Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = pulp therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3724 KiB  
Article
An Injectable, Dual-Curing Hydrogel for Controlled Bioactive Release in Regenerative Endodontics
by Meisam Omidi, Daniela S. Masson-Meyers and Jeffrey M. Toth
J. Compos. Sci. 2025, 9(8), 424; https://doi.org/10.3390/jcs9080424 - 7 Aug 2025
Abstract
Regenerative endodontics seeks to restore the vascularized pulp–dentin complex following conventional root canal therapy, yet reliable neovascularization within the constrained root canal remains a key challenge. This study investigates the development of an injectable, dual-curing hydrogel based on methacrylated decellularized amniotic membrane (dAM-MA) [...] Read more.
Regenerative endodontics seeks to restore the vascularized pulp–dentin complex following conventional root canal therapy, yet reliable neovascularization within the constrained root canal remains a key challenge. This study investigates the development of an injectable, dual-curing hydrogel based on methacrylated decellularized amniotic membrane (dAM-MA) and compares its performance to a conventional gelatin methacryloyl (GelMA). The dAM-MA platform was designed for biphasic release, incorporating both free vascular endothelial growth factor (VEGF) for an initial burst and matrix-metalloproteinase-cleavable VEGF conjugates for sustained delivery. The dAM-MA hydrogel achieved shape-fidelity via thermal gelation at 37 °C and possessed tunable stiffness (0.5–7.8 kPa) after visible-light irradiation. While showing high cytocompatibility comparable to GelMA (>125% hDPSC viability), the dAM-MA platform markedly outperformed the control in promoting endothelial tube formation (up to 800 µm total length; 42 branch points at 96 h). The biphasic VEGF release from dAM-MA matched physiological injury kinetics, driving both early chemotaxis and late vessel maturation. These results demonstrate that dAM-MA hydrogels combine native extracellular matrix complexity with practical, dual-curing injectability and programmable VEGF kinetics, offering a promising scaffold for minimally invasive pulp–dentin regeneration. Full article
(This article belongs to the Special Issue Biomedical Composite Applications)
Show Figures

Figure 1

11 pages, 2735 KiB  
Case Report
Management of a Complicated Crown Fracture in a 16-Year-Old Patient: A Case Report
by Ralitsa Bogovska-Gigova
Reports 2025, 8(3), 132; https://doi.org/10.3390/reports8030132 - 1 Aug 2025
Viewed by 189
Abstract
Background and Clinical Significance: Traumatic dental injuries, particularly complicated crown fractures of permanent incisors, are common in adolescents, with maxillary central incisors most frequently affected due to their prominent position. These injuries, often resulting from sports or accidents, require prompt management to [...] Read more.
Background and Clinical Significance: Traumatic dental injuries, particularly complicated crown fractures of permanent incisors, are common in adolescents, with maxillary central incisors most frequently affected due to their prominent position. These injuries, often resulting from sports or accidents, require prompt management to prevent complications such as pulp necrosis or infection, which can compromise long-term prognosis. Fragment reattachment offers a conservative, esthetically favorable approach when the fractured segment is intact, with outcomes comparable to composite restorations. This case report underscores the importance of timely intervention and advanced restorative techniques in pediatric dentistry. Case Presentation: A 16-year-old male presented with a complicated crown fracture of the upper left central incisor sustained during a soccer game. The fracture extended subgingivally with pulp exposure. The patient preserved the fragment in saline. Treatment involved fragment reattachment using a dentin bonding agent and flowable composite resin, followed by single-visit root canal therapy due to delayed presentation (48 h). A glass fiber post was placed to reinforce the restoration due to significant coronal loss. Three years of follow-up visits (1, 3, 6, 12, 24, and 36 months) revealed no clinical or radiographic complications, with the tooth remaining asymptomatic and functional. Conclusions: This case underscores the effectiveness of fragment reattachment when combined with meticulous technique and long-term monitoring. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

20 pages, 1220 KiB  
Systematic Review
The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review
by Gianna Dipalma, Grazia Marinelli, Arianna Fiore, Liviana Balestriere, Claudio Carone, Silvio Buongiorno, Francesco Inchingolo, Giuseppe Minervini, Andrea Palermo, Angelo Michele Inchingolo and Alessio Danilo Inchingolo
Surgeries 2025, 6(3), 65; https://doi.org/10.3390/surgeries6030065 - 30 Jul 2025
Viewed by 337
Abstract
Background: Mesenchymal stem cells (MSCs), multipotent and immune-regulatory cells derived from tissues such as bone marrow, dental pulp, and periodontal ligament, emerged as promising agents in regenerative dentistry. Their clinical applications include endodontic tissue regeneration, periodontal healing, and alveolar bone repair, addressing [...] Read more.
Background: Mesenchymal stem cells (MSCs), multipotent and immune-regulatory cells derived from tissues such as bone marrow, dental pulp, and periodontal ligament, emerged as promising agents in regenerative dentistry. Their clinical applications include endodontic tissue regeneration, periodontal healing, and alveolar bone repair, addressing critical challenges in dental tissue restoration. Methods: A systematic review was conducted following PRISMA guidelines and registered in PROSPERO. We searched PubMed, Scopus, and Web of Science databases for open-access, English-language clinical trials and observational studies published from 2015 to 2025. Studies focusing on the application of MSCs in dental tissue regeneration were included based on predefined eligibility criteria. Results: Out of 2400 initial records, 13 studies met the inclusion criteria after screening and eligibility assessment. Most studies investigated MSCs derived from dental pulp and periodontal ligament for regenerating periodontal tissues and alveolar bone defects. The majority reported improved clinical outcomes; however, variations in MSC sources, delivery methods, sample sizes, and follow-up periods introduced methodological heterogeneity. Conclusions: MSCs show significant potential in enhancing bone and periodontal regeneration in dental practice. Nonetheless, the current evidence is limited by small sample sizes, short follow-up, and inconsistent methodologies. Future large-scale, standardized clinical trials are required to validate MSC-based regenerative therapies and optimize treatment protocols. Full article
Show Figures

Figure 1

14 pages, 7820 KiB  
Article
Role of Dystrophic Calcification in Reparative Dentinogenesis After Rat Molar Pulpotomy
by Naoki Edanami, Kunihiko Yoshiba, Razi Saifullah Ibn Belal, Nagako Yoshiba, Shoji Takenaka, Naoto Ohkura, Shintaro Takahara, Takako Ida, Rosa Baldeon, Susan Kasimoto, Pemika Thongtade and Yuichiro Noiri
Int. J. Mol. Sci. 2025, 26(15), 7130; https://doi.org/10.3390/ijms26157130 - 24 Jul 2025
Viewed by 270
Abstract
Vital pulp therapy with calcium hydroxide or mineral trioxide aggregate (MTA) rapidly induces dystrophic calcification and promotes the accumulation of two members of small integrin-binding ligand N-linked glycoproteins: osteopontin (OPN) and dentin matrix protein-1 (DMP1). However, the precise relationship between these initial events [...] Read more.
Vital pulp therapy with calcium hydroxide or mineral trioxide aggregate (MTA) rapidly induces dystrophic calcification and promotes the accumulation of two members of small integrin-binding ligand N-linked glycoproteins: osteopontin (OPN) and dentin matrix protein-1 (DMP1). However, the precise relationship between these initial events and their roles in reparative dentinogenesis remain unclear. This study aimed to clarify the relationship between dystrophic calcification, OPN and DMP1 accumulation, and reparative dentin formation. Pulpotomy was performed on rat molars using MTA or zirconium oxide (ZrO2). ZrO2 was used as a control to assess pulp healing in the absence of dystrophic calcification. Pulpal responses were evaluated from 3 h to 7 days postoperatively via elemental mapping, micro-Raman spectroscopy, and histological staining. In the MTA-treated group, a calcium-rich dystrophic calcification zone containing calcite and hydroxyapatite was observed at 3 h after treatment; OPN and DMP1 accumulated under the dystrophic calcification zone by day 3; reparative dentin formed below the region of OPN and DMP1 accumulation by day 7. In contrast, these reactions did not occur in the ZrO2-treated group. These results suggest that dystrophic calcification serves as a key trigger for OPN and DMP1 accumulation and plays a pivotal role in reparative dentinogenesis. Full article
Show Figures

Figure 1

34 pages, 4103 KiB  
Review
Effectiveness of Treatment of Periapical Lesions in Mature and Immature Permanent Teeth Depending on the Treatment Method Used: A Critical Narrative Review Guided by Systematic Principles
by Aleksandra Jankowska, Wojciech Frąckiewicz, Agnieszka Kus-Bartoszek, Aleksandra Wdowiak-Szymanik and Anna Jarząbek
J. Clin. Med. 2025, 14(14), 5083; https://doi.org/10.3390/jcm14145083 - 17 Jul 2025
Viewed by 561
Abstract
This critical narrative review presents the concepts and methods that have been or are currently applied in the treatment of periapical tissue changes in mature and immature permanent teeth. Treatment success is defined as the healing of the inflammatory lesion in permanent teeth [...] Read more.
This critical narrative review presents the concepts and methods that have been or are currently applied in the treatment of periapical tissue changes in mature and immature permanent teeth. Treatment success is defined as the healing of the inflammatory lesion in permanent teeth and, additionally, the completion of root development in immature teeth. Background/Objectives: Endodontics focuses on the prevention and treatment of diseases affecting the dental pulp and periapical tissues. Periapical changes have been managed using various methods depending on factors such as the extent of the lesion and the stage of root and apical development. Conventional root canal treatment, revitalization, and apexification have all been employed. Methods: Three databases (PubMed, Scopus, and Web of Science) were searched for studies discussing different treatment approaches, materials, and the efficacy of techniques used over time in mature and immature permanent teeth. Results: This review includes seven case reports, seven case series, and three cohort studies, each detailing the treatment method, case characteristics, follow-up period, and treatment outcomes. Conclusions: Modern materials have significantly improved the outcomes of revitalization and apexification procedures. These methods can now compete with or even surpass the clinical effectiveness of conventional root canal therapy. Full article
Show Figures

Figure 1

13 pages, 3325 KiB  
Article
microRNA-200c Mitigates Pulpitis and Promotes Dentin Regeneration
by Tadkamol Krongbaramee, Chawin Upara, Matthew T. Remy, Long Jiang, Jue Hu, Kittiphoj Tikkhanarak, Bruno Cavalcanti, Hongli Sun, Fabricio B. Teixeira and Liu Hong
Int. J. Mol. Sci. 2025, 26(14), 6734; https://doi.org/10.3390/ijms26146734 - 14 Jul 2025
Viewed by 282
Abstract
MicroRNA (miR)-200c enhances osteogenesis, modulates inflammation, and participates in dentin development. This study was to investigate the beneficial potential of miR-200c in vital pulp therapy (VPT) by mitigating pulpitis and promoting dentin regeneration. We explored the miR-200c variations in inflamed pulp tissues from [...] Read more.
MicroRNA (miR)-200c enhances osteogenesis, modulates inflammation, and participates in dentin development. This study was to investigate the beneficial potential of miR-200c in vital pulp therapy (VPT) by mitigating pulpitis and promoting dentin regeneration. We explored the miR-200c variations in inflamed pulp tissues from patients with symptomatic irreversible pulpitis and primary human dental pulp-derived cells (DPCs) challenged with P.g. lipopolysaccharide (Pg-LPS). We further assessed the functions of overexpression of miR-200c on odontogenic differentiation, pulpal inflammation, and dentin regeneration in vitro and in vivo. Our findings revealed a noteworthy downregulation of miR-200c expression in inflamed pulp tissues and primary human DPCs. Through the overexpression of miR-200c via transfecting plasmid DNA (pDNA), we observed a substantial downregulation of proinflammatory cytokines interleukin (IL)-6 and IL-8 in human DPCs. Furthermore, this overexpression significantly enhanced the transcript and protein levels of odontogenic differentiation markers, including Runt-related transcription factor (Runx)2, osteocalcin (OCN), dentin matrix protein (DMP)1, and dentin sialophosphoprotein (DSPP). In a rat model of pulpitis induced by Pg-LPS, we demonstrated notable benefits by local application of pDNA encoding miR-200c delivered by CaCO3-based nanoparticles to reduce pulpal inflammation and promote dentin formation. These results underscore the significant impact of locally applied miR-200c in modulating pulpal inflammation and facilitating dentin repair, showcasing its ability to improve VPT outcomes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 4137 KiB  
Article
Biocompatibility of Hydraulic Calcium Silicate-Based Cement MTA FlowTM on Human Dental Pulp Stem Cells In Vitro
by Paulius Tušas, Josette Camilleri, Milda Alksnė, Egidijus Šimoliūnas, Saulius Drukteinis, Eglė Marija Urbonė, Virginija Bukelskienė, Vygandas Rutkūnas and Vytautė Pečiulienė
J. Funct. Biomater. 2025, 16(7), 252; https://doi.org/10.3390/jfb16070252 - 7 Jul 2025
Viewed by 869
Abstract
Aim: hydraulic calcium silicate-based cements (HCSCs) are widely used in endodontics for vital pulp therapy and other clinical procedures due to their favorable physicochemical and biological properties. This study evaluates the biological properties of two HCSCs—MTA Flow™ and MTA Flow™ White (in a [...] Read more.
Aim: hydraulic calcium silicate-based cements (HCSCs) are widely used in endodontics for vital pulp therapy and other clinical procedures due to their favorable physicochemical and biological properties. This study evaluates the biological properties of two HCSCs—MTA Flow™ and MTA Flow™ White (in a 3:2 liquid-to-powder ratio, thick consistency)—on human dental pulp stem cells (hDPSCs). Methodology: hDPSCs were exposed to leachates from MTA Flow™, MTA Flow™ White, and ProRoot® MTA. pH changes, cytotoxicity, cell proliferation, cell morphology, and cell death (apoptosis/necrosis) were assessed in vitro. Results: MTA Flow™ White and ProRoot® MTA leachates produced a strongly alkaline pH (~10–12) compared to the negative control, whereas MTA Flow™ leachate caused a smaller pH increase (~9.4). Freshly mixed cements showed moderate cytotoxicity (around 40–60% cell viability at 100% concentration), while hardened cement leachates did not significantly affect cell viability. At 100% concentration, MTA Flow™ and MTA Flow™ White leachates significantly inhibited hDPSC proliferation and caused cell death, but at lower concentrations (≤50%) they supported cell viability and proliferation comparable to ProRoot® MTA. hDPSCs exposed to MTA Flow™ and MTA Flow™ White leachates appeared more elongated morphologically than those exposed to ProRoot® MTA. Notably, cells treated with MTA Flow™ White leachates were significantly smaller than those treated with MTA Flow™. Conclusions: MTA Flow™ and MTA Flow™ White, used in 3:2 thick consistency, demonstrated biocompatibility comparable to ProRoot® MTA in vitro. While 100% leachates showed moderate cytotoxicity, lower concentration dilutions (≤50%) supported hDPSC viability, proliferation, and morphology. These findings support their potential as safe alternatives for vital pulp therapy. Further in vivo studies and dynamic models are needed to confirm long-term biological performance. Full article
(This article belongs to the Special Issue Role of Dental Biomaterials in Promoting Oral Health)
Show Figures

Figure 1

20 pages, 1658 KiB  
Article
Preclinical In Vitro Evaluation of Extracellular Vesicles from Human Dental Pulp Stem Cells for the Safe and Selective Modulation of Anaplastic Thyroid Carcinoma
by Anderson Lucas Alievi, Michelli Ramires Teixeira, Vitor Rodrigues da Costa, Irina Kerkis and Rodrigo Pinheiro Araldi
Int. J. Mol. Sci. 2025, 26(13), 6443; https://doi.org/10.3390/ijms26136443 - 4 Jul 2025
Viewed by 391
Abstract
Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy with poor prognosis and limited treatment options. Precision oncology seeks personalized therapies that selectively modulate tumor behavior, which is critical for improving patient outcomes. In this study, we evaluated the therapeutic potential of human [...] Read more.
Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy with poor prognosis and limited treatment options. Precision oncology seeks personalized therapies that selectively modulate tumor behavior, which is critical for improving patient outcomes. In this study, we evaluated the therapeutic potential of human dental pulp stem cell-derived extracellular vesicles (hDPSC-EVs) in three ATC cell lines (8505C, HTH83, KTC-2). Fluorescence and confocal microscopy confirmed the efficient, time-dependent internalization of hDPSC-EVs by ATC cells, with increased fluorescence intensity over 48 h. Functional assays revealed the selective inhibition of migration and invasion in a cell line-dependent manner, without affecting cell proliferation, viability, or tumorigenic traits, indicating a non-cytotoxic, context-specific modulation of tumor behavior. After 72 h of EV treatment, targeted qPCR of 92 cancer-related genes showed the strongest response in 8505C cells (24 genes; 16 up, 8 down), moderate changes in KTC-2 (16 genes; 14 up, 2 down), and few alterations in HTH83 (6 genes; 4 up, 2 down). Across all lines, FN1 emerged as a context-dependent target, downregulated in 8505C but upregulated in the other two. No broad pathway enrichment was observed, indicating the fine-tuning of key networks rather than wholesale reprogramming. Despite variations across cell lines, hDPSC-EVs consistently demonstrated no impact on cell proliferation and no evidence of cytotoxicity or tumorigenic behavior, with no adverse outcomes. These findings provide preclinical evidence for hDPSC-EVs as a promising, safe, and targeted therapeutic platform in precision oncology, particularly for aggressive cancers, like ATC, warranting further exploration in preclinical and clinical studies. Full article
(This article belongs to the Special Issue Preclinical and Translational Research in Thyroid Cancer)
Show Figures

Figure 1

19 pages, 937 KiB  
Review
Tissue Repair Mechanisms of Dental Pulp Stem Cells: A Comprehensive Review from Cutaneous Regeneration to Mucosal Healing
by Jihui He, Jiao Fu, Ruoxuan Wang, Xiaojing Liu, Juming Yao, Wenbo Xing, Xinxin Wang and Yan He
Curr. Issues Mol. Biol. 2025, 47(7), 509; https://doi.org/10.3390/cimb47070509 - 2 Jul 2025
Viewed by 674
Abstract
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp [...] Read more.
Repairing and regenerating tissue barriers is a key challenge in regenerative medicine. Stem cells play a crucial role in restoring the structural and functional integrity of key epithelial barrier surfaces, including the skin and mucosa. This review analyzes the role of dental pulp stem cells (DPSCs) and their derivatives, including extracellular vesicles, conditioned medium, and intracellular factors, in accelerating skin wound healing. The key mechanisms include: (1) DPSCs regulating inflammatory microenvironments by promoting anti-inflammatory M2 macrophage polarization; (2) DPSCs activating vascular endothelial growth factor (VEGF) to drive angiogenesis; (3) DPSCs optimizing extracellular matrix (ECM) spatial structure through matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP) balance; and (4) DPSCs enhancing transforming growth factor-β (TGF-β) secretion to accelerate granulation tissue formation. Collectively, these processes promote wound healing. In addition, we explored potential factors that accelerate wound healing in DPSCs, such as oxidative stress, mechanical stimulation, hypertension, electrical stimulation, and organoid modeling. In addition to demonstrating the great potential of DPSCs for skin repair, this review explores their translational prospects in mucosal regenerative medicine. It covers the oral cavity, esophagus, colon, and fallopian tube. Some studies have found that combining DPSCs and their derivatives with drugs can significantly enhance their biological effects. By integrating insights from skin and mucosal models, this review offers novel ideas and strategies for treating chronic wounds, inflammatory bowel disease, and mucosal injuries. It also lays the foundation for connecting basic research results with clinical practice. This represents a significant step forward in tackling these complex medical challenges and lays a solid scientific foundation for developing more targeted and efficient regenerative therapies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 5275 KiB  
Article
Ciprofloxacin Exerts Anti-Tumor Effects In Vivo Through cGAS-STING Activation and Modulates Tumor Microenvironment
by Jian-Syun Chen, Chih-Wen Chi, Cheng-Ta Lai, Shu-Hua Wu, Hui-Ru Shieh, Jiin-Cherng Yen and Yu-Jen Chen
Cells 2025, 14(13), 1010; https://doi.org/10.3390/cells14131010 - 2 Jul 2025
Viewed by 539
Abstract
Immunotherapy targeting the immune functions of the tumor microenvironment (TME) is beneficial for colorectal cancer; however, the response rate is poor. Ciprofloxacin is a fluoroquinolone-class antibiotic that is used to treat bacterial infections. The purpose of this study is to assess the mechanism [...] Read more.
Immunotherapy targeting the immune functions of the tumor microenvironment (TME) is beneficial for colorectal cancer; however, the response rate is poor. Ciprofloxacin is a fluoroquinolone-class antibiotic that is used to treat bacterial infections. The purpose of this study is to assess the mechanism of ciprofloxacin that enhances anti-PD1 in colorectal cancer. We found that ciprofloxacin induced cytosolic DNA, including single-stranded and double-stranded DNA, formation in mouse CT26 colorectal adenocarcinoma cells. Molecules in DNA-sensing signaling such as cGAS, STING, and IFNβ mRNA and protein expression were elicited after ciprofloxacin treatment in CT26 cells. STING siRNA abrogated the cGAS-STING pathway activation by ciprofloxacin. In vivo, ciprofloxacin exhibited a synergistic effect with anti-PD1 to suppress tumor growth in a CT26 syngeneic animal model without biological toxicity. The examination of TME revealed that ciprofloxacin, alone and in combination therapy, induced M1 and red pulp macrophage production in the spleen. In tumors, M1 and M2 macrophage levels were increased by ciprofloxacin, and CD8+ T cell granzyme B expression was increased after combination therapy. STING showed the highest expression in tumor specimens after combination treatment. Ciprofloxacin may enhance the anti-PD1 efficacy and modulate the TME through the cGAS-STING pathway. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Anti-Cancer Therapies)
Show Figures

Figure 1

22 pages, 1484 KiB  
Review
Antioxidant, Anti-Inflammatory, and Antiapoptotic Effects of Euterpe oleracea Mart. (Açaí) in Improving Cognition Deficits: Potential Therapeutic Implications for Alzheimer’s Disease
by Flávia dos Santos Ferreira, Juliana Lucena Azevedo de Mattos, Paula Hosana Fernandes da Silva, Cristiane Aguiar da Costa, Dayane Teixeira Ognibene, Angela de Castro Resende and Graziele Freitas de Bem
Plants 2025, 14(13), 2010; https://doi.org/10.3390/plants14132010 - 30 Jun 2025
Viewed by 470
Abstract
Euterpe oleracea Martius, also popularly known as açaí palm, is a palm tree of the Aracaceae family widely found in the Amazon region. Traditional plant use reports indicate the beneficial effects of açaí juice on fever, pain, and flu. Moreover, many studies [...] Read more.
Euterpe oleracea Martius, also popularly known as açaí palm, is a palm tree of the Aracaceae family widely found in the Amazon region. Traditional plant use reports indicate the beneficial effects of açaí juice on fever, pain, and flu. Moreover, many studies have demonstrated the pharmacological potential of açaí, mainly the pulp and seed of the fruit, due to its chemical composition, which significantly consists of polyphenols. In recent years, there has been a growing interest in investigating the neuroprotective effects of açaí, with the potential for the prevention and treatment of neurodegenerative diseases, such as Alzheimer’s disease, mainly due to the increasing aging of the population that has contributed to the increase in the number of individuals affected by this disease that has no cure. Therefore, this review aims to evaluate the potential role of açaí fruit in preventing or treating cognitive deficits, highlighting its potential in Alzheimer’s disease therapy. Preclinical in vivo and in vitro pharmacological studies were utilized to investigate the learning and memory effects of the pulp and seed of the açaí fruit, focusing on antioxidant, anti-inflammatory, antiapoptotic, and autophagy restoration actions. Full article
(This article belongs to the Topic Research on Natural Products of Medical Plants)
Show Figures

Figure 1

15 pages, 992 KiB  
Article
Influence of Irrigant Activation Techniques on External Root Temperature Rise and Irrigation Penetration Depth in 3D-Printed Tooth Model: An In Vitro Study
by Ali Addokhi, Ahmed Rahoma, Neveen M. A. Hanna, Faisal Alonaizan, Faraz Farooqi and Shimaa Rifaat
Dent. J. 2025, 13(7), 295; https://doi.org/10.3390/dj13070295 - 29 Jun 2025
Viewed by 423
Abstract
Introduction: Successful root canal therapy relies on thorough cleaning and disinfection to eliminate microorganisms and residual pulp tissue. Advanced irrigation activation techniques, including Sonic, Ultrasonic, and Diode Laser activation, have improved cleaning efficacy, bacterial reduction, smear layer removal, and irrigant hydrodynamics. On the [...] Read more.
Introduction: Successful root canal therapy relies on thorough cleaning and disinfection to eliminate microorganisms and residual pulp tissue. Advanced irrigation activation techniques, including Sonic, Ultrasonic, and Diode Laser activation, have improved cleaning efficacy, bacterial reduction, smear layer removal, and irrigant hydrodynamics. On the other hand, these irrigation activation techniques may lead to a temperature rise that may risk the surrounding periodontal tissue. Thus, this study aimed to investigate the temperature rise during different irrigation activation techniques at various time intervals and evaluate the efficacy of these techniques in removing biofilm-mimicking hydrogel BMH of a simulated root canal system in 3D-printed tooth models. Methods: Ten extracted human mandibular premolars, prepared to size 40/0.04 taper, and a hundred 3D-printed resin premolars with simulated main (0.25 mm) and lateral canals (0.15 mm at 3, 7, 11 mm from apex) were used; 50 of them were filled with biofilm-mimicking hydrogel (BMH). Five irrigation activation techniques were evaluated: Diode Laser, Ultrasonic, Sonic, XP-Finisher, and Control (n = 10). Temperature rises were measured on the extracted premolars after 30 and 60 s of activation using a thermographic camera in a controlled environment (23 ± 2 °C). Irrigant penetration, with and without BMH, was assessed in 3D-printed premolars using a 2.5% sodium hypochlorite-contrast medium mixture, visualized with a CMOS radiographic sensor. Penetration was scored (main canal: 3 points; lateral canals: 0–2 points) and analyzed with non-parametric tests. Results: Diode Laser activation technique resulted in the highest temperature rise on the external root surface, followed by the Ultrasonic, with no statistically significant difference observed among the remaining groups. In terms of efficacy, Ultrasonic and Sonic activation achieved significantly greater irrigant penetration in samples without BMH, and greater BMH removal in samples with BMH, compared to Diode Laser, XP-Finisher, and Control groups. Conclusions: In this in vitro study, Diode Laser caused the highest temperature rise, followed by Ultrasonic, with significant increases from 30 to 60 s. Temperature rise did not significantly affect penetration or BMH removal. Ultrasonic and Sonic irrigation techniques achieved the highest depth of penetration (without BMH) and biofilm-mimicking Hydrogel removal (with BMH) compared to Diode Laser, XP-Finisher, and Control. Full article
Show Figures

Figure 1

11 pages, 1820 KiB  
Article
Establishment of Dental Pulp Cell Culture System for Analyzing Dentinogenesis in Mouse Incisors
by Yuka Kato, Insoon Chang and Satoshi Yokose
Dent. J. 2025, 13(6), 270; https://doi.org/10.3390/dj13060270 - 18 Jun 2025
Viewed by 326
Abstract
Background: The dentin–pulp complex plays a vital role in tooth health. Dentin forms the main body the tooth and continues to form throughout life to maintain homeostasis and provide protection against deleterious external stimuli. However, the detailed mechanism of dentin formation remains [...] Read more.
Background: The dentin–pulp complex plays a vital role in tooth health. Dentin forms the main body the tooth and continues to form throughout life to maintain homeostasis and provide protection against deleterious external stimuli. However, the detailed mechanism of dentin formation remains poorly understood, and there is a need for new regenerative therapies. This study therefore investigated whether primary dental pulp cells from mice could be used to establish a new culture system. Methods: Mouse mandibles were divided along the ramus to extract dental pulp tissue containing cervical loops. The extracted tissue was cultured in an incubator to promote cell out-growth and increase the number of cells available for experimentation. Results: Cultured cells formed mineralized nodules, confirmed by Alizarin red S staining. The expression levels of dentin sialo protein, bone gamma-carboxyglutamate protein, and type I collagen mRNAs in cultured dental pulp cells on day 15 were lower than those in intact mouse dental pulp tissue, and the expression of all mRNAs was confirmed through electrophoresis. Conclusions: This study established a primary culture system using dental pulp tissue extracted from mouse mandibular incisors. The results demonstrated that dental pulp cells can differentiate into odontoblast-like cells and form dentin-like mineralized nodules, thereby offering a useful system for studying dentin formation and odontoblast differentiation. Full article
Show Figures

Figure 1

24 pages, 34320 KiB  
Case Report
A 10-Year Follow-Up of an Approach to Restore a Case of Extreme Erosive Tooth Wear
by Davide Foschi, Andrea Abate, Francesca Vailati, Ignazio Loi, Cinzia Maspero and Valentina Lanteri
Dent. J. 2025, 13(6), 259; https://doi.org/10.3390/dj13060259 - 10 Jun 2025
Viewed by 1347
Abstract
Background: In recent years, thanks to the improvement of adhesive techniques, patients affected by tooth wear, related to erosion and/or parafunctional habits, can undergo restoration by adding only what has been lost of their dentition (additive approach). However, since not all clinicians are [...] Read more.
Background: In recent years, thanks to the improvement of adhesive techniques, patients affected by tooth wear, related to erosion and/or parafunctional habits, can undergo restoration by adding only what has been lost of their dentition (additive approach). However, since not all clinicians are convinced that dental rehabilitation should be proposed in the early stages of exposed dentin, several treatments are often postponed. It is important to emphasize that, in the early stages, the clinical approach should remain conservative, focusing on dietary counseling, the modification of harmful habits, fluoride application, and risk factor management. Only when these preventive and non-invasive strategies prove insufficient, and the condition continues to progress, should invasive restorative treatments be considered. Unfortunately, epidemiological studies are reporting an increase in the number of young patients affected by erosive tooth wear, and not intercepting these cases earlier could lead to a severe degradation of the affected dentition. In addition, parafunctional habits are also becoming more frequent among patients. The combination of erosion and attrition can be very destructive, and may progress rapidly once dentin is exposed and the risk factors remain unaddressed. The aim of this report was to present a conservative full-mouth rehabilitation approach for severe erosive lesions and to provide a 10-year follow-up assessing the biological, functional, and esthetic outcomes. Methods: In this article, the postponed restorative treatment of a patient, suffering from severe tooth wear, is illustrated. The patient had sought dental treatment in the past; however, due to the already very compromised dentition, a conventional but very aggressive treatment was proposed and refused. Four years later, when the patient finally accepted an alternative conservative therapy, the tooth degradation was very severe, especially at the level of the maxillary anterior teeth. The combination of three different approaches, Speed-Up Therapy, BOPT (Biologically-Oriented Preparation Technique), and the 3 Step Technique, however, improved the capacity to successfully complete the difficult therapeutic task. Results: The biological goals (maintenance of the pulp vitality of all of the teeth and the minimal removal of healthy tooth structure) were accomplished, relying only on adhesive techniques. Conclusions: The overall treatment was very comfortable for the patient and less complicated for the clinician. At 10-year follow-up, biological, functional, and esthetic success was still confirmed. Full article
Show Figures

Figure 1

11 pages, 554 KiB  
Article
Exploring the Antimicrobial and Clinical Efficacy of a Novel Technology in Pediatric Endodontics: An In Vivo Study
by Luca De Gregoriis, Tatiane Cristina Dotta, Morena Petrini, Silvia Di Lodovico, Loredana D’Ercole, Simonetta D’Ercole and Domenico Tripodi
Appl. Sci. 2025, 15(12), 6491; https://doi.org/10.3390/app15126491 - 9 Jun 2025
Viewed by 454
Abstract
Pediatric dentistry continually seeks effective and efficient treatments for young patients, especially within pediatric endodontics, where cooperation can often be challenging. This in vivo study aimed to evaluate the effectiveness of a novel photodynamic therapy (PDT) protocol using a 5-aminolevulinic acid gel (Aladent, [...] Read more.
Pediatric dentistry continually seeks effective and efficient treatments for young patients, especially within pediatric endodontics, where cooperation can often be challenging. This in vivo study aimed to evaluate the effectiveness of a novel photodynamic therapy (PDT) protocol using a 5-aminolevulinic acid gel (Aladent, ALAD) combined with light irradiation during the endodontic treatment of primary teeth. This study included primary teeth requiring root canal therapy due to carious lesions or trauma, with clinical symptoms suggesting irreversible pulpitis or acute apical periodontitis. Following local anesthesia and isolation with a rubber dam, carious lesions were excavated, and access to the pulp chamber was established. Canal preparation included determining the working length and using a sequence of k-files. Afterward, ALAD gel was applied, and the patients were divided into two groups based on their visit duration (Group A with a single visit, Group B returning after one week). Microbiological analysis was conducted on the samples taken before and after treatment. The findings demonstrated significant antibacterial efficacy of the PDT protocol in reducing root canal bacterial load, suggesting ALAD-based PDT may serve as an alternative to traditional endodontic treatment in cases where retaining primary teeth is essential for orthodontic or strategic reasons. Clinically, improvement in symptoms and fistula resolution were observed. Treatment time, patient compliance, and protocol safety in pediatric applications are also discussed, highlighting the protocol’s potential to enhance clinical outcomes in pediatric endodontics. Full article
Show Figures

Figure 1

Back to TopTop