Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (133)

Search Parameters:
Keywords = pulses by-products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3231 KiB  
Article
Investigation into the Properties of Alkali-Activated Fiber-Reinforced Slabs, Produced with Marginal By-Products and Recycled Plastic Aggregates
by Fotini Kesikidou, Kyriakos Koktsidis and Eleftherios K. Anastasiou
Constr. Mater. 2025, 5(3), 48; https://doi.org/10.3390/constrmater5030048 - 24 Jul 2025
Viewed by 175
Abstract
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary [...] Read more.
Alkali-activated building materials have attracted the interest of many researchers due to their low cost and eco-efficiency. Different binders with different chemical compositions can be used for their production, so the reaction mechanism can become complex and the results of studies can vary widely. In this work, several alkali-activated mortars based on marginal by-products as binders, such as high calcium fly ash and ladle furnace slag, are investigated. Their mechanical (flexural and compressive strength, ultrasonic pulse velocity, and modulus of elasticity) and physical (porosity, absorption, specific gravity, and pH) properties were determined. After evaluating the mechanical performance of the mortars, the optimum mixture containing fly ash, which reached 15 MPa under compression at 90 days, was selected for the production of precast compressed slabs. Steel or glass fibers were also incorporated to improve their ductility. To reduce the density of the slabs, 60% of the siliceous sand aggregate was also replaced with recycled polyethylene terephthalate (PET) plastic aggregate. The homogeneity, density, porosity, and capillary absorption of the slabs were measured, as well as their flexural strength and fracture energy. The results showed that alkali activation can be used to improve the mechanical properties of weak secondary binders such as ladle furnace slag and hydrated fly ash. The incorporation of recycled PET aggregates produced slabs that could be classified as lightweight, with similar porosity and capillary absorption values, and over 65% achieved strength compared to the normal weight slabs. Full article
Show Figures

Figure 1

28 pages, 4983 KiB  
Review
Physical Processing-Assisted pH Shifting for Food Protein Modification: A Comprehensive Review
by Ruiqi Long, Yuanyuan Huang, Mokhtar Dabbour, Benjamin Kumah Mintah, Jiayin Pan, Minquan Wu, Shengqi Zhang, Zhou Qin, Ronghai He and Haile Ma
Foods 2025, 14(13), 2360; https://doi.org/10.3390/foods14132360 - 3 Jul 2025
Viewed by 555
Abstract
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low [...] Read more.
The increasing demand for sustainable protein sources has intensified interest in improving the processing efficiency of traditional proteins and developing novel alternatives, particularly those derived from plants and algae. Among various processing technologies, pH shifting has attracted attention due to its simplicity, low cost, and capacity to effectively alter protein structure and functionality. However, employing pH shifting alone requires extremely acidic or alkaline conditions, which can lead to protein denaturation and the generation of undesirable by-products. To address these limitations, this review explores the integration of pH shifting with physical processing techniques such as ultrasound, high-pressure processing, pulsed electric fields, and thermal treatments. Moreover, this review highlights the effects of these combined treatments on protein conformational transitions and the resulting improvements in functional properties such as solubility, emulsification, foaming capacity, and thermal stability. Importantly, they reduce reliance on extreme chemical conditions, providing greater sustainability in industrial applications, particularly in food product development where milder processing conditions help preserve nutritional quality and functional properties. In that sense, this combined treatment approach provides a promising and eco-efficient protein modification strategy, and bridges technological innovation with sustainable resource utilization. Full article
Show Figures

Figure 1

21 pages, 1030 KiB  
Review
Progress in Low-Impact Processing Technologies to Deliver More Sustainable and Healthy Food Tomorrow
by Marco Dalla Rosa, Santina Romani, Pietro Rocculi, Urszula Tylewicz and Silvia Tappi
Foods 2025, 14(13), 2332; https://doi.org/10.3390/foods14132332 - 30 Jun 2025
Viewed by 269
Abstract
Following the debate on food processing, resulting in a negative definition of ultra-processed products, the improvement of the food system could be pursued through the co-creation of new food solutions aimed at enhancing human health and increasing safety and sustainability, in particular by [...] Read more.
Following the debate on food processing, resulting in a negative definition of ultra-processed products, the improvement of the food system could be pursued through the co-creation of new food solutions aimed at enhancing human health and increasing safety and sustainability, in particular by using neglected foodstuff, crops or by-products, and applying mild processing technologies. The proper management of mild/non-thermal processing technologies, such as dynamic and hydrostatic high-pressure, vacuum impregnation, ultrasound, pulsed electric field and cold plasma applications, can result in a less negative effect with respect to the traditional thermal treatments, and, in some cases, the overall functionality can be improved. In many cases, these treatments can induce structural changes that improve the bioaccessibility and/or the bioavailability of bioactive compounds such as probiotic microorganisms. Moreover, non-thermal pretreatments, also combined with mild thermal drying technology, could lead to a significant reduction in the total request of energy, even when considering the energy input for their application. A selected review of results published in the last few years on those strategies is presented, considering studies carried out within the frame of different national and EU projects. Full article
(This article belongs to the Special Issue Optimization of Non-thermal Technology in Food Processing)
Show Figures

Figure 1

18 pages, 1390 KiB  
Article
Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites
by Ouiame Chakkor
Buildings 2025, 15(12), 2010; https://doi.org/10.3390/buildings15122010 - 11 Jun 2025
Cited by 1 | Viewed by 519
Abstract
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint [...] Read more.
Cement is widely used as the primary binder in concrete; however, growing environmental concerns and the rapid expansion of the construction industry have highlighted the need for more sustainable alternatives. Geopolymers have emerged as promising eco-friendly binders due to their lower carbon footprint and potential to utilize industrial byproducts. Geopolymer mortar, like other cementitious substances, exhibits brittleness and tensile weakness. Basalt fibers serve as fracture-bridging reinforcements, enhancing flexural and tensile strength by redistributing loads and postponing crack growth. Basalt fibers enhance the energy absorption capacity of the mortar, rendering it less susceptible to abrupt collapse. Basalt fibers have thermal stability up to about 800–1000 °C, rendering them appropriate for geopolymer mortars designed for fire-resistant or high-temperature applications. They assist in preserving structural integrity during heat exposure. Fibers mitigate early-age microcracks resulting from shrinkage, drying, or heat gradients. This results in a more compact and resilient microstructure. Using basalt fibers improves surface abrasion and impact resistance, which is advantageous for industrial flooring or infrastructure applications. Basalt fibers originate from natural volcanic rock, are non-toxic, and possess a minimal ecological imprint, consistent with the sustainability objectives of geopolymer applications. This study investigates the mechanical and thermal performance of a geopolymer mortar composed of metakaolin and red mud as binders, with basalt powder and limestone powder replacing traditional sand. The primary objective was to evaluate the effect of basalt fiber incorporation at varying contents (0.4%, 0.8%, and 1.2% by weight) on the durability and strength of the mortar. Eight different mortar mixes were activated using sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) solutions. Mechanical properties, including compressive strength, flexural strength, and ultrasonic pulse velocity (UPV), were tested 7 and 28 days before and after exposure to elevated temperatures (200, 400, 600, and 800 °C). The results indicated that basalt fiber significantly enhanced the performance of the geopolymer mortar, particularly at a content of 1.2%. Specimens with 1.2% fiber showed up to 20% improvement in compressive strength and 40% in flexural strength after thermal exposure, attributed to the fiber’s role in microcrack bridging and structural densification. Subsequent research should concentrate on refining fiber type, dose, and dispersion techniques to improve mechanical performance and durability. Examinations of microstructural behavior, long-term durability under environmental settings, and performance following high-temperature exposure are crucial. Furthermore, investigations into hybrid fiber systems, extensive structural applications, and life-cycle evaluations will inform the practical and sustainable implementation in the buildings. Full article
Show Figures

Figure 1

18 pages, 6867 KiB  
Article
Effects of Calcined Coal Gangue and Carbide Slag on the Properties of Cement Paste and Mortar
by Yudong Luo, Yonghong Miao, Peng Wang, Panpan Gai, Jingwei Yang and Guiyu Zhang
Materials 2025, 18(10), 2242; https://doi.org/10.3390/ma18102242 - 12 May 2025
Viewed by 515
Abstract
When using supplementary cementitious materials to replace cement partially, the carbon emissions of cement products can be reduced, but it often leads to reduced strength. This study explores the application potential of carbide slag (CS) and calcined coal gangue (CCG), byproducts of acetylene [...] Read more.
When using supplementary cementitious materials to replace cement partially, the carbon emissions of cement products can be reduced, but it often leads to reduced strength. This study explores the application potential of carbide slag (CS) and calcined coal gangue (CCG), byproducts of acetylene production, to partially replace cement. The effects of these two materials on the macroscopic properties and microstructure of cement-based materials were analyzed through systematic experiments. The compressive strength, ultrasonic pulse velocity, and electrical resistivity test results showed that replacing 20% of cement with CCG did not cause significant changes in the test results of the specimens. An X-ray diffraction (XRD) analysis showed that these two materials can produce additional hydration products. Scanning electron microscopy images (SEM) further revealed that CCG produces hydration products to fill microscopic pores. Thermogravimetric analysis (TG) results after 28 days showed that with the addition of supplementary cementitious materials, calcium hydroxide (CH) in CS reacts with CCG, resulting in the consumption of CS. Finally, the environmental impact of CS and CCG was assessed. It was found that CS is more favorable for reducing carbon emissions compared to CCG. However, when considering the effect of cement replacement on compressive strength, combining these two materials is more advantageous for sustainable development. Overall, the use of CS and CCG demonstrated good performance in promoting sustainable development. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 7571 KiB  
Article
The Effect of Industrial Byproducts Fly Ash and Quartz Powder on Cement Properties and Environmental Benefits Analysis
by Yonghong Miao, Yudong Luo, Yulong Zheng, Zenian Wang, Zhaochang Zhang, Xiaoyong Wang and Guiyu Zhang
Appl. Sci. 2025, 15(9), 5093; https://doi.org/10.3390/app15095093 - 3 May 2025
Viewed by 503
Abstract
Using industrial byproducts to replace cement is an important way to reduce carbon emissions from the cement industry. In this study, the effects of two industrial byproducts, fly ash (FA) and quartz powder (QZ), as supplementary cementitious materials (SCMs) on the macroscopic properties [...] Read more.
Using industrial byproducts to replace cement is an important way to reduce carbon emissions from the cement industry. In this study, the effects of two industrial byproducts, fly ash (FA) and quartz powder (QZ), as supplementary cementitious materials (SCMs) on the macroscopic properties and microstructure of cement-based materials were experimentally investigated. The results of the compressive strength and ultrasonic pulse velocity experiments showed that QZ significantly mitigated the decrease in strength and ultrasonic pulse velocity caused by the reduction in cement dosage in the early stage. Moreover, the 28-day compressive strength of the FA group was comparable to that of the control group, and regression analysis indicated a negligible effect of FA addition on 28-day compressive strength. X-ray diffraction and Fourier transform infrared spectroscopy experiments showed that QZ can promote the hydration reaction in the early stage. Scanning electron microscopy images revealed that a layer of hydration products can form on the surface of FA after 28 days of hydration. Hydration heat experiments indicated that FA significantly reduces the release of hydration heat, while QZ promotes the formation of ettringite through nucleation effects in the early stage of hydration, thereby accelerating the release of hydration heat. Thermogravimetric analysis after 28 days showed that the amount of hydration products and calcium hydroxide produced decreased with the addition of cementitious materials. Finally, the use of FA and QZ was analyzed for carbon emissions and energy consumption. The results showed that using these two cementitious materials significantly reduces carbon dioxide emissions and energy consumption. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 5165 KiB  
Article
An Innovative Approach to Enhancing Concrete Sustainability: Utilising Unprocessed Steel Slag with Low CaO and High SiO2 Content
by Bengin M. A. Herki, Ali Ibrahim Ali, Yousif Sadiq Smail and Karwan Maroof Omer
Buildings 2025, 15(9), 1514; https://doi.org/10.3390/buildings15091514 - 1 May 2025
Cited by 1 | Viewed by 1080
Abstract
As a non-biodegradable material and a major environmental hazard due to its discharge into the environment, by-products like steel production steel slag (SS) are disposed of in open spaces, agricultural lands, and close to residential areas. This by-product is now considered to have [...] Read more.
As a non-biodegradable material and a major environmental hazard due to its discharge into the environment, by-products like steel production steel slag (SS) are disposed of in open spaces, agricultural lands, and close to residential areas. This by-product is now considered to have qualities that make it a potential substitute for cement and natural aggregates in the manufacturing of concrete or clinker in the cement manufacturing sector. The effects of using a novel type of SS made in an induction furnace (IF) in place of Portland cement and natural coarse aggregate in concrete were investigated experimentally. Steel slag powder (SSP), low-density steel slag (LDSS) aggregate, and high-density steel slag (HDSS) aggregate were all physically and chemically examined in this study. Each of these three replacement materials was added to concrete in weight proportions of 20%, 40%, and so on. The performance of the resultant mixtures was compared to that of the plain concrete, and the mechanical properties such as split tensile strength, flexural strength, and compressive strength were examined, along with the durability properties of water absorption (WA) and freeze–thaw, and the non-destructive testing of ultrasonic pulse velocity (UPV) of the concrete mixtures were also evaluated. The results indicated that adding HDSS to the concrete increased its mechanical and durability properties, while adding LDSS and SSP resulted in a small and a significant drop in mechanical properties, respectively, when compared to the plain concrete. The increase in compressive strength and the decrease in water absorption at the standard age of 28 days reached 5.2% and 2.1%, respectively. The percentage decrease in compressive strength (8.95–21.74%) of SS concrete mixtures after freeze–thaw cycles was greater than that of the control concrete. Additionally, a concrete mixture containing 40% HDSS yielded the best results. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 2413 KiB  
Article
A Novel Liquid Chromatographic Time-of-Flight Tandem Mass Spectrometric Method for the Determination of Secondary Metabolites in Functional Flours Produced from Grape Seed and Olive Stone Waste
by Achilleas Panagiotis Zalidis, Natasa P. Kalogiouri, Ioannis Mourtzinos, Dimitris Sarris and Konstantinos Gkatzionis
Molecules 2025, 30(7), 1527; https://doi.org/10.3390/molecules30071527 - 29 Mar 2025
Cited by 2 | Viewed by 550
Abstract
Agricultural by-products like grape pomace and olive stones are rich in bioactive compounds and can be processed into grape seed and olive stone flours.The phenolic composition of such flours still remains underexplored. This study introduces a liquid chromatographic time-of-flight tandem mass spectrometric method [...] Read more.
Agricultural by-products like grape pomace and olive stones are rich in bioactive compounds and can be processed into grape seed and olive stone flours.The phenolic composition of such flours still remains underexplored. This study introduces a liquid chromatographic time-of-flight tandem mass spectrometric method (LC-QTOF-MS/MS) to assess the phenolic profiles of functional flours from different origins and evaluate their potential use within the frame of a circular economy. Grape seed and olive stone flours from Lemnos and commercial sources were analyzed employing target, suspect, and non-target screening. Target screening resulted in the determination of 23 phenolic compounds. Suspect screening revealed phenolic diversity in flours produced in Lemnos island. Non-target screening resulted in the detection of 1042 and 1620 mass features in grape seed and olive stone flours, respectively. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) successfully differentiated samples between commercially available and those produced in Lemnos. These results underscore the phenolic richness of grape seed and olive stone flours, supporting their use as functional ingredients and reinforcing sustainability and circular economy principles in the agri-food sector. Full article
(This article belongs to the Special Issue Chromatography—The Ultimate Analytical Tool, 3rd Edition)
Show Figures

Figure 1

21 pages, 8010 KiB  
Article
On the Formation of Carbonaceous By-Product Species in Spray Flame Synthesis of Maghemite Nanoparticles
by Ricardo Tischendorf, Kristina Duschik, Fabian Fröde, Manuel Reddemann, Reinhold Kneer, Heinz Pitsch, Mirko Schaper and Hans-Joachim Schmid
Appl. Sci. 2025, 15(6), 3294; https://doi.org/10.3390/app15063294 - 18 Mar 2025
Viewed by 420
Abstract
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration [...] Read more.
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration (0.1 M and 0.2 M) in the precursor feed while using ethanol and 2-ethylhexanoic acid as solvent. Conducting complementary powder analysis revealed a predominant presence of carboxylates and carbonates as by-product species (~14–18 wt.%), while no strong indications for elemental carbon and precursor/solvent residues can be found. Carbonates/carboxylates are located on particle surfaces, and the particles’ surface loadings by these species are independent of the precursor concentration but depend on burner type, with SpraySyn2 exhibiting lower values, indicating a more complete combustion for this burner. Through time-resolved thermophoretic sampling, we further demonstrate that carbon forms temporally in the visible flame center when using SpraySyn1. Since carbon solely forms momentarily within large flame pulses and decomposes further downstream, its temporal formation is of minor relevance for the final particle purity. However, its local co-existence aside from γ-Fe2O3 in the flame has potential to bias in situ diagnostics. Full article
Show Figures

Figure 1

21 pages, 3022 KiB  
Article
Carbonated Aggregates and Basalt Fiber-Reinforced Polymers: Advancing Sustainable Concrete for Structural Use
by Rabee Shamass, Vireen Limbachiya, Oluwatoyin Ajibade, Musab Rabi, Hector Ulises Levatti Lopez and Xiangming Zhou
Buildings 2025, 15(5), 775; https://doi.org/10.3390/buildings15050775 - 26 Feb 2025
Cited by 7 | Viewed by 1003
Abstract
In the transition towards a circular economy, redesigning construction materials for enhanced sustainability becomes crucial. To contribute to this goal, this paper investigates the integration of carbonated aggregates (CAs) and basalt fibre-reinforced polymers (BFRPs) in concrete infrastructures as an alternative to natural sand [...] Read more.
In the transition towards a circular economy, redesigning construction materials for enhanced sustainability becomes crucial. To contribute to this goal, this paper investigates the integration of carbonated aggregates (CAs) and basalt fibre-reinforced polymers (BFRPs) in concrete infrastructures as an alternative to natural sand (NS) and steel reinforcement. CA is manufactured using accelerated carbonation that utilizes CO2 to turn industrial byproducts into mineralised products. The structural performance of CA and BFRP-reinforced concrete simply supported slab was investigated through conducting a series of experimental tests to assess the key structural parameters, including bond strength, bearing capacity, failure behavior, and cracking bbehaviour. Carbon footprint analysis (CFA) was conducted to understand the environmental impact of incorporating BFRP and CA. The results indicate that CA exhibits a higher water absorption rate compared to NS. As the CA ratio increased, the ultrasonic pulse velocity (UPV), compressive, tensile, and flexural strength decreased, and the absorption capacity of concrete increased. Furthermore, incorporating 25% CA in concrete has no significant effect on the bond strength of BFRP. However, the load capacity decreased with an increasing CA replacement ratio. Finally, integrating BFRP and 50% of CA into concrete slabs reduced the slab’s CFA by 9.7% when compared with steel-reinforced concrete (RC) slabs. Full article
(This article belongs to the Topic Green Construction Materials and Construction Innovation)
Show Figures

Figure 1

21 pages, 1451 KiB  
Article
Effect of Wet Fractionation Conditions and Pulsed Electric Field on Arabinoxylan and Protein Recovery from Maize
by Ulrich Sukop, Katharina Hoefler, Denisse Bender, Stefano D’Amico, Mario Jekle, Regine Schoenlechner and Konrad J. Domig
Foods 2025, 14(5), 760; https://doi.org/10.3390/foods14050760 - 23 Feb 2025
Viewed by 942
Abstract
Maize wet fractionation by-products are primarily used as feed but offer potential for food applications. Arabinoxylans (AXs) and proteins are particularly valuable due to their network-forming properties, which depend on their molecular structure. This study assessed the effect of the steeping conditions (acid [...] Read more.
Maize wet fractionation by-products are primarily used as feed but offer potential for food applications. Arabinoxylans (AXs) and proteins are particularly valuable due to their network-forming properties, which depend on their molecular structure. This study assessed the effect of the steeping conditions (acid type and pH variation) combined with a pulsed electric field (PEF) as a strategy for recovering these polymers, while also evaluating their effect on the recovery yield, fraction composition, and key AX characteristics. The physical properties were studied in selected fractions to investigate the process-induced structural changes. Lactic acid and hydrochloric acid (pH 2.5) were most effective in enhancing AX and protein recovery in fiber-rich (FF) and protein-rich (PF) fractions, respectively, while acetic acid exhibited the lowest efficiency. However, bound polyphenols were best retained in the FF when lactic acid was used, indicating the lowest structural damage to AXs, compared to other acids and using a higher pH. Additional PEF pre-treatment significantly enhanced the release of proteins, dietary fiber, and fat from the FF while inducing physical modifications to the fractions (PF: higher protein unfolding, FF: improved water-binding, pasting when using PEF). These findings highlight the potential of optimizing the processing conditions to adjust the recovery of proteins and AXs from maize, while minimally affecting their functionality. Full article
Show Figures

Graphical abstract

14 pages, 1151 KiB  
Article
Hazelnut Skin Fortification of Dehulled Lentil Chips to Improve Nutritional, Antioxidant, Sensory, and Chemical Properties
by Lara Costantini, Maria Teresa Frangipane, Riccardo Massantini, Stefania Garzoli and Nicolò Merendino
Foods 2025, 14(4), 683; https://doi.org/10.3390/foods14040683 - 17 Feb 2025
Viewed by 754
Abstract
Legumes consumption is still low in Western countries, and their incorporation into bakery products could be a solution. However, a minimally processed legume-based product is still a challenge because of its negative impact on acceptance by consumers. Here, an oven-baked chip recipe, based [...] Read more.
Legumes consumption is still low in Western countries, and their incorporation into bakery products could be a solution. However, a minimally processed legume-based product is still a challenge because of its negative impact on acceptance by consumers. Here, an oven-baked chip recipe, based on lentil flour, was fortified with 5% hazelnut skin (HS), a byproduct of hazelnut industrial processing, to improve the nutritional, antioxidant, and sensory features of this innovative food. Indeed, HS addition allows a nutritional profile improvement, increasing the fibers from 11.71% to 15.63%, and maintaining a high protein content (24.03 g/100 g). Furthermore, HS fortification increased total phenolic compounds and total antioxidant capacity by 1.6- and 2-fold, respectively, compared to the control. Finally, HS significantly improved the overall judgment score by 1.2 points (from 5.6 to 6.8 in control and experimental chips, respectively) halving the pulse-like aroma from 8.6 to 4.3 due to the strong decrease in the dodecane compound and due to HS volatile composition, rich in hexanal. Therefore, HS could be a valuable ingredient in improving the nutritional and functional features of bakery products as well as the sensory profiles of less palatable but healthy legume-based foods. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 4042 KiB  
Article
Electrolysis of Liquefied Biomass for Sustainable Hydrogen and Organic Compound Production: A Biorefinery Approach
by Ana P. R. A. Ferreira, M. Margarida Mateus and Diogo M. F. Santos
Reactions 2025, 6(1), 10; https://doi.org/10.3390/reactions6010010 - 2 Feb 2025
Viewed by 1100
Abstract
Liquefaction is an effective thermochemical process for converting lignocellulosic biomass into bio-oil, a hydrocarbon-rich resource. This study explores liquefied biomass electrolysis as a novel method to promote the electrocracking of organic molecules into value-added compounds while simultaneously producing hydrogen (H2). Key [...] Read more.
Liquefaction is an effective thermochemical process for converting lignocellulosic biomass into bio-oil, a hydrocarbon-rich resource. This study explores liquefied biomass electrolysis as a novel method to promote the electrocracking of organic molecules into value-added compounds while simultaneously producing hydrogen (H2). Key innovations include utilizing water from the liquefaction process as an electrolyte component to minimize industrial waste and incorporating carbon dioxide (CO2) into the process to enhance decarbonization efforts and generate valuable byproducts. The electrolysis process was optimized by adding 2 M KOH, and voltammetric methods were employed to analyze the resulting emulsion. The experimental conditions, such as the temperature, anode material, current type, applied cell voltage, and CO2 bubbling, were systematically evaluated. Direct current electrolysis at 70 °C using nickel electrodes produced 55 mL of H2 gas with the highest Faradaic (43%) and energetic (39%) efficiency. On the other hand, pulsed electrolysis at room temperature generated a higher H2 gas volume (102 mL) but was less efficient, showing 30% Faradaic and 11% energetic efficiency. FTIR analysis revealed no significant functional group changes in the electrolyte post-electrolysis. Additionally, the solid deposits formed at the anode had an ash content of 36%. This work demonstrates that electrocracking bio-oil is a clean, sustainable approach to H2 production and the synthesis of valuable organic compounds, offering significant potential for biorefinery applications. Full article
Show Figures

Figure 1

30 pages, 6583 KiB  
Article
A Comprehensive Analysis of Non-Thermal Ultrasonic-Assisted Extraction of Bioactive Compounds from Citrus Peel Waste Through a One-Factor-at-a-Time Approach
by Matthew A. Xuereb, Georgios Psakis, Karen Attard, Frederick Lia and Ruben Gatt
Molecules 2025, 30(3), 648; https://doi.org/10.3390/molecules30030648 - 1 Feb 2025
Viewed by 1426
Abstract
Food waste presents a critical environmental and economic challenge across Europe. In the Mediterranean region, the agricultural industry generates considerable quantities of citrus fruits, leading to significant byproduct waste, which remains underutilized. To help address this, this study explored the valorization of orange [...] Read more.
Food waste presents a critical environmental and economic challenge across Europe. In the Mediterranean region, the agricultural industry generates considerable quantities of citrus fruits, leading to significant byproduct waste, which remains underutilized. To help address this, this study explored the valorization of orange peel waste using non-thermal ultrasonic-assisted extraction (UAE) and a one-factor-at-a-time experimental design to investigate the effects of nine chemical and physical UAE parameters. The goal was to identify ideal operational ranges for each parameter using several responses (bioactive compound recovery, antioxidant activity, and radical scavenging activity), thus elucidating the most influential UAE factors and their role in co-extracting various classes of natural compounds. The key findings revealed that the polarity and ionic potential of the extraction medium, tuned through ethanol:water or pH, significantly influenced both the chemical profile and bioactivity of the extracts. Notably, citric acid and citrates appeared to stabilize co-extracted compounds. Lower solid-to-liquid ratios increased yields, while particle sizes between 1400 and 710 µm enhanced phenolic recovery by approximately 150 mg/L GAE. In contrast, increases in pulse, probe diameter, immersion depth, and extraction time led to degradation of bioactive compounds, whereas the maximal amplitude improved phenolic acid recovery by up to 2-fold. Collectively, these insights provide a foundation for optimizing non-thermal UAE to valorize orange peel waste. Full article
(This article belongs to the Special Issue Chemical Analysis of Functional Foods)
Show Figures

Figure 1

25 pages, 789 KiB  
Review
Promoting the Emerging Role of Pulse By-Products as Valuable Sources of Functional Compounds and Novel Food Ingredients
by Antonella Lamonaca, Elisabetta De Angelis, Linda Monaci and Rosa Pilolli
Foods 2025, 14(3), 424; https://doi.org/10.3390/foods14030424 - 28 Jan 2025
Cited by 1 | Viewed by 1785
Abstract
The growth of the human population worldwide has increased food demand, generating the massive production of foods and consequently causing enormous production of waste every year. The indiscriminate exploitation of the already limited natural resources has also generated serious environmental and economic crises. [...] Read more.
The growth of the human population worldwide has increased food demand, generating the massive production of foods and consequently causing enormous production of waste every year. The indiscriminate exploitation of the already limited natural resources has also generated serious environmental and economic crises. The use, or reuse, of waste or by-products represents a viable solution to constrain the problem by promoting alternative routes of exploitation with multiple food and biotechnological applications. This review focuses on the most recent advances in the valorization of food by-products, with specific reference to legume-derived by-products. The main technological solutions for reintroducing and/or valorizing food waste are reported together with a critical discussion of the main pros and cons of each alternative, supported by practical case studies whenever available. First, the possibility to exploit the by-products as valuable sources of functional compounds is presented by reviewing both conventional and innovative extraction techniques tailored to provide functional extracts with multiple food, pharmaceutical, and biotechnological applications. Second, the possibility to valorize the by-products as novel food ingredients by inclusion in different formulations, either as a whole or as hydrolyzed/fermented derivatives, is also presented and discussed. To the best of our knowledge, several of the technological solutions discussed have found only limited applications for waste or by-products derived from the legume production chain; therefore, great efforts are still required to gain the full advantages of the intrinsic potential of pulse by-products. Full article
(This article belongs to the Special Issue Food Ingredients from Food Wastes and By-Products)
Show Figures

Figure 1

Back to TopTop