Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (234)

Search Parameters:
Keywords = pushovers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3480 KB  
Article
Analysis on DDBD Method of Precast Frame with UHPC Composite Beams and HSC Columns
by Xiaolei Zhang, Kunyu Duan, Yanzhong Ju and Xinying Wang
Buildings 2025, 15(19), 3546; https://doi.org/10.3390/buildings15193546 - 2 Oct 2025
Abstract
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct [...] Read more.
Precast concrete frames integrating ultra-high-performance concrete (UHPC) beams and high-strength concrete (HSC) columns offer exceptional seismic resilience and construction efficiency. However, a performance-based seismic design methodology tailored for this hybrid structural system remains underdeveloped. This study aims to develop and validate a direct displacement-based design (DDBD) procedure specifically for precast UHPC-HSC frames. A novel six-tier performance classification scheme (from no damage to severe damage) was established, with quantitative limit values of interstory drift ratio proposed based on experimental data and code calibration. The DDBD methodology incorporates determining the target displacement profile, converting the multi-degree-of-freedom system to an equivalent single-degree-of-freedom system, and utilizing a displacement response spectrum. A ten-story case study frame was designed using this procedure and rigorously evaluated through pushover analysis. The results demonstrate that the designed frame consistently met the predefined performance objectives under various seismic intensity levels, confirming the effectiveness and reliability of the proposed DDBD method. This work contributes a performance oriented seismic design framework that enhances the applicability and reliability of UHPC-HSC structures in earthquake regions, offering both theoretical insight and procedural guidance for engineering practice. Full article
Show Figures

Figure 1

23 pages, 3446 KB  
Article
Seismic Performance Evaluation of Low-Rise Reinforced Concrete Framed Buildings with Ready-to-Use Guidelines (RUD-NBC 205:2024) in Nepal
by Jhabindra Poudel, Prashidha Khatiwada and Subash Adhikari
CivilEng 2025, 6(3), 50; https://doi.org/10.3390/civileng6030050 - 18 Sep 2025
Viewed by 330
Abstract
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 [...] Read more.
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 Jajarkot earthquake (ML 6.4) have repeatedly exposed the vulnerability of Nepal’s built environment. In response, the Ready-to-Use Detailing (RUD) guideline (NBC 205:2024) was introduced to provide standardized structural detailing for low-rise reinforced concrete buildings without masonry infill, particularly for use in areas where access to professional engineering services is limited. This study was motivated by the need to critically assess the structural performance of buildings designed according to such rule-of-thumb detailing, which is widely applied through owner–builder practices. Nonlinear pushover analyses were carried out using finite element modelling for typical configurations on soil types C and D, under peak ground accelerations of 0.25 g, 0.30 g, 0.35 g, and 0.40 g. The response spectrum from NBC 105:2020 was adopted to determine performance points. The analysis focused on global response, capacity curves, storey drift, and hinge formation to evaluate structural resilience. The maximum story drift for the linear static analysis is found to be 0.56% and 0.86% for peak ground acceleration of 0.40 g, for both three and four-storied buildings. Also, from non-linear static analysis, it is found that almost all hinges formed in the beams and columns are in the Immediate Occupancy (IO) level. The findings suggest that the RUD guidelines are capable of providing adequate seismic performance for low-rise reinforced concrete buildings, given that the recommended material quality and construction standards are satisfied. Full article
Show Figures

Figure 1

17 pages, 5609 KB  
Article
Seismic Strengthening of the Mirogoj Mortuary After the 2020 Zagreb Earthquake: 3Muri Macro-Model Assessment
by Roko Žarnić and Barbara Vodopivec
Buildings 2025, 15(18), 3334; https://doi.org/10.3390/buildings15183334 - 15 Sep 2025
Viewed by 299
Abstract
The historic mortuary at Zagreb’s Mirogoj Cemetery, built in 1886, sustained moderate damage during the 2020 Mw 5.3 earthquake. Aiming to preserve heritage value while meeting Croatia’s Level 4 seismic safety requirements, the structure was assessed using in situ and laboratory tests followed [...] Read more.
The historic mortuary at Zagreb’s Mirogoj Cemetery, built in 1886, sustained moderate damage during the 2020 Mw 5.3 earthquake. Aiming to preserve heritage value while meeting Croatia’s Level 4 seismic safety requirements, the structure was assessed using in situ and laboratory tests followed by macro-element modeling with 3Muri software. The study evaluated four scenarios: (A) post-earthquake damaged state, (B) reinforcement with new masonry and RC walls, (C) partial fiber-reinforced cementitious matrix (FRCM) plastering, and (D) systematic FRCM plastering. Results show that Case B improved Ultimate Limit State (ULS) scaling factors from 0.64/0.56 to 0.92/0.90 (X/Y), while Case D raised them to 1.03/1.17, satisfying Eurocode 8 and national renovation criteria. Systematic FRCM application improved story shear capacity by up to 57% and shifted failure modes from brittle shear to ductile rocking. Partial plastering proved insufficient, highlighting the need for comprehensive global retrofitting. While the solution is minimally invasive and reversible, uncertainties remain regarding long-term durability and out-of-plane performance. This hybrid retrofitting strategy offers a replicable model for heritage masonry buildings in seismically active regions. Full article
(This article belongs to the Special Issue Resilience of Buildings and Infrastructure Addressing Climate Crisis)
Show Figures

Figure 1

24 pages, 4550 KB  
Article
Community-Scale Seismic Vulnerability Assessment of RC Churches: A Simplified Approach for Cultural Infrastructure Resilience
by Giuseppe Brandonisio and Muhammad Tayyab Naqash
Infrastructures 2025, 10(9), 234; https://doi.org/10.3390/infrastructures10090234 - 4 Sep 2025
Viewed by 305
Abstract
This study proposes a simplified, mechanics-based methodology for assessing the seismic vulnerability of reinforced concrete (RC) churches, particularly those with basilica plans and cathedral portal frames such as a repetitive inclined-beam portal frame. The method integrates linear and nonlinear static analyses, plastic limit [...] Read more.
This study proposes a simplified, mechanics-based methodology for assessing the seismic vulnerability of reinforced concrete (RC) churches, particularly those with basilica plans and cathedral portal frames such as a repetitive inclined-beam portal frame. The method integrates linear and nonlinear static analyses, plastic limit theory, and capacity spectrum methods to generate seismic risk indices using minimal input data, making it suitable for large-scale screening in low-data conditions. The model is calibrated using the Cathedral of Reggio Calabria and applied to the Church of San Giovanni Battista dei Fiorentini in Naples. Key outputs include simplified capacity curves and performance indicators. The methodology addresses current limitations in conventional approaches by offering an accessible tool for rapid assessment of cultural infrastructure. Future developments may incorporate AI and machine learning (AI/ML) techniques to improve typological classification and enable automated vulnerability screening at the regional scale. Full article
Show Figures

Figure 1

18 pages, 4547 KB  
Article
The Effect of Geometric and Material Nonlinearities on the Development of Membrane Resistance in Reinforced Concrete Flat Slab–Column Buildings
by Sylwester Walach, Seweryn Kokot and Juliusz Kus
Materials 2025, 18(17), 4053; https://doi.org/10.3390/ma18174053 - 29 Aug 2025
Viewed by 550
Abstract
This article presents a numerical study of the influence of applied nonlinearities on the response of a flat slab–column structure under progressive collapse conditions. A key aspect of the work is the extension of nonlinear static analysis by considering cases of material nonlinearity [...] Read more.
This article presents a numerical study of the influence of applied nonlinearities on the response of a flat slab–column structure under progressive collapse conditions. A key aspect of the work is the extension of nonlinear static analysis by considering cases of material nonlinearity combined with both linear and nonlinear geometry, using a corotational formulation and a damage-based elasto-plastic concrete model. A multi-layer shell element implemented in the OpenSees platform is used to distinguish between the strength characteristics of the concrete and reinforcement, with particular attention given to the modeling of the slab–column connection in nonlinear analyzes involving both shell and beam elements. The applied vertical pushover analysis enabled the derivation of load–displacement curves and the identification of the sequence in which plastic hinges can be formed. The development of membrane action resistance, expressed through the formation of compressive and tensile rings, is observed numerically when both material and geometric nonlinearities are simultaneously considered. Moreover, the transition from compressive membrane action to tensile membrane action occurs once the deflections reach the value equal to the effective depth of the slab. This insight may serve as an important guideline for the development of future revisions to design standards related to progressive collapse. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 2710 KB  
Article
A New Approach to Improving the Seismic Performance of Existing Reinforced Concrete Buildings Using Laminated Timber
by Yusuf Yıldız and Fethi Şermet
Sustainability 2025, 17(17), 7690; https://doi.org/10.3390/su17177690 - 26 Aug 2025
Viewed by 717
Abstract
Following recent earthquakes in Van, Istanbul, Izmir, and Kahramanmaraş, concerns have once again been raised regarding whether existing buildings possess adequate seismic performance and the necessity of strengthening those that do not. A common theme in all related discussions is how to improve [...] Read more.
Following recent earthquakes in Van, Istanbul, Izmir, and Kahramanmaraş, concerns have once again been raised regarding whether existing buildings possess adequate seismic performance and the necessity of strengthening those that do not. A common theme in all related discussions is how to improve the seismic resilience of the existing building stock most efficiently and cost-effectively. In particular, seismic retrofitting efforts should be accelerated for residential buildings in areas where urban transformation has not been feasible due to low added value, as well as for public buildings in smaller settlements and school or dormitory structures in rural towns and villages. In this study, the seismic performance of a reinforced concrete (RC) frame was evaluated using the nonlinear single-mode pushover analysis method in accordance with the Turkish Building Earthquake Code (TBEC). For frames with inadequate performance, a retrofitting method was proposed using glued laminated timber (glulam), a renewable and sustainable material, as diagonal bracing. This intervention aimed to improve the structural performance to an acceptable level specified by the code. The results indicated that glulam braces can effectively enhance the seismic performance of RC buildings and may be considered a viable solution for this purpose. Full article
Show Figures

Figure 1

16 pages, 2641 KB  
Article
Seismic Assessment of Informally Designed 2-Floor RC Houses: Lessons from the 2020 Southern Puerto Rico Earthquake Sequence
by Lautaro Peralta and Luis A. Montejo
Eng 2025, 6(8), 176; https://doi.org/10.3390/eng6080176 - 1 Aug 2025
Viewed by 2261
Abstract
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history [...] Read more.
The 2020 southern Puerto Rico earthquake sequence highlighted the severe seismic vulnerability of informally constructed two-story reinforced concrete (RC) houses. This study examines the failure mechanisms of these structures and assesses the effectiveness of first-floor RC shear-wall retrofitting. Nonlinear pushover and dynamic time–history analyses were performed using fiber-based distributed plasticity models for RC frames and nonlinear macro-elements for second-floor masonry infills, which introduced a significant inter-story stiffness imbalance. A bi-directional seismic input was applied using spectrally matched, near-fault pulse-like ground motions. The findings for the as-built structures showed that stiffness mismatches between stories, along with substantial strength and stiffness differences between orthogonal axes, resulted in concentrated plastic deformations and displacement-driven failures in the first story—consistent with damage observed during the 2020 earthquakes. Retrofitting the first floor with RC shear walls notably improved the performance, doubling the lateral load capacity and enhancing the overall stiffness. However, the retrofitted structures still exhibited a concentration of inelastic action—albeit with lower demands—shifted to the second floor, indicating potential for further optimization. Full article
Show Figures

Figure 1

29 pages, 5942 KB  
Article
The Seismic Performance of Earthen Historical Buildings in Seismic-Prone Regions: The Church of Santo Tomás de Aquino in Rondocan as a Complex Example
by Elesban Nochebuena-Mora, Nuno Mendes, Matteo Salvalaggio and Paulo B. Lourenço
Appl. Sci. 2025, 15(13), 7624; https://doi.org/10.3390/app15137624 - 7 Jul 2025
Viewed by 703
Abstract
Adobe churches are representative of Andean architectural heritage, yet their structural vulnerability to seismic events remains a significant concern. This study evaluates the seismic performance of the 17th-century Church of Santo Tomás de Aquino in Rondocan, Peru, an adobe building that underwent conservation [...] Read more.
Adobe churches are representative of Andean architectural heritage, yet their structural vulnerability to seismic events remains a significant concern. This study evaluates the seismic performance of the 17th-century Church of Santo Tomás de Aquino in Rondocan, Peru, an adobe building that underwent conservation work in the late 1990s. The assessment combines in situ inspections and experimental testing with advanced nonlinear numerical modeling. A finite-element macro-model was developed and calibrated using sonic and ambient vibration tests to replicate the observed structural behavior. Nonlinear static (pushover) analyses were performed in the four principal directions to identify failure mechanisms and to evaluate seismic capacity using the Peruvian seismic code. Kinematic limit analyses were conducted to assess out-of-plane mechanisms using force- and displacement-based criteria. The results revealed critical vulnerabilities in the rear façade and lateral walls, particularly in terms of out-of-plane collapse, while the main façade exhibited a higher capacity but a brittle failure mode. This study illustrates the value of advanced numerical simulations, calibrated with field data, as effective tools for assessing seismic vulnerability in historic adobe buildings. The outcomes highlight the necessity of strengthening measures to balance life safety requirements with preservation goals. Full article
Show Figures

Figure 1

20 pages, 8731 KB  
Article
Energy Dissipation Device Design for Irregular Structures Based on Yield Mechanism
by Xisen Fan, Yihang Bai, Liang Chen, Hao Wu, Yifei Qiao and Abdul Ghani
Buildings 2025, 15(13), 2305; https://doi.org/10.3390/buildings15132305 - 30 Jun 2025
Viewed by 448
Abstract
The seismic performance of irregular structures can be enhanced by installing energy dissipation devices. The location and specification of those devices are crucial for the design of the structure with an energy dissipation device. In this paper, an idea based on the structural [...] Read more.
The seismic performance of irregular structures can be enhanced by installing energy dissipation devices. The location and specification of those devices are crucial for the design of the structure with an energy dissipation device. In this paper, an idea based on the structural yield mechanism is proposed. Specifically, the pushover method was employed to analyze the yield sequence of structural members, thereby determining weak components that dictate the location of these devices. Additionally, the story drift ratios were taken as the control target to determine the performance parameters of the devices. This concept has been applied to the design of an energy dissipation device for a medical building. The results demonstrated that by using a design method based on the yield mechanism, the location of the damper was rapidly determined to ensure that the yield mechanism of the irregular structure met expectations. To control the story drift ratios, the parameters of the damper were selected, and the center of damping strength and the center of stiffness were made symmetrical about the center of mass, which could enable the irregular structure to have a better damping effect. After setting the energy dissipation devices according to this method, the structural torsional displacement ratio was reduced from 1.32 to 1.04, and the displacement angle between layers was reduced from 0.01 to 0.0048. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 3736 KB  
Article
Shear Force–Displacement Curve of a Steel Shear Wall Considering Compression
by Yi Liu, Yan He and Yang Lv
Buildings 2025, 15(12), 2112; https://doi.org/10.3390/buildings15122112 - 18 Jun 2025
Viewed by 457
Abstract
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors [...] Read more.
The shear strength of a steel shear wall (SSW) is typically governed by the yield strength of the steel. However, changes in mechanical properties beyond yielding—particularly those related to steel hardening and the effects of gravity loads—are not yet fully understood. These factors are critical for accurately assessing the shear capacity of SSWs during seismic events. In the current study, a method to calculate the shear force–displacement curve of a steel shear wall while considering the compression effect is presented, which incorporates both steel hardening and gravity effects. The analysis derives strains in tensile strips undergoing shear deformation using a strip model. Corresponding stresses are then determined using the stress–strain relationships obtained from tensile tests of the steel. Furthermore, the vertical stress induced by gravity loads is modeled using a three-segment distribution proposed before. For each tensile strip, the tension field stress is calculated by accounting for reductions due to vertical stress and the influence of steel hardening through the von Mises yield criterion. This approach enables the development of a shear force–displacement curve, which is subsequently validated against results from an experimentally verified finite element model. The findings demonstrate that the pushover curves predicted by this method closely align with those obtained from finite element analysis. Notably, the results indicate that the shear strength provided by the CAN/CSA-S16-01 equation may be overestimated by approximately 4%, 9%, and 18% when the vertical compression stresses are 50, 100, and 150 MPa for a wall with a slenderness of 150, respectively. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

24 pages, 10257 KB  
Article
Mechanical Performance Evaluation and Strengthening of Rectangular RC Columns with Deficient Lap Splices: Monotonic Loading Tests and Equivalent Plastic Hinge Modeling
by Yuheng Zhao, Fangxin Jiang, Xue Zhang and Yufeng Guo
Buildings 2025, 15(12), 1964; https://doi.org/10.3390/buildings15121964 - 6 Jun 2025
Viewed by 750
Abstract
Reinforced concrete columns constructed prior to the 1970s often exhibit deficient lap splices at the base, characterized by insufficient splice lengths. In response to the urgent need for an efficient seismic assessment of these vulnerable structural elements, this study proposed a modelling method [...] Read more.
Reinforced concrete columns constructed prior to the 1970s often exhibit deficient lap splices at the base, characterized by insufficient splice lengths. In response to the urgent need for an efficient seismic assessment of these vulnerable structural elements, this study proposed a modelling method for lap-spliced columns. Typically, numerical simulations of columns with lap splices require the cross-sections of the lap-spliced and non-lap-spliced zones to be established, a process that is complex and time-consuming. This paper proposes an equivalent distribution of curvature along the height of the column to represent the effect of lap splice defects on the mechanical behavior of columns, thereby reducing the modelling complexity of such components. Four large-scale column specimens with varying lap splice lengths were subjected to monotonic pushover loading to investigate the effect of splice length on failure modes, strain distribution, and displacement ductility. An active strengthening method was employed to improve the performance of columns with deficient lap splices. Applying lateral prestress to the strengthening devices improves the mechanical behavior of columns. The experimental results revealed that insufficient splice lengths lead to reduced ductility and stress-transfer capacity. The strengthened specimen demonstrated significantly improved ductility and enhanced stress-transfer efficiency, indicating a marked improvement in mechanical performance. The proposed equivalent plastic hinge model was established in OpenSees. A database was created to verify the accuracy of the model. The results showed the modelling method to be accurate. Full article
Show Figures

Figure 1

24 pages, 4049 KB  
Article
Analysis of Seismic Performance for Segmentally Assembled Double-Column Bridge Structures Based on Equivalent Stiffness
by Huixing Gao, Wenjing Xia and Guoqing Liu
Buildings 2025, 15(11), 1919; https://doi.org/10.3390/buildings15111919 - 2 Jun 2025
Cited by 1 | Viewed by 443
Abstract
Double-column self-centering segmentally assembled bridges (SC-SABs) present greater design complexity compared to single-column systems, primarily due to vertical stiffness discontinuities at segmental spandrel abutments, which critically affect the refinement of their seismic design methods. To address these challenges, this study conducts a systematic [...] Read more.
Double-column self-centering segmentally assembled bridges (SC-SABs) present greater design complexity compared to single-column systems, primarily due to vertical stiffness discontinuities at segmental spandrel abutments, which critically affect the refinement of their seismic design methods. To address these challenges, this study conducts a systematic investigation into the mechanical behavior and seismic performance of double-column SC-SAB. First, leveraging fundamental mechanical principles and stress-strain relationships, the coupling mechanism between the two columns is analytically established. An analytical expression for the elastic stiffness of a double-column SC-SAB, when simplified to an equivalent single-column system, is derived. This establishes the equivalent stiffness conditions for reducing a double-column system to a single-column model, and the overall equivalent stiffness of the double-column system is formulated. To validate the theoretical framework, a finite element model of the double-column SC-SAB is developed using OpenSees (1.0.0.1 version). An equivalent single-column model is constructed based on the derived stiffness equivalence conditions. By comparing the peak displacement and bearing capacity between the double-column and equivalent single-column models, the accuracy and feasibility of the simplification approach are confirmed. The numerical results further validate the derived overall equivalent stiffness, providing a robust theoretical foundation for simplified engineering applications. Additionally, pushover analysis and hysteretic response analysis are performed to systematically evaluate the influence of key design parameters on the seismic performance of double-column SC-SAB. The results demonstrate that the prestressed twin-column system exhibits excellent self-centering capability, effectively controlling residual displacements, aligning with seismic resilience goals. This research advances the seismic design methodology for SC-SAB by resolving critical challenges in stiffness equivalence and joint behavior quantification. The findings of this study can be utilized to derive equivalent damping ratios and equivalent periods. Based on the displacement response spectrum, the pier-top displacement and maximum force can be determined, thereby enabling a displacement-based seismic design approach. This research holds significant theoretical and practical value for advancing seismic design methodologies for self-centering segmental bridge piers and enhancing the seismic safety of bridge structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 19694 KB  
Article
Seismic Response Analysis of Multi-Floored Grain Warehouses with Composite Structures Under Varying Grain-Loading Conditions
by Zidan Li, Yonggang Ding, Jinquan Zhao, Chengzhou Guo, Zhenhua Xu, Guoqi Ren, Qikeng Xu, Qingjun Xian and Rongyu Yang
Appl. Sci. 2025, 15(11), 5970; https://doi.org/10.3390/app15115970 - 26 May 2025
Viewed by 380
Abstract
Multi-floored grain warehouses are widely used in China due to their efficient space utilization and high storage capacity. This study evaluates the seismic performance of such structures using a Composite Structure of Steel and Concrete (CSSC) system under various grain-loading conditions. A finite [...] Read more.
Multi-floored grain warehouses are widely used in China due to their efficient space utilization and high storage capacity. This study evaluates the seismic performance of such structures using a Composite Structure of Steel and Concrete (CSSC) system under various grain-loading conditions. A finite element model was developed in OpenSees based on actual loading scenarios, with both pushover and time history analyses conducted. Results show that the EEF condition (E = Empty, F = Full; top–middle–bottom = Empty–Empty–Full) leads to a 35.14% increase in peak base shear compared to the FEE condition (grain on the top floor only). Capacity spectrum analysis indicates that EEF provides higher initial stiffness and lower displacement across all performance points. Time history results reveal that configurations with lighter upper mass (EFF, EEE) are more prone to top-floor acceleration amplification, while FFF and FFE demonstrate more stable responses due to balanced mass distribution. The maximum inter-story drift consistently occurs at the second floor, with FFF and FFE showing the most significant deformation. All drift ratios meet code limits, confirming the safety and applicability of the CSSC system under various storage scenarios. Full article
Show Figures

Figure 1

34 pages, 19699 KB  
Article
Comprehensive Material Characterization and Seismic Performance Evaluation of a Traditional Masonry Residential Building with Reinforced Concrete Slabs
by Basak Boduroglu Yazici and Oguz Uzdil
Buildings 2025, 15(10), 1710; https://doi.org/10.3390/buildings15101710 - 18 May 2025
Cited by 1 | Viewed by 1490
Abstract
Reinforced concrete began replacing traditional masonry construction in the early 20th century, yet hybrid buildings combining unreinforced masonry (URM) walls with concrete slabs remain prevalent in Istanbul. Understanding their seismic behavior is critical for risk mitigation and heritage preservation. This study investigates a [...] Read more.
Reinforced concrete began replacing traditional masonry construction in the early 20th century, yet hybrid buildings combining unreinforced masonry (URM) walls with concrete slabs remain prevalent in Istanbul. Understanding their seismic behavior is critical for risk mitigation and heritage preservation. This study investigates a seven-story masonry residential building with cast-in-place reinforced concrete slabs constructed in 1953. The assessment involved non-destructive inspections, double flat-jack and shear tests, and geophysical site surveys. A finite element model was developed using Midas Gen software v2020 and analyzed through linear response spectrum and nonlinear pushover analyses based on TBSC-18 and SRMGHS-17. The modulus of elasticity ranged from 200.2 MPa to 1062.2 MPa, and bed joint shear strength varied between 0.50 MPa and 0.79 MPa. The building satisfied inter-story drift criteria for limited damage (SL-3), controlled damage (SL-2), and pre-collapse (SL-1). However, it failed to meet the shear force requirements at all levels. Pushover analysis revealed ultimate lateral capacities of 11,997 kN in the x-direction and 16,209 kN in the y-direction. The findings highlight the shear vulnerability of such hybrid systems and underscore the importance of combining experimental characterization with numerical modeling to develop effective retrofitting strategies. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

30 pages, 6905 KB  
Article
Seismic Retrofitting of RC Buildings Using a Performance-Based Approach for Risk Resilience and Vulnerability Assessment
by Hafiz Asfandyar Ahmed and Waqas Arshad Tanoli
Buildings 2025, 15(8), 1333; https://doi.org/10.3390/buildings15081333 - 17 Apr 2025
Viewed by 2014
Abstract
This paper presents a framework for evaluating the impact of seismic retrofitting alternatives on seismic risk, specifically focusing on economic losses, social losses, environmental losses, resilience, and vulnerability of reinforced concrete (RC) structures. From a cost-effectiveness perspective, this study concentrates on the retrofitting [...] Read more.
This paper presents a framework for evaluating the impact of seismic retrofitting alternatives on seismic risk, specifically focusing on economic losses, social losses, environmental losses, resilience, and vulnerability of reinforced concrete (RC) structures. From a cost-effectiveness perspective, this study concentrates on the retrofitting of ground story columns, which has proven to be highly effective in enhancing the performance of the structure, particularly when its behavior is mainly governed by column capacities and story response. The methodology is divided into three main parts. The first part involves a global damage evaluation, which is estimated using a seismic vulnerability assessment based on the collapse fragility function. This function is derived from capacity curves obtained through nonlinear pushover analysis. The second part focuses on assessing seismic risk for various earthquake intensities, where fragility functions and consequence functions are derived and evaluated for structural components. This allows for the calculation of losses in terms of social, economic, and environmental impacts. The third part addresses the functionality and recovery of the structure, along with its resilience, by considering repair times and associated delays. Indices are developed for all direct and indirect losses, and weightage factors are assigned to each category to optimize the selection of the most suitable retrofitting alternative for specific scenarios. To illustrate this framework, a five-story hospital building is used as an example, as hospitals are critical structures that need to remain operational after earthquakes. Four retrofitting alternatives are proposed to identify the optimal choice that effectively meets all desired functions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop