
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All characteristic points and stages of decomposition as well as the first derivative
peak temperature (DTG peak) were included in Table 3 below.

The first point to be considered is the temperature at which the fibers begin to de-
compose. That was assumed as an onset temperature (Tonset). The temperature at this
point was significantly higher for mercerized fibers, especially those additionally modified
with polysiloxanes. The first stage of decomposition, reaching a temperature of about 150–
170 ◦C, was the evaporation of water, and was characterized by a weight loss of 4.95–6.66%.
Fibers modified with amine silane were characterized by the greatest weight loss in this
area, but the differences between individual samples were small. The second stage—in
which hemicellulose, amorphous cellulose and low-molecular compounds, i.e., waxes,
pectin, etc., are decomposed—was separated for the temperature range of 176–227 ◦C to
305–320 ◦C, depending on the sample. It can be clearly seen that the beginning of this region
shifts towards higher temperatures for mercerized fibers, except for fibers also modified
with aminosilane. The weight loss in this step was 6.08–12.49, depending on the sample.
The highest mass loss in this range is observed for samples modified with amine silane
(both with and without prior mercerization). The third stage, which was the main stage
of decomposition with the greatest mass loss (mainly cellulose degradation), was within
the temperature range of 305–320 ◦C to 384–393 ◦C. At this stage, in the range 360–367 ◦C,
depending on the type of fiber modification, the first derivative peak temperature (DTG
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peak) occurred. The peak of the first derivative indicates the point of greatest rate of change
on the weight loss curve. This is also known as the inflection point. This point did not differ
significantly between individual fiber samples. The mass of the tested samples decreased
at the third stage by 41.48–63.9%. In this range, for samples modified with aminosilane, the
lowest mass loss is observed (opposite to stage II). The fourth and last stage is the longest
stage of decomposition, associated most probably with the slow degradation of lignin. The
residue after the process ranged from 14.56–24.64%, depending on the sample. It can be
noticed that the highest amounts (23.93% and 24.64%) of residual char belonged to the
fibers modified with aminosilane.

Table 3. Thermal stability results of flax fibers.

Sample Tonset
DTG
Peak

Stage
Imass
loss

Stage II Stage III Stage IV Residue

Start
Temp.

Mass
Loss

Start
Temp.

Mass
Loss

Start
Temp.

Mass
Loss

at
700 ◦C

[◦C] [%·◦C−1] [%] [◦C] [%] [◦C] [%] [◦C] [%] [%]

F 333 363 5.29 213 10.21 313 58.73 389 8.79 16.98
F15 334 362 5.28 176 11.58 312 45.27 390 13.94 23.93

F611 336 360 5.71 202 9.3 321 54.43 384 11.2 19.36
FPS1 336 363 6.24 206 9.47 319 49.09 390 13.28 21.92

FPS1ip 333 363 5.87 195 9.22 314 50.19 390 12.72 22
FPS2 338 363 5.92 210 6.63 318 53.86 393 13.75 19.84

FPS2ip 333 362 4.95 188 7.27 305 46.91 391 19.23 21.64
FM 338 367 6.04 218 7.22 316 63.9 391 8.28 14.56

FM15 330 366 6.66 179 12.49 311 41.48 391 14.73 24.64
FM611 342 362 5.85 227 6.32 318 59.33 386 10.92 17.58
FMPS1 342 365 5.35 226 6.14 317 54.35 388 12.59 21.57

FMPS1ip 341 367 5.61 226 7.58 320 54.23 389 12.13 20.45
FMPS2 342 364 5.56 223 9.44 320 52.53 391 14.03 18.44

FMPS2ip 341 367 5 220 6.08 312 51.92 390 16.49 20.51

It is clearly visible that the use of different silanes with different functional groups, as
well as different polysiloxanes, significantly affect the thermal stability of the tested fibers.
An increase in thermal stability was observed at the initial decomposition temperature, and
then at the shift of the second stage of decomposition for mercerized samples. Modification
of natural fibers with silicon compounds resulted in the formation of a silica layer on the
fiber surface. This layer can create a protective barrier from the thermal radiation and
stamp out the release of combustible gases. Mercerization facilitated the bonding of silicon
compounds with flax fibers.

The flax fibers used in this research are very similar to another natural fiber—hemp
fibers. They are also lignocellulosic fibers, and their modification occurs in a similar manner.
Similar results can be expected with regard to thermal stability. In the literature, one can
find that the use of the same two-step modification process on hemp fibers can lead to
similar results. Rachini et al. [37] conducted research on the thermal stability of hemp fibers
and the impact of mercerization and silanization on their thermal properties. He showed
that both alkali treatment and silanization can improve the thermal decomposition of the
hemp fibers.

3.2.4. Microcalorimeter Tests of Flax Fibers

Figure 6 shows the HRR curves from the pyrolysis and combustion flow calorimeter
(PCFC) test for samples of fibers modified only with silicon compounds (a), and first
mercerized and then modified with silicon compounds (b).
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with mercerization process.

The use of an amine silane usually results in a lower HRR peak due to the presence of
amino groups in its structure. Interestingly, the use of a polysiloxane with a long alkyl chain
also resulted in a decrease in HRR to similar values, especially when using isopropanol as
a solvent in the silanization reaction. In these cases, there was an approx. 25% reduction in
HRRmax. For samples modified with polysiloxane without an alkyl chain, this reduction
was slightly lower and amounted to about 10%. No significant differences in the height
of the HRR curves were observed when comparing the mercerized samples (Figure 6b)
and those that did not undergo this process (Figure 6a). Modification with vinyl silane
caused an approx. 10% increase in HRR, which is a normal phenomenon for this type of
modification [24].

The use of 95% isopropanol and only 5% water as a solvent for the polysiloxanes was
preferable to the use of 60% ethanol and 40% of water as a solvent because polysiloxanes
are very sensitive to water. If as much as 40% water was used, premature condensation of
these compounds could occur, which in turn could hinder proper silanization.

There are few literature reports in which the flammability of natural fibers modified
only with silicon compounds without the use of additional flame retardants is tested.
Most often, researchers use phosphorous agents to reduce the flammability of natural
fibers [38,39]. Various combinations of flame retardants are used in the literature to achieve
a synergistic effect, further reducing the flammability of the fibers [40]. Unfortunately,
when these compounds are used, the thermal stability of natural fibers is often reduced [41].
This phenomenon can be a serious problem, especially if the fibers are ultimately to be
used in composites, the processing temperatures for which are often above 150 ◦C. In turn,
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the use of silicon compounds to modify natural fibers has a positive effect on thermal
stability [42].

Alkali and silane/polysiloxane treatment used in our study showed that this type
of modification can positively affect the flammability properties of the fibers without
decreasing their thermal stability.

4. Conclusions

Promising results of modification of natural fibers with silicon compounds were
obtained in the work:

• The successful synthesis of polysiloxanes was performed and confirmed by FTIR and
NMR results;

• SEM photos of the fibers showed that they were cleaned because of mercerization
and their diameter was reduced, and during silanization, were covered with a thin,
uniform layer of silicon compounds;

• FTIR analysis showed that stable bonds between silanes or polysiloxanes and fibers
were formed because of the modification;

• A two-step modification of flax fibers (Na OH treatment and then modification with
polysiloxanes) increased the thermal stability of the fibers and increased the tempera-
ture of the initial fiber decomposition;

• Improvement of flammability properties was also obtained for the modifications with
aminosilane and difunctional polysiloxane with a long alkyl chain.

In summary, it was observed in the conducted research that alkali treatment was im-
portant in the modification of flax fibers. The positive effect of the performed mercerization
can be seen both in SEM images and in thermal stability studies. In addition, the functional
groups of the silanes and polysiloxanes used also have a significant impact on the obtained
test results. The use of an amino group in silane visibly increases its flammability properties,
but also lowers thermal stability and leaves the largest residue after the TGA test. The
incorporation of an alkyl chain into the polysiloxane structure allowed for an excellent
improvement in flammability properties. Particular attention should be paid to the fact
that the use of polysiloxanes as an alternative to silanes is promising in the context of using
of fibers in composites and obtaining good adhesion with the polymer matrix, due to the
uniform coverage of the fibers and the formation of permanent bonds with them.
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21. Przybylak, M.; Maciejewski, H.; Dutkiewicz, A.; Dąbek, I.; Nowicki, M. Fabrication of superhydrophobic cotton fabrics by a

simple chemical modification. Cellulose 2016, 23, 2185–2197. [CrossRef]
22. Przybylak, M.; Maciejewski, H.; Dutkiewicz, A.; Walentowska, J.; Foksowicz-Flaczyk, J. Development of multifunctional cotton

fabrics using difunctional polysiloxanes. Cellulose 2018, 25, 1483–1497. [CrossRef]
23. Gieparda, W.; Rojewski, S.; Wüstenhagen, S.; Kicinska-Jakubowska, A.; Krombholz, A. Chemical modification of natural fibers to

epoxy laminate for lightweight constructions. Compos. A Appl. Sci. Manuf. 2021, 140, 106171. [CrossRef]
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