Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = pulpwood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9597 KiB  
Article
Genomic Analysis Reveals the Fast-Growing Trait and Improvement Potential for Stress Resistance in the Elite Poplar Variety Populus × euramericana ‘Bofeng 3’
by Shanchen Zhong, Weixi Zhang, Changjun Ding, Zhengsai Yuan, Le Shen, Bingyu Zhang, Yanguang Chu and Xiaohua Su
Int. J. Mol. Sci. 2025, 26(12), 5526; https://doi.org/10.3390/ijms26125526 - 9 Jun 2025
Viewed by 405
Abstract
Enhancing stress tolerance represents a critical objective in the genetic improvement of poplar trees. Populus × euramericana ‘Bofeng 3’ is a nationally certified elite poplar variety that was approved as a premium pulpwood variety for the southern area of Northeastern China. This variety [...] Read more.
Enhancing stress tolerance represents a critical objective in the genetic improvement of poplar trees. Populus × euramericana ‘Bofeng 3’ is a nationally certified elite poplar variety that was approved as a premium pulpwood variety for the southern area of Northeastern China. This variety grows quickly, has good yield, and resists frost; however, its weaker drought and salt tolerance limits its broader use in diverse environments. The aim of this study is to understand the genetic basis of the fast growth and stress-adaptation traits of this variety and to provide support for future molecular breeding efforts. We present a chromosome-scale genome assembly of Populus × euramericana ‘Bofeng 3’, totaling 445.53 Mb, of which with 90.39% is anchored to 19 chromosomes, containing 33,309 protein-coding genes and 45.36% repetitive elements. Comparative genomics showed that ‘Bofeng 3’ has expanded gene families related to photosynthesis and metabolism, and contracted families involved in stress responses, distinguishing it from other Populus species. Under drought (9137 leaf, 9403 root differentially expressed genes (DEGs)) and salt stress (2840 leaf, 3807 root DEGs), trend analysis revealed specific expression patterns. Several unique and expanded genes, including those for photosynthetic proteins, peroxidases, gamma-aminobutyric acid metabolism, and disease resistance, showed stress-responsive trends. Weighted gene co-expression network analysis identified five modules (three positive, two negative) that significantly correlated with photosynthetic traits, highlighting key candidates such as bZIP transcription factors and auxin/indole acetic acid genes. This study determined the genetic basis underlying the rapid growth traits of Populus × euramericana ‘Bofeng 3’, while providing genomic resources to establish a robust foundation for future gene editing and molecular breeding studies, including critical candidate genetic resources for developing superior drought- and salt-tolerant poplar varieties via targeted genome editing technologies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 1726 KiB  
Article
Analysis of Operational Performance and Costs of Log Loaders Under Different Conditions
by Cássio Furtado Lima, Leonardo França da Silva, Cristiano Márcio Alves de Souza, Francisco de Assis Costa Ferreira, Luciano José Minette, Fernando Mateus Paniagua Mendieta, Roldão Carlos Andrade Lima, Luís Carlos de Freitas, Jéssica Karina Mesquita Vieira, Victor Crespo de Oliveira, Bruno Leão Said Schettini and Arthur Araújo Silva
Forests 2025, 16(6), 913; https://doi.org/10.3390/f16060913 - 29 May 2025
Viewed by 587
Abstract
The Brazilian forestry sector comprises 9.94 million hectares of plantations, with eucalyptus dominating 75% of this area for pulp production. Technological advances have enhanced machinery performance, with the cut-to-length system being the primary method for pulpwood production. This study aimed to optimize the [...] Read more.
The Brazilian forestry sector comprises 9.94 million hectares of plantations, with eucalyptus dominating 75% of this area for pulp production. Technological advances have enhanced machinery performance, with the cut-to-length system being the primary method for pulpwood production. This study aimed to optimize the operational cycle of the log loader by evaluating productivity, operational cycles, and loading costs. Data were collected in Bahia, northeastern Brazil, from a forestry company operating under varying productivity scenarios and forest rotations. Time and motion studies were conducted to assess the log loader’s cycles, while productivity and cost analyses were performed. The results indicated that predictive models effectively explained productivity variations. The log loader’s productivity increased with the average volume per tree (AVT) and decreased with the number of movements, which consumed 68% of the cycle time due to wood adjustment and stack organization. Stages such as personal breaks, truck movements, crane adjustments, and cleaning of fallen material showed no significant statistical differences. Loading costs rose by up to 154% with increased movements and decreased with a higher AVT. Additionally, loading tri-train trucks significantly influenced transportation efficiency, emphasizing the importance of optimizing the log loader’s cycle to balance costs and enhance transportation operations. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

15 pages, 2295 KiB  
Article
Parameters of Medium-Size Wood Deliveries Depending on the Season, Moisture Content and Assortment of the Load
by Grzegorz Trzciński and Łukasz Tymendorf
Forests 2025, 16(6), 897; https://doi.org/10.3390/f16060897 - 27 May 2025
Viewed by 302
Abstract
In the years 2022 to 2023, the harvesting of medium-sized round wood by the State Forests Service in Poland was estimated at between 22.2 and 23.6 million solid cubic meters per year. This is a significant amount of timber to be transported by [...] Read more.
In the years 2022 to 2023, the harvesting of medium-sized round wood by the State Forests Service in Poland was estimated at between 22.2 and 23.6 million solid cubic meters per year. This is a significant amount of timber to be transported by road. It is a challenge for both transport companies and round wood buyers. The high variability of wood density depending on the species in combination with its moisture content is a significant issue in logistics operations. This study focuses on the influence of the absolute moisture content on selected parameters of wood deliveries, taking into account the differences in the seasons. The total weight of a transport set (GVW) and empty set (Tare) and the weight of the load (Net) were determined on the basis of weighing the transports on stationary scales at the recipient. The moisture content of each wood load was determined using the dryer-weigher method for sawdust taken from the cutting of several logs from the delivery. This study analyzed a total of 13,602 transports of ten tree species and two wood assortments of pulpwood (S2a) and industrial wood (S2ap) in four seasons in the years 2020–2022. Pine was the dominant species in 5352 deliveries, and spruce was the dominant species in 3161. In terms of seasons, 3983 transports were recorded in the summer, 3650 were recorded in the spring, and 3492 were recorded in the autumn. The lowest number of 2475 was in winter. The mean volume of delivered wood (from 13,602 transports) was 28.18 m3, with a range of results from 19.00 to 51.29 m3 and SD = 2.40. The mean weight of the shipment was 24.95 Mg, with SD = 3.36. The range was from 13.92 Mg to 38.20 Mg. The mean absolute moisture content (AMC) of all wood loads (regardless of species and quality) was 42.91%. The results varied significantly (SD = 6.41). The minimum value was 15.64%, and the maximum value was 66.79%. The absolute moisture content of round wood is related to the season, species and assortment of transported wood. Loads of hardwood have lower average solid cubic meter values than softwood. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

14 pages, 4223 KiB  
Article
Transcriptome Analysis Provides Insights into Lignin Biosynthesis in Styrax tonkinensis Branches
by Chao Han, Qiunuan Xu, Hong Chen, Huiwu Peng and Fangyuan Yu
Forests 2024, 15(4), 601; https://doi.org/10.3390/f15040601 - 26 Mar 2024
Cited by 1 | Viewed by 1551
Abstract
Approximately 12% of China’s papermaking raw materials are derived from wood, while the majority are sourced from branches. Styrax tonkinensis is a more desirable species for pulpwood in subtropical ultra-short rotations, whose branches are prone to breakage. Lignin has a significant impact on [...] Read more.
Approximately 12% of China’s papermaking raw materials are derived from wood, while the majority are sourced from branches. Styrax tonkinensis is a more desirable species for pulpwood in subtropical ultra-short rotations, whose branches are prone to breakage. Lignin has a significant impact on wood quality and pulping yield, and the growth process influences lignin biosynthesis. To explore the lignin biosynthesis pathway in S. tonkinensis, we determined the lignin content in the current-year and biennial branches on 20 July, 20 September, and 20 October and analyzed the transcriptome sequencing results. It was concluded that the lignin content showed an increasing trend in the current-year branches (182.26, 206.17, and 213.47 mg/g, respectively), while that in the biennial branches showed a decrease in the samples taken in October, without significant difference (221.77, 264.43, and 261.83 mg/g, respectively). The transcriptome sequencing results showed that 91,513 unigenes were spliced with a total length of 92,961,618 bp. KEGG pathway analysis indicated that the upregulated DEGs were mainly enriched in the phenylpropanoid biosynthesis pathway. Our study suggested that CCoAOMT, COMT, peroxidase, and F5H may serve as key enzymes regulating lignin synthesis in branches of S. tonkinensis, thereby influencing the lignin content. Full article
(This article belongs to the Special Issue Advances in Wood Chemical Traits)
Show Figures

Figure 1

19 pages, 3126 KiB  
Article
Soil Erosion Characteristics in Tropical Island Watersheds Based on CSLE Model: Discussion of Driving Mechanisms
by Yi Zou, Yimei Wang, Yanhu He, Lirong Zhu, Shiyu Xue, Xu Liang and Changqing Ye
Land 2024, 13(3), 302; https://doi.org/10.3390/land13030302 - 28 Feb 2024
Cited by 5 | Viewed by 2024
Abstract
Previous research has primarily focused on soil erosion issues in arid and semi-arid regions, with a limited understanding of soil erosion mechanisms in tropical areas. Additionally, there is a lack of a holistic perspective to determine the spatial attribution of soil erosion. The [...] Read more.
Previous research has primarily focused on soil erosion issues in arid and semi-arid regions, with a limited understanding of soil erosion mechanisms in tropical areas. Additionally, there is a lack of a holistic perspective to determine the spatial attribution of soil erosion. The conversion of tropical rainforests into economically driven plantations, like rubber and pulpwood, has resulted in distinct soil erosion characteristics in specific regions. To enhance our knowledge of soil erosion patterns and mechanisms in tropical regions, it is necessary to examine soil erosion in the three major watersheds of Hainan Island from 1991 to 2021, which encompass significant geographical features such as tropical island water sources and tropical rainforest national parks. The study employed the China Soil Loss Equation (CSLE) model, slope trend analysis, Pearson correlation analysis, land-use transfer matrix, and spatial attribution analysis to examine soil erosion under different scenarios. The research results indicate that scenarios driven by the combination of natural and human factors have the greatest impact on soil erosion changes in the entire study area. Co-driven increases affected 53.56% of the area, while co-driven decreases affected 21.74%. The 31-year soil erosion showed an overall increasing trend. Human factors were identified as the primary drivers of increased soil erosion in the Nandu River basin, while a combination of climate and anthropogenic factors influenced the decrease in soil erosion. In the Changhua River basin, climate and human activities contributed to the soil erosion increase, while human activities primarily caused the decrease in soil erosion. In the Wanquan River basin, climate intensified soil erosion, whereas human activities mitigated it. This study underscores the significant combined impact of human activities and natural factors on soil erosion in tropical regions. It emphasizes the importance of considering human-induced factors when implementing soil erosion control measures in tropical regions. Full article
Show Figures

Figure 1

19 pages, 2579 KiB  
Article
Biomass Price Prediction Based on the Example of Poland
by Aleksandra Górna, Marek Wieruszewski, Alicja Szabelska-Beręsewicz, Zygmunt Stanula and Krzysztof Adamowicz
Forests 2022, 13(12), 2179; https://doi.org/10.3390/f13122179 - 19 Dec 2022
Cited by 12 | Viewed by 2651
Abstract
The aim of the study was to test the applicability of forecasting in the analysis of the variability of prices and supply of wood in Poland. It relies on the autoregressive integrated model (ARIMA) that takes into account the level of cyclic, seasonal, [...] Read more.
The aim of the study was to test the applicability of forecasting in the analysis of the variability of prices and supply of wood in Poland. It relies on the autoregressive integrated model (ARIMA) that takes into account the level of cyclic, seasonal, and irregular fluctuations and the long-term trend as tools for the assessment of the predictions of the prices of selected medium-sized wood assortments. Elements of the time series were determined taking into account the cyclical character of the quarterly distribution. The data included quarterly information about the supply (amount) and prices (value) of wood sold by state forests in the years 2018–2022. The analysis was conducted for the most popular assortments: logging slash (M2, M2ZE), firewood S4, and medium-sized wood S2AP. In the period studied (years 2018–2022), the average rate of price variation was widely scattered. The average rate of price variation for the M2ZE assortment amounted to 7%. The average rate for M2 assortment was 1%, while the medium-sized S2AP assortment displayed the greatest variation of 99%. This means that between 2018 and the present, the price increased by nearly 100%. No major fluctuations were observed for the S4 assortment and its average rate of variation amounted to 0%. The analysis found seasonal variation was observed only for S4 firewood, the price of which went up each year in October, November, and December. For this reason, the forecast was made with the seasonal autoregressive integrated moving average (SARIMA) version of the model. It is difficult to forecast the price of wood due to variations in the market and the impact of global factors related to fluctuations in supply. Full article
(This article belongs to the Special Issue Forest Assessment, Modelling and Management in a Changing World)
Show Figures

Figure 1

18 pages, 5403 KiB  
Article
Assessing Changes in Pulpwood Procurement Cost Relative to the Gradual Adoption of Longleaf Pine at the Landscape Level: A Case Study from Georgia, United States
by Karuna Paudel and Puneet Dwivedi
Forests 2022, 13(7), 1112; https://doi.org/10.3390/f13071112 - 15 Jul 2022
Cited by 1 | Viewed by 2176
Abstract
Longleaf pine once covered 37 million hectares in the southern United States. However, it currently occupies only 5% of the original area. Efforts have been ongoing for the last decade to restore longleaf pine. The expected expansion in the area under longleaf pine [...] Read more.
Longleaf pine once covered 37 million hectares in the southern United States. However, it currently occupies only 5% of the original area. Efforts have been ongoing for the last decade to restore longleaf pine. The expected expansion in the area under longleaf pine has raised concern among wood-consuming mills regarding a potential increase in the total wood procurement cost, as wood availability per unit of land is typically lower for longleaf than for loblolly and slash pines for the first few decades. Therefore, a simulation model was developed in this study, examining the impact of the gradual adoption of longleaf pine by landowners on the total wood procurement cost of a pulp mill located in South Georgia over a 40-year simulation period. Results show no statistically significant difference between scenarios for maximum distance, total cost, and total distance over the simulation period. Our study will guide stakeholder groups to balance the needs for longleaf pine restoration and the reduced cost of wood procurement for wood-consuming mills. Full article
(This article belongs to the Special Issue Forest-Based Bioenergy and Bioeconomy)
Show Figures

Figure 1

17 pages, 2578 KiB  
Article
Between Biodiversity Conservation and the Supply for Broadleaved Wood: A Case Study of State Forests National Forest Holding (Poland)
by Emilia Wysocka-Fijorek, Piotr Gołos and Krzysztof Janeczko
Forests 2022, 13(3), 438; https://doi.org/10.3390/f13030438 - 10 Mar 2022
Cited by 2 | Viewed by 2136
Abstract
Climate change is an important issue that increasingly affects our lives. One of the proposals for mitigating climate change is fighting biodiversity loss, which can support climate mitigation and adaptation actions. In Poland, the possibility of excluding large tracts of forest areas from [...] Read more.
Climate change is an important issue that increasingly affects our lives. One of the proposals for mitigating climate change is fighting biodiversity loss, which can support climate mitigation and adaptation actions. In Poland, the possibility of excluding large tracts of forest areas from use is being considered. The discussed the exclusion of forest land from use will affect the timber supply and market, especially for broadleaved wood. The main purpose of this analysis is to present a timber supply forecast, with a particular focus on the possibility of obtaining broadleaved hardwood timber in Poland from forests managed by State Forests National Forest Holding under three scenarios that assume different criteria for selecting forest areas for protection. The work was divided into two main phases: (1) the analysis of historical sales volume of wood products and average sale prices of hardwood during the period 2011–2020; (2) the preparation of a forecast of the potential possibility of maintaining broadleaved hardwood production in the three decades between 2020 and 2049. In the forecast, it was assumed that about 2.7 million hectares of planted and production forests are excluded from use in order to implement the provisions of the 2030 Biodiversity Strategy. In Scenario “I”, the supply of merchantable broadleaved roundwood volume will be reduced to 14%–18% that of Scenario “0”. In Scenario “II”, 55% of the “0” scenario is harvested, and in Scenario “III”, 33%–37% of the “0” scenario merchantable broadleaved roundwood is harvested. The introduction of restrictions on timber harvesting as a result of Poland’s compliance with European Union requirements in the area of environmental protection will lead to a significant reduction in the supply of timber on the market. This may lead to a further increase in timber prices and an increase in the importance of large timber buyers at the expense of local buyers. The recommendations contained in the policy objectives that the EU sets for the states should be supported by a thorough analysis when selecting areas for strict protection. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 2549 KiB  
Article
Evaluation of Pulp and Papermaking Properties of Melia azedarach
by Megersa Bedo Megra, Rakesh Kumar Bachheti, Mesfin Getachew Tadesse and Limenew Abate Worku
Forests 2022, 13(2), 263; https://doi.org/10.3390/f13020263 - 8 Feb 2022
Cited by 17 | Viewed by 4520
Abstract
As the world’s population rises, there is a greater need for additional pulpwood for paper production worldwide. Therefore, this research aimed to evaluate the pulp and papermaking characteristics of Melia azedarach. Proximate chemical analysis, fiber morphology, pulping, bleaching, and physical tests were [...] Read more.
As the world’s population rises, there is a greater need for additional pulpwood for paper production worldwide. Therefore, this research aimed to evaluate the pulp and papermaking characteristics of Melia azedarach. Proximate chemical analysis, fiber morphology, pulping, bleaching, and physical tests were carried out to check the suitability of raw material. The proximate chemical analysis results showed that M. azedarach has a holocellulose content of 72.95% and a lignin content of 22.14%. Fiber morphology assessment revealed that the fibers were 0.571 mm long, 13.45 μm wide, and had a 2.52 μm cell wall thickness. Kraft pulping of M. azedarach was performed at different active alkali contents (5%, 10%, 15%, 20%, and 25%) and temperatures (150 °C, 160 °C, 170 °C, 180 °C, and 190 °C), keeping the sulfidity constant at 25%. The maximum pulp yield was 41.81% at an active alkali content of 15%, a temperature of 170 °C, and a cooking time of 90 min. The effect of pulping on the fiber morphology was studied using scanning electron microscopy, which showed that the fiber’s surface before pulping was tight and arranged in an orderly way, with a relatively complex texture. After pulping, lignin, hemicellulose, and cellulose were removed, and the fiber became softer and more loosened, containing micropores. The pulp produced was bleached, and sheet preparation and testing were performed. The prepared paper sheets had a tensile index of 23.3 Nm/g, a burst index of 1.4 kPa m2/g, and a tear index of 4.0 mN m2/g. This study concluded that M. azedarach could be a raw material for the pulp and papermaking industries. The results indicated that M. azedarach is also a potential alternative resource for pulp and paper production in Ethiopia. Full article
(This article belongs to the Special Issue Forests Sustainable Application: Production of Pulp and Paper)
Show Figures

Graphical abstract

15 pages, 2001 KiB  
Article
A Long-Term Follow-Up Study of Slash Bundling in Fast-Growing Eucalypt Plantations
by Raffaele Spinelli, Natascia Magagnotti, Alberto Assirelli, João Pedro Martins and Matevž Mihelič
Forests 2021, 12(11), 1548; https://doi.org/10.3390/f12111548 - 9 Nov 2021
Cited by 5 | Viewed by 1995
Abstract
The Authors conducted a long-term follow-up study of a John Deere 1490 forwarder-mounted bundler owned by a Portuguese company and used for bundling logging residues from fast-growing eucalypt plantations located in Portugal and Spain. The study spanned 7 years, from 2011 to 2016. [...] Read more.
The Authors conducted a long-term follow-up study of a John Deere 1490 forwarder-mounted bundler owned by a Portuguese company and used for bundling logging residues from fast-growing eucalypt plantations located in Portugal and Spain. The study spanned 7 years, from 2011 to 2016. During this time, the machine clocked over 11,500 h and produced more than 200,000 bundles or 75,000 green tons of biomass. Bundle length was commonly 2.4 m, and bundle mass averaged 350 kg. Overall, the database contained 1752 daily records. Bundling productivity averaged 19 bundles per productive machine hour (meter hour, excluding all major delays). Mechanical availability was very high and averaged 93%. Utilization commonly ranged between 65% and 75%. Use and productivity showed a predictable seasonal trend and a slight decline over time. The latter might be due to wear, but also due to the increasingly challenging conditions faced by the company as the average worksite size sharply decreased from 2011 onwards. While almost extinct elsewhere, bundling seems to thrive in the Iberian plantations, possibly due to the industrial character of both eucalypt farming and bioenergy generation in the region. That allows the reaping of all integration benefits offered by bundling, while the cost of setting up a parallel biomass chain is minimized. Furthermore, bundling seems the ideal technique for efficient residue recovery where slash yields are low and roadside storage space is limited: these are the typical constraints of industrial eucalypt plantations, where planted area is maximized (=little landing space) and the largest possible proportion of the tree mass is turned into pulpwood (=relatively low residue yield). Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

15 pages, 2181 KiB  
Article
Profitability of the First Commercial Thinning, a Simulation Study in Northern Finland
by Anssi Ahtikoski, Juha Laitila, Anu Hilli and Marja-Leena Päätalo
Forests 2021, 12(10), 1389; https://doi.org/10.3390/f12101389 - 12 Oct 2021
Cited by 8 | Viewed by 2374
Abstract
Despite positive signals from increasing growing stock volumes and improved roundwood trade, first commercial thinnings (FCTs) tend to be a bottleneck in Finnish forest management and forestry. The reasons are many, but probably the most crucial would be the lack of simultaneous economic [...] Read more.
Despite positive signals from increasing growing stock volumes and improved roundwood trade, first commercial thinnings (FCTs) tend to be a bottleneck in Finnish forest management and forestry. The reasons are many, but probably the most crucial would be the lack of simultaneous economic incentives for participating agents, i.e., private forest owners and forest machine contractors. This is due to poor stand characteristics in most FCT cases: low cutting removal with small average stem size. There are five predetermined management options: (1) Industrial wood thinning with only two timber assortments, pulpwood and saw logs, (2) Integrated procurement of industrial and energy wood, (3) Energy wood thinning solely consisting of delimbed stems, (4) Whole-tree energy wood thinning with an energy price of 3 € m−3 and (5) Whole-tree energy wood thinning with energy price of 8 € m−3, that were applied for six separate forest stands located in Northern Finland, and derived from a database representing stands with an urgent need for FCT. Then, a two-phase financial analysis consisting of stand-level optimization (private forest owners) and profitability assessment (contractor) was conducted in order to find out whether there would be simultaneous economic incentives for both participants of FCT. The stand-level optimization revealed the financially best management options for a private forest owner, and then, for a contractor, the profitability assessment exposed the profit (or loss) associated with the particular management option. In brief, our results demonstrated that conducting either an industrial wood thinning (1) or an integrated procurement (2) resulted in a positive economic incentive for both the private forest owner and the contractor in all six cases (stands). Further, applying energy wood thinning with delimbed stems (3) would even generate a financial loss for the contractor, given the roadside prices applied in this study. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

21 pages, 2869 KiB  
Article
Sustainable Circular Bioeconomy—Feasibility of Recycled Nutrients for Biomass Production within a Pulp and Paper Integration in Indonesia, Southeast Asia
by Mirja Mikkilä, Papitchaya Utanun, Jukka Luhas, Mika Horttanainen and Lassi Linnanen
Sustainability 2021, 13(18), 10169; https://doi.org/10.3390/su131810169 - 10 Sep 2021
Cited by 9 | Viewed by 2957
Abstract
Sustainable biomass production based on efficient carbon and nutrient recycling is crucial in materially efficient, sustainable biobased production. A circular bioeconomy model of the replacement of mineral fertilizers with recycled nutrients from pulp and paper mill sludge is tested here within a hypothetical [...] Read more.
Sustainable biomass production based on efficient carbon and nutrient recycling is crucial in materially efficient, sustainable biobased production. A circular bioeconomy model of the replacement of mineral fertilizers with recycled nutrients from pulp and paper mill sludge is tested here within a hypothetical case from Indonesia, Southeast Asia. First, the financial feasibility of the use of recycled nutrients originating from pulp and paper processes was analyzed in fast-growing pulpwood production. Secondly, the comprehensive social and environmental benefits of the practice were analyzed through qualitative sustainability analysis. The availability of the basic material of all required parameters referring to Indonesia limited the analysis period to be from 1996 to 2013. The establishment costs of a pulpwood plantation were adjusted according to a reference study, while the other data were compiled from various sources. The financial profitability of the circular model was analysed by using two indicators, net present value (NPV) and internal rate on return (IRR). The application of sludge-based recycled nutrients slightly increased the establishment costs in some circumstances but had no direct impact on the financial profitability, as the financial profitability was not sensitive to the establishment costs. The results showed that the financial profitability of biomass production is not sensitive to the plantation establishment and management costs. The profitability depends on the mean annual increment and product price. The qualitative analysis showed a holistic value of the practice that goes beyond the direct benefits. The use of sludge-based recycled nutrients in the production of pulpwood closed the economic loop, which is illustrative of the circular bioeconomy within the integrated pulp and paper sector including the raw material source, forest plantation. Full article
(This article belongs to the Special Issue Sustainable Transition towards Forest-Based Bioeconomy)
Show Figures

Figure 1

16 pages, 2225 KiB  
Article
Integrating Detailed Timber Assortments into Airborne Laser Scanning (ALS)-Based Assessments of Logging Recoveries
by Blanca Sanz, Jukka Malinen, Sanna Sirparanta, Jussi Peuhkurinen, Vesa Leppänen, Timo Melkas, Kirsi Riekki, Tuomo Kauranne, Mikko Vastaranta and Timo Tokola
Forests 2021, 12(9), 1221; https://doi.org/10.3390/f12091221 - 8 Sep 2021
Cited by 3 | Viewed by 2526
Abstract
The methodology presented here can assist in making timber markets more efficient when assessing the value of harvestable timber stands and the amounts of timber assortments during the planning of harvesting operations. Information on wood quality and timber assortments is essential for wood [...] Read more.
The methodology presented here can assist in making timber markets more efficient when assessing the value of harvestable timber stands and the amounts of timber assortments during the planning of harvesting operations. Information on wood quality and timber assortments is essential for wood valuation and procurement planning as varying wood dimensions and qualities may be utilized and refined in different places, including sawmills, plywood mills, pulp mills, heating plants or combined heat and power plants. We investigate here alternative approaches for generating detailed timber assortments for Norway spruce (Picea abies (L.) H.Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula spp.) from airborne laser scanning (ALS) data, aerial images, harvester data and field data. For this purpose, we used 665 circular plots, and logging recovery information recorded from 249 clear-cut stands using cut-to-length harvesters. We estimated timber assortment volumes, economic values and wood paying capabilities (WPC) for each stand in different bucking scenarios, and used the resulting timber assortment estimates to assess logging recoveries. The bucking scenarios were (1) bucking-to-value using maximum sawlog and pulpwood volumes excluding quality (theoretical maximum), and (2) bucking-to-value using sawlog lengths at 30 cm intervals for Norway spruce and Scots pine and veneer logs of lengths 4.7 m, 5.0 m, 6.0 m and 6.7 m for birch, either excluding quality (the usual business practice) or including quality (a novel business practice). The results showed that our procedure can assist in locating stands that are likely to be more valuable and have the desired timber assortment distributions. We conclude that the method can estimate WPC with root mean square errors of 28.7%, 66.0% and 45.7% in Norway spruce, Scots pine and birch, respectively, for sawlogs and 19.3%, 63.7% and 29.5% for pulpwood. Full article
Show Figures

Figure 1

11 pages, 1276 KiB  
Article
Analysing the Impact of Harvesting Methods on the Quantity of Harvesting Residues: An Australian Case Study
by Mohammad Reza Ghaffariyan and Eloïse Dupuis
Forests 2021, 12(9), 1212; https://doi.org/10.3390/f12091212 - 6 Sep 2021
Cited by 8 | Viewed by 2481
Abstract
Many parameters can influence the weight of harvesting residues per hectare that remain on plantation sites after extracting sawlogs and pulpwoods. This study aimed at quantifying the impact of the cut-to-length and whole-tree harvesting methods on the weight of harvesting residues using 26 [...] Read more.
Many parameters can influence the weight of harvesting residues per hectare that remain on plantation sites after extracting sawlogs and pulpwoods. This study aimed at quantifying the impact of the cut-to-length and whole-tree harvesting methods on the weight of harvesting residues using 26 case studies in Australian plantations. A database was created using case studies conducted in different plantations, to measure the weight of harvesting residues per hectare and the components of harvesting residues. An analysis of variance was applied to test the impact made by the harvesting methods. The results confirmed that the cut-to-length harvesting method produced a larger weight of residues (104.0 tonnes of wet matter per hectare (tWM/ha) without additional biomass recovery and 64.7 tWM/ha with additional biomass recovery after sawlog/pulpwood extraction) than the whole-tree harvesting method (12.5 tWM/ha). The fraction test showed that stem wood formed the largest proportion of the harvesting residues in cut-to-length sites and needles were the largest component of the pine harvesting residues in sites cleared by the whole-tree harvesting method. The outcomes of this study could assist plantation managers to set proper strategies for harvesting residues management. Future research could study the impact of product type, silvicultural regime, stand quality, age, equipment, etc., on the weight of harvesting residues. Full article
(This article belongs to the Special Issue Sustainability Assessments and Management of Woody Waste)
Show Figures

Figure 1

15 pages, 8518 KiB  
Article
Mapping and Monitoring the Canopy Cover and Greenness of Southern Yellow Pines (Loblolly, Shortleaf, and Virginia Pines) in Central-Eastern Tennessee Using Multi-Temporal Landsat Satellite Data
by Clement Akumu, Raphael Smith and Solomon Haile
Forests 2021, 12(4), 499; https://doi.org/10.3390/f12040499 - 16 Apr 2021
Cited by 1 | Viewed by 2603
Abstract
Southern yellow pines such as loblolly, Virginia and shortleaf pines constitute forest products and contribute significantly to the economy of the United States (U.S.). However, little is understood about the temporal change in canopy cover and greenness of southern yellow pines, especially in [...] Read more.
Southern yellow pines such as loblolly, Virginia and shortleaf pines constitute forest products and contribute significantly to the economy of the United States (U.S.). However, little is understood about the temporal change in canopy cover and greenness of southern yellow pines, especially in Tennessee where they are used for timber and pulpwood. This study aims to map and monitor the canopy cover and greenness of southern yellow pines i.e., loblolly (Pinus taeda), shortleaf (Pinus echinata), and Virginia (Pinus Virginiana) pines in the years 1988, 1999 and 2016 in central-eastern Tennessee. Landsat time-series satellite data acquired in December 1988, November 1999 and February 2016 were used to map and monitor the canopy cover and greenness of loblolly, shortleaf and Virginia pines. The classification and mapping of the canopy cover of southern yellow pines were performed using a machine-learning random forest classification algorithm. Normalized Difference Vegetation Index (NDVI) was used to monitor the temporal variation in canopy greenness. In total, the canopy cover of southern yellow pines decreased by about 35% between December 1988 and February 2016. This information could be used by foresters and forest managers to support forest inventory and management. Full article
(This article belongs to the Special Issue Applications of Satellite Data for Forest Monitoring and Management)
Show Figures

Figure 1

Back to TopTop