Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,362)

Search Parameters:
Keywords = publication output

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1212 KiB  
Article
A Semi-Supervised Approach to Characterise Microseismic Landslide Events from Big Noisy Data
by David Murray, Lina Stankovic and Vladimir Stankovic
Geosciences 2025, 15(8), 304; https://doi.org/10.3390/geosciences15080304 - 6 Aug 2025
Abstract
Most public seismic recordings, sampled at hundreds of Hz, tend to be unlabelled, i.e., not catalogued, mainly because of the sheer volume of samples and the amount of time needed by experts to confidently label detected events. This is especially challenging for very [...] Read more.
Most public seismic recordings, sampled at hundreds of Hz, tend to be unlabelled, i.e., not catalogued, mainly because of the sheer volume of samples and the amount of time needed by experts to confidently label detected events. This is especially challenging for very low signal-to-noise ratio microseismic events that characterise landslides during rock and soil mass displacement. Whilst numerous supervised machine learning models have been proposed to classify landslide events, they rely on a large amount of labelled datasets. Therefore, there is an urgent need to develop tools to effectively automate the data-labelling process from a small set of labelled samples. In this paper, we propose a semi-supervised method for labelling of signals recorded by seismometers that can reduce the time and expertise needed to create fully annotated datasets. The proposed Siamese network approach learns best class-exemplar anchors, leveraging learned similarity between these anchor embeddings and unlabelled signals. Classification is performed via soft-labelling and thresholding instead of hard class boundaries. Furthermore, network output explainability is used to explain misclassifications and we demonstrate the effect of anchors on performance, via ablation studies. The proposed approach classifies four landslide classes, namely earthquakes, micro-quakes, rockfall and anthropogenic noise, demonstrating good agreement with manually detected events while requiring few training data to be effective, hence reducing the time needed for labelling and updating models. Full article
Show Figures

Figure 1

25 pages, 1150 KiB  
Article
Comparative Assessment of Health Systems Resilience: A Cross-Country Analysis Using Key Performance Indicators
by Yu-Hsiu Chuang and Jin-Li Hu
Systems 2025, 13(8), 663; https://doi.org/10.3390/systems13080663 - 5 Aug 2025
Abstract
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or [...] Read more.
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or broadly examines socio-economic factors, highlighting the need for a more comprehensive methodological approach. This study employed the Slacks-Based Measure (SBM) within Data Envelopment Analysis (DEA) to analyze efficiency by maximizing outputs. It systematically examined key HSR factors across countries, providing insights for improved policymaking and resource allocation. Taking a five-year (2016–2020) dataset that covered 55 to 56 countries and evaluating 17 indicators across governance, health systems, and economic aspects, the paper presents that all sixteen top-ranked countries with a perfect efficiency score of 1 belonged to the high-income group, with ten in Europe, highlighting regional HSR differences. This paper concludes that adequate economic resources form the foundation of HSR and ensure stability and sustained progress. A properly supported healthcare workforce is essential for significantly enhancing health systems and delivering quality care. Last, effective governance and the equitable allocation of resources are crucial for fostering sustainable development and strengthening HSR. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

14 pages, 2852 KiB  
Review
Review of Quasi-Solid Aqueous Zinc Batteries: A Bibliometric Analysis
by Zhongxiu Liu, Xiaoou Zhou, Tongyuan Shen, Miaomiao Yu, Liping Zhu, Guiyin Xu and Meifang Zhu
Batteries 2025, 11(8), 293; https://doi.org/10.3390/batteries11080293 - 3 Aug 2025
Viewed by 168
Abstract
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of [...] Read more.
Quasi-solid aqueous zinc batteries (QSAZBs) have wide applications in the energy storage field due to their advantages of high safety, cost-effectiveness, and eco-friendliness. Despite prolific research output in the field of QSAZBs, existing reviews predominantly focus on experimental advancements, with limited synthesis of global research trends, interdisciplinary connections, or knowledge gaps. Herein, we review the research on QSAZBs via bibliometric analysis using the VOSviewer software (version 1.6.20). First, the data from qualitatively evaluated publications on QSAZBs from 2016 and 2024 are integrated. In addition, the annual trends, leading countries/regions and their international collaborations, institutional research and patent distribution, and important keyword cluster analyses in QSAZB research are evaluated. The results reveal that China dominates in terms of publication output (71.16% of total papers), and Singapore exhibits the highest citation impact (103.2 citations/paper). International collaboration networks indicate the central role of China, with strong ties to Singapore, the USA, and Australia. Keyword clustering indicates core research priorities: cathode materials (MnO2 and V2O5), quasi-solid electrolyte optimization (hydrogels and graphene composites), and interfacial stability mechanisms. By mapping global trends and interdisciplinary linkages, this work provides insights to accelerate QSAZBs’ transition from laboratory breakthroughs to grid-scale and wearable applications. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
Show Figures

Graphical abstract

12 pages, 1329 KiB  
Article
Steady-State Visual-Evoked-Potential–Driven Quadrotor Control Using a Deep Residual CNN for Short-Time Signal Classification
by Jiannan Chen, Chenju Yang, Rao Wei, Changchun Hua, Dianrui Mu and Fuchun Sun
Sensors 2025, 25(15), 4779; https://doi.org/10.3390/s25154779 - 3 Aug 2025
Viewed by 179
Abstract
In this paper, we study the classification problem of short-time-window steady-state visual evoked potentials (SSVEPs) and propose a novel deep convolutional network named EEGResNet based on the idea of residual connection to further improve the classification performance. Since the frequency-domain features extracted from [...] Read more.
In this paper, we study the classification problem of short-time-window steady-state visual evoked potentials (SSVEPs) and propose a novel deep convolutional network named EEGResNet based on the idea of residual connection to further improve the classification performance. Since the frequency-domain features extracted from short-time-window signals are difficult to distinguish, the EEGResNet starts from the filter bank (FB)-based feature extraction module in the time domain. The FB designed in this paper is composed of four sixth-order Butterworth filters with different bandpass ranges, and the four bandwidths are 19–50 Hz, 14–38 Hz, 9–26 Hz, and 3–14 Hz, respectively. Then, the extracted four feature tensors with the same shape are directly aggregated together. Furthermore, the aggregated features are further learned by a six-layer convolutional neural network with residual connections. Finally, the network output is generated through an adaptive fully connected layer. To prove the effectiveness and superiority of our designed EEGResNet, necessary experiments and comparisons are conducted over two large public datasets. To further verify the application potential of the trained network, a virtual simulation of brain computer interface (BCI) based quadrotor control is presented through V-REP. Full article
(This article belongs to the Special Issue Intelligent Sensor Systems in Unmanned Aerial Vehicles)
Show Figures

Figure 1

24 pages, 2419 KiB  
Review
Arbuscular Mycorrhizal Fungi in the Ecological Restoration of Tropical Forests: A Bibliometric Review
by Yajaira Arévalo, María Eugenia Avila-Salem, Paúl Loján, Narcisa Urgiles-Gómez, Darwin Pucha-Cofrep, Nikolay Aguirre and César Benavidez-Silva
Forests 2025, 16(8), 1266; https://doi.org/10.3390/f16081266 - 2 Aug 2025
Viewed by 207
Abstract
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological [...] Read more.
Arbuscular mycorrhizal fungi (AMF) play a vital role in the restoration of tropical forests by enhancing soil fertility, facilitating plant establishment, and improving ecosystem resilience. This study presents a comprehensive bibliometric analysis of global scientific output on AMF in the context of ecological restoration, based on 3835 publications indexed in the Web of Science and Scopus databases from 2001 to 2024. An average annual growth rate of approximately 9.45% was observed, with contributions from 10,868 authors across 880 journals. The most prominent journals included Mycorrhiza (3.34%), New Phytologist (3.00%), and Applied Soil Ecology (2.79%). Thematically, dominant research areas encompassed soil–plant interactions, phytoremediation, biodiversity, and microbial ecology. Keyword co-occurrence analysis identified “arbuscular mycorrhizal fungi,” “diversity,” “soil,” and “plant growth” as core topics, while emerging topics such as rhizosphere interactions and responses to abiotic stress showed increasing prominence. Despite the expanding body of literature, key knowledge gaps remain, particularly concerning AMF–plant specificity, long-term restoration outcomes, and integration of microbial community dynamics. These findings offer critical insights into the development of AMF research and underscore its strategic importance in tropical forest restoration, providing a foundation for future studies and informing ecosystem management policies. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 - 1 Aug 2025
Viewed by 171
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 274
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

22 pages, 2171 KiB  
Review
A Bibliometric Analysis of Chrononutrition, Cardiometabolic Risk, and Public Health in International Research (1957–2025)
by Emily Gabriela Burgos-García, Katiuska Mederos-Mollineda, Darley Jhosue Burgos-Angulo, David Job Morales-Neira and Dennis Alfredo Peralta-Gamboa
Int. J. Environ. Res. Public Health 2025, 22(8), 1205; https://doi.org/10.3390/ijerph22081205 - 31 Jul 2025
Viewed by 213
Abstract
Introduction: Breakfast has emerged as a critical factor in preventing cardiovascular diseases, driven not only by its nutritional content but also by its alignment with circadian rhythms. However, gaps remain in the literature regarding its clinical impact and thematic evolution. Objective: [...] Read more.
Introduction: Breakfast has emerged as a critical factor in preventing cardiovascular diseases, driven not only by its nutritional content but also by its alignment with circadian rhythms. However, gaps remain in the literature regarding its clinical impact and thematic evolution. Objective: To characterize the global scientific output on the relationship between breakfast quality and cardiovascular health through a systematic bibliometric analysis. Methodology: The PRISMA 2020 protocol was applied to select 1436 original articles indexed in Scopus and Web of Science (1957–2025). Bibliometric tools, including R (v4.4.2) and VOSviewer (v1.6.19) were used to map productivity, impact, collaboration networks, and emerging thematic areas. Results: Scientific output has grown exponentially since 2000. The most influential journals are the American Journal of Clinical Nutrition, Nutrients, and Diabetes Care. The United States, United Kingdom, and Japan lead in publication volume and citations, with increasing participation from Latin American countries. Thematic trends have shifted from traditional clinical markers to innovative approaches such as chrononutrition, digital health, and personalized nutrition. However, methodological gaps persist, including a predominance of observational studies and an underrepresentation of vulnerable populations. Conclusions: Breakfast is a dietary practice with profound implications for cardiometabolic health. This study provides a comprehensive overview of scientific literature, highlighting both advancements and challenges. Strengthening international collaboration networks, standardizing definitions of a healthy breakfast, and promoting evidence-based interventions in school, clinical, and community settings are recommended. Full article
Show Figures

Figure 1

34 pages, 930 KiB  
Article
Optimal Governance for Post-Concession Logistics Infrastructure: A Comparative Study of Self-Operation vs. Delegation Under Information Asymmetry
by Minghua Xiong
Sustainability 2025, 17(15), 6982; https://doi.org/10.3390/su17156982 - 31 Jul 2025
Viewed by 159
Abstract
Public–private partnership (PPP) logistics infrastructure projects have become increasingly prevalent globally. Consequently, the effective management of these projects as their concession periods expire presents a crucial challenge for governments, vital for the sustainable management of PPP logistics infrastructure. This study addresses this challenge [...] Read more.
Public–private partnership (PPP) logistics infrastructure projects have become increasingly prevalent globally. Consequently, the effective management of these projects as their concession periods expire presents a crucial challenge for governments, vital for the sustainable management of PPP logistics infrastructure. This study addresses this challenge by focusing on the pivotal post-concession decision: whether the government should self-operate the mature logistics infrastructure or re-delegate its management to a private entity. Our theoretical model, built on a principal–agent framework, first establishes a social welfare baseline under government self-operation and then analyzes delegated operation under symmetric information, identifying efficiency frontiers. Under symmetric information, we find that government self-operation is more advantageous when its own operational efficiency is sufficiently high, irrespective of the private enterprise’s efficiency; conversely, delegating to an efficient private enterprise is optimal only when government operational efficiency is low. We also demonstrate that if the government can directly specify the demand quantity and service level and delegates operation via a fixed fee, the enterprise can be incentivized to align with the social optimum. However, under asymmetric information, potential welfare gains from delegation are inevitably offset by informational rent and output distortion. We further uncover non-monotonic impacts of parameters like the proportion of low-cost firms on social welfare loss and demonstrate how information asymmetry can indirectly compromise the long-term resilience of the infrastructure. Ultimately, our work asserts that delegation is only superior if its potential efficiency gains sufficiently offset the inherent losses stemming from information asymmetry. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

24 pages, 2982 KiB  
Review
Residual Stresses in Metal Manufacturing: A Bibliometric Review
by Diego Vergara, Pablo Fernández-Arias, Edwan Anderson Ariza-Echeverri and Antonio del Bosque
Materials 2025, 18(15), 3612; https://doi.org/10.3390/ma18153612 - 31 Jul 2025
Viewed by 138
Abstract
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 [...] Read more.
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 to 2024. Residual stress research in metal manufacturing has gained prominence, particularly in relation to welding, additive manufacturing, and machining—processes that induce significant stress gradients affecting mechanical behavior and service life. Emerging trends focus on simulation-based prediction methods, such as the finite element method, heat treatment optimization, and stress-induced defect prevention. Key thematic clusters include process-induced microstructural changes, mechanical property enhancement, and the integration of modeling with experimental validation. By analyzing the evolution of research output, global collaboration networks, and process-specific contributions, this review provides a comprehensive overview of current challenges and identifies strategic directions for future research in residual stress management in advanced metal manufacturing. Full article
Show Figures

Figure 1

11 pages, 1219 KiB  
Article
The Church and Academia Model: New Paradigm for Spirituality and Mental Health Research
by Marta Illueca, Samantha M. Meints, Megan M. Miller, Dikachi Osaji and Benjamin R. Doolittle
Religions 2025, 16(8), 998; https://doi.org/10.3390/rel16080998 (registering DOI) - 31 Jul 2025
Viewed by 208
Abstract
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially [...] Read more.
Ongoing interest in the intersection of spirituality and health has prompted a need for integrated research. This report proposes a distinct approach in a model that allows for successful and harmonious cross-fertilization within these latter two areas of interest. Our work is especially pertinent to inquiries around the role of spirituality in mental health, with special attention to chronic pain conditions. The latter have become an open channel for novel avenues to explore the field of spirituality-based interventions within the arena of psychological inquiry. To address this, the authors developed and implemented the Church and Academia Model, a prototype for an innovative collaborative research project, with the aim of exploring the role of devotional practices, and their potential to be used as therapeutic co-adjuvants or tools to enhance the coping skills of patients with chronic pain. Keeping in mind that the church presents a rich landscape for clinical inquiry with broad relevance for clinicians and society at large, we created a unique hybrid research model. This is a new paradigm that focuses on distinct and well-defined studies where the funding, protocol writing, study design, and implementation are shared by experts from both the pastoral and clinical spaces. A team of theologians, researchers, and healthcare providers, including clinical pain psychologists, built a coalition leveraging their respective skill sets. Each expert is housed in their own environs, creating a functional network that has proven academically productive and pastorally effective. Key outputs include the creation and validation of a new psychometric measure, the Pain-related PRAYER Scale (PPRAYERS), an associated bedside prayer tool and a full-scale dissemination strategy through journal publications and specialty society conferences. This collaborative prototype is also an ideal fit for integrated knowledge translation platforms, and it is a promising paradigm for future collaborative projects focused on spirituality and mental health. Full article
Show Figures

Figure 1

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 347
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

15 pages, 288 KiB  
Systematic Review
Interventions to Improve Vaccination Uptake Among Adults: A Systematic Review and Meta-Analysis
by Anelisa Jaca, Lindi Mathebula, Thobile Malinga, Kimona Rampersadh, Masibulele Zulu, Ameer Steven-Jorg Hohlfeld, Charles Shey Wiysonge, Julie C. Jacobson Vann and Duduzile Ndwandwe
Vaccines 2025, 13(8), 811; https://doi.org/10.3390/vaccines13080811 (registering DOI) - 30 Jul 2025
Viewed by 246
Abstract
Background: Immunization is a highly effective intervention for controlling over 20 life-threatening infectious diseases, significantly reducing both morbidity and mortality rates. One notable achievement in vaccination efforts was the global eradication of smallpox, which the World Health Assembly declared on 8 May 1980. [...] Read more.
Background: Immunization is a highly effective intervention for controlling over 20 life-threatening infectious diseases, significantly reducing both morbidity and mortality rates. One notable achievement in vaccination efforts was the global eradication of smallpox, which the World Health Assembly declared on 8 May 1980. Additionally, there has been a remarkable 99.9% reduction in wild poliovirus cases since 1988, decreasing from more than 350,000 cases that year to just 30 cases in 2022. Objectives: The objective of this review was to assess the effects of various interventions designed to increase vaccination uptake among adults. Search Methods: A thorough search was conducted in the CENTRAL, Embase Ovid, Medline Ovid, PubMed, Web of Science, and Global Index Medicus databases for primary studies. This search was conducted in August 2021 and updated in November 2024. Selection Criteria: Randomized trials were eligible for inclusion in this review, regardless of publication status or language. Data Analysis: Two authors independently screened the search outputs to select potentially eligible studies. Risk ratios (RR) with 95% confidence intervals (CI) were calculated for each randomized controlled trial (RCT). A meta-analysis was conducted using a random-effects model, and the quality of the evidence was assessed using the GRADE approach. Main Results: A total of 35 randomized controlled trials met the inclusion criteria and were included in this review, with the majority conducted in the United States. The interventions targeted adults aged 18 and older who were eligible for vaccination, involving a total of 403,709 participants. The overall pooled results for interventions aimed at increasing influenza vaccination showed a risk ratio of 1.41 (95% CI: 1.15, 1.73). Most studies focused on influenza vaccination (18 studies), while the remaining studies examined various other vaccines, including those for hepatitis A, COVID-19, hepatitis B, pneumococcal disease, tetanus, diphtheria, pertussis (Tdap), herpes zoster, and human papillomavirus (HPV). The results indicate that letter reminders were slightly effective in increasing influenza vaccination uptake compared to the control group (RR: 1.75, 95% CI: 0.97, 1.16; 6 studies; 161,495 participants; low-certainty evidence). Additionally, participants who received education interventions showed increased levels of influenza vaccination uptake compared to those in the control group (RR: 1.88, 95% CI: 0.61, 5.76; 3 studies; 1318 participants; low-certainty evidence). Furthermore, tracking and outreach interventions also led to an increase in influenza vaccination uptake (RR: 1.87, 95% CI: 0.78, 4.46; 2 studies; 33,752 participants; low-certainty evidence). Conclusions: Letter reminders and educational interventions targeted at recipients are effective in increasing vaccination uptake compared to control groups. Full article
20 pages, 4256 KiB  
Article
Design Strategies for Stack-Based Piezoelectric Energy Harvesters near Bridge Bearings
by Philipp Mattauch, Oliver Schneider and Gerhard Fischerauer
Sensors 2025, 25(15), 4692; https://doi.org/10.3390/s25154692 - 29 Jul 2025
Viewed by 181
Abstract
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as [...] Read more.
Energy harvesting systems (EHSs) are widely used to power wireless sensors. Piezoelectric harvesters have the advantage of producing an electric signal directly related to the exciting force and can thus be used to power condition monitoring sensors in dynamically loaded structures such as bridges. The need for such monitoring is exemplified by the fact that the condition of close to 25% of public roadway bridges in, e.g., Germany is not satisfactory. Stack-based piezoelectric energy harvesting systems (pEHSs) installed near bridge bearings could provide information about the traffic and dynamic loads on the one hand and condition-dependent changes in the bridge characteristics on the other. This paper presents an approach to co-optimizing the design of the mechanical and electrical components using a nonlinear solver. Such an approach has not been described in the open literature to the best of the authors’ knowledge. The mechanical excitation is estimated through a finite element simulation, and the electric circuitry is modeled in Simulink to account for the nonlinear characteristics of rectifying diodes. We use real traffic data to create statistical randomized scenarios for the optimization and statistical variation. A main result of this work is that it reveals the strong dependence of the energy output on the interaction between bridge, harvester, and traffic details. A second result is that the methodology yields design criteria for the harvester such that the energy output is maximized. Through the case study of an actual middle-sized bridge in Germany, we demonstrate the feasibility of harvesting a time-averaged power of several milliwatts throughout the day. Comparing the total amount of harvested energy for 1000 randomized traffic scenarios, we demonstrate the suitability of pEHS to power wireless sensor nodes. In addition, we show the potential sensory usability for traffic observation (vehicle frequency, vehicle weight, axle load, etc.). Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

Back to TopTop