Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = public transportation monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 336 KiB  
Brief Report
Molecular Detection of Mutations in the penA and 23S rRNA Genes of Neisseria gonorrhoeae Related to Decreased Cephalosporin and Azithromycin Susceptibility in Rectal Specimens from Men Who Have Sex with Men (MSM) in Lima, Peru
by Francesca Vasquez, Maria Eguiluz, Silver K. Vargas, Jazmin Qquellon, Carlos F. Caceres, Jeffrey D. Klausner and Kelika A. Konda
Trop. Med. Infect. Dis. 2025, 10(8), 211; https://doi.org/10.3390/tropicalmed10080211 - 28 Jul 2025
Viewed by 256
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, represents a major public health concern due to its increasing antimicrobial resistance. While often asymptomatic—particularly in extragenital infections—untreated cases can lead to severe complications and further transmission. Despite global efforts to monitor antimicrobial resistance, data [...] Read more.
Neisseria gonorrhoeae, the causative agent of gonorrhea, represents a major public health concern due to its increasing antimicrobial resistance. While often asymptomatic—particularly in extragenital infections—untreated cases can lead to severe complications and further transmission. Despite global efforts to monitor antimicrobial resistance, data on the molecular determinants underlying decreased susceptibility in N. gonorrhoeae remain scarce in Peru. This study aimed to detect mutations in the penA and 23S rRNA genes, which confer decreased susceptibility to cephalosporins and azithromycin resistance. We extracted DNA from 124 N. gonorrhoeae-positive clinical rectal specimens collected in Aptima Combo 2 transport tubes from MSM patients. These DNA samples were then screened using the Mismatch Amplification Mutation Assay-based real-time PCR (MAMA-qPCR) to identify mutations in the 23S rRNA and penA genes. Each sample underwent separate reactions to detect A2059G and C2611T mutations in the 23S rRNA gene, and 86 of these samples were further tested in individual qPCR assays for the penA D345 deletion (D345del) or G545S mutations. Sanger sequencing was performed on all DNA samples positive for 23S rRNA mutations by MAMA-qPCR assay, and on 27 DNA samples that yielded sufficient penA amplicons for additional sequencing. Using the MAMA-qPCR assay for the 23S rRNA gene, 64 of 124 samples amplified in the A2059G reaction: 2 (3.1%) carried the mutation, and 62 were classified as wild type. In the C2611T reaction, 42 of 124 samples amplified, and none of them carried the mutation. Using the MAMA-qPCR assay for the penA gene, we only analyzed 86 samples, as the remaining 38 samples had insufficient DNA yield. A total of 44 of the 86 samples amplified in the D345del reaction: 5 (11.4%) carried the D345del, and 39 were classified as wild type. In the G545S reaction, 4 (6.4%) carried the mutation, and 58 were classified as wild type. Finally, sequencing of the penA gene in the 27 samples revealed mutations related to decreased susceptibility to cephalosporins. This study identified genetic mutations conferring resistance to azithromycin and decreased susceptibility to cephalosporins, providing an overview of the circulating mutations conferring resistance in N. gonorrhoeae strains in Peru. Full article
Show Figures

Figure 1

19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 311
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 488
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

22 pages, 1400 KiB  
Article
Reliability Study of Electric Buses in the Urban Public Transport System
by Andrzej Niewczas, Joanna Rymarz, Marcin Ślęzak, Dariusz Kasperek and Piotr Hołyszko
Energies 2025, 18(14), 3863; https://doi.org/10.3390/en18143863 - 20 Jul 2025
Viewed by 403
Abstract
Contemporary research on electric buses focuses mainly on the following issues: energy efficiency, range and transport costs, and traction battery technology. However, little research has been conducted on operational reliability. This article presents a comparative assessment of the reliability of electric buses in [...] Read more.
Contemporary research on electric buses focuses mainly on the following issues: energy efficiency, range and transport costs, and traction battery technology. However, little research has been conducted on operational reliability. This article presents a comparative assessment of the reliability of electric buses in relation to combustion engine buses. The research was conducted under real conditions in the city of Lublin, Poland. The reliability functions of buses and their structural components were determined based on the Weibull distribution. It was shown that electric buses have a shorter distance between failures than combustion engine buses of analogous capacity. The statistical significance of the differences in reliability between electric and combustion engine buses was verified. The suitability of the Weibull model as a model of bus reliability in comparative studies was verified. The results of the research can be used to monitor current sustainable public transport development programs and to improve bus diagnostic and maintenance systems in transport companies. Full article
Show Figures

Figure 1

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 497
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

17 pages, 5116 KiB  
Article
Impact of Real-Time Boundary Conditions from the CAMS Database on CHIMERE Model Predictions
by Anita Tóth and Zita Ferenczi
Air 2025, 3(3), 19; https://doi.org/10.3390/air3030019 - 18 Jul 2025
Viewed by 195
Abstract
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the [...] Read more.
Air quality forecasts play a crucial role in informing the public about atmospheric pollutant levels that pose risks to human health and the environment. The accuracy of these forecasts strongly depends on the quality and resolution of the input data used in the modelling process. At HungaroMet, the Hungarian Meteorological Service, the CHIMERE chemical transport model is used to provide two-day air quality forecasts for the territory of Hungary. This study compares two configurations of the CHIMERE model: the current operational setup, which uses climatological averages from the LMDz-INCA database for boundary conditions, and a test configuration that incorporates real-time boundary conditions from the CAMS global forecast. The primary objective of this work was to assess how the use of real-time versus climatological boundary conditions affects modelled concentrations of key pollutants, including NO2, O3, PM10, and PM2.5. The model results were evaluated against observational data from the Hungarian Air Quality Monitoring Network using a range of statistical metrics. The results indicate that the use of real-time boundary conditions, particularly for aerosol-type pollutants, improves the accuracy of PM10 forecasts. This improvement is most significant under meteorological conditions that favour the long-range transport of particulate matter, such as during Saharan dust or wildfire episodes. These findings highlight the importance of incorporating dynamic, up-to-date boundary data, especially for particulate matter forecasting—given the increasing frequency of transboundary dust events. Full article
Show Figures

Figure 1

28 pages, 5314 KiB  
Article
Environmental Cyanide Pollution from Artisanal Gold Mining in Burkina Faso: Human Exposure Risk Analysis Based on a Conceptual Site Model
by Edmond N’Bagassi Kohio, Seyram Kossi Sossou, Hela Karoui and Hamma Yacouba
Int. J. Environ. Res. Public Health 2025, 22(7), 1125; https://doi.org/10.3390/ijerph22071125 - 16 Jul 2025
Viewed by 430
Abstract
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) [...] Read more.
Artisanal and small-scale gold mining (ASGM) in Burkina Faso increasingly relies on cyanide, intensifying concerns about environmental contamination and human exposure. This study assessed free cyanide levels in water and soil across three ASGM sites—Zougnazagmiline, Guido, and Galgouli. Water samples (surface and groundwater) and topsoil (0–20 cm) were analyzed using the pyridine–pyrazolone method. Data were statistically and spatially processed using SPSS version 29.0 and the Google Earth Engine in conjunction with QGIS version 3.34, respectively. A site conceptual model (SCM) was also developed, based on the literature review, field observations, and validation by multidisciplinary experts in public health, toxicology, ecotoxicology, environmental engineering, and the mining sector, through a semi-structured survey. The results showed that 9.26% of the water samples exceeded the WHO guideline (0.07 mg/L), with peaks of 1.084 mg/L in Guido and 2.42 mg/L in Galgouli. At Zougnazagmiline, the water type differences were significant (F = 64.13; p < 0.001), unlike the other sites. In the soil, 29.36% of the samples exceeded 0.5 mg/kg, with concentrations reaching 9.79 mg/kg in Galgouli. A spatial analysis revealed pollution concentrated near the mining areas but spreading to residential and agricultural zones. The validated SCM integrates pollution sources, transport mechanisms, exposure routes, and vulnerable populations, offering a structured tool for environmental monitoring and health risk assessment in cyanide-impacted mining regions. Full article
Show Figures

Figure 1

19 pages, 2285 KiB  
Review
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Viewed by 841
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as [...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

27 pages, 2217 KiB  
Review
From Detection to Solution: A Review of Machine Learning in PM2.5 Sensing and Sustainable Green Mitigation Approaches (2021–2025)
by Arpita Adhikari and Chaudhery Mustansar Hussain
Processes 2025, 13(7), 2207; https://doi.org/10.3390/pr13072207 - 10 Jul 2025
Viewed by 633
Abstract
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have [...] Read more.
Particulate matter 2.5 (PM2.5) pollution poses severe threats to public health, ecosystems, and urban sustainability. With increasing industrialization and urban sprawl, accurate pollutant monitoring and effective mitigation of PM2.5 have become global priorities. Recent advancements in machine learning (ML) have revolutionized PM2.5 sensing by enabling high-accuracy predictions, and scalable solutions through data-driven approaches. Meanwhile, sustainable green technologies—such as urban greening, phytoremediation, and smart air purification systems—offer eco-friendly, long-term strategies to reduce PM2.5 levels. This review, covering research publications from 2021 to 2025, systematically explores the integration of ML models with conventional sensor networks to enhance pollution forecasting, pollutant source attribution, and intelligent pollutant monitoring. The paper also highlights the convergence of ML and green technologies, including nature-based solutions and AI-driven environmental planning, to support comprehensive air quality management. In addition, the study critically examines integrated policy frameworks and lifecycle-based assessments that enable equitable, sector-specific mitigation strategies across industrial, transportation, energy, and urban planning domains. By bridging the gap between cutting-edge technology and sustainable practices, this study provides a comprehensive roadmap for researchers to combat PM2.5 pollution. Full article
(This article belongs to the Special Issue Environmental Protection and Remediation Processes)
Show Figures

Figure 1

26 pages, 1541 KiB  
Article
Projected Urban Air Pollution in Riyadh Using CMIP6 and Bayesian Modeling
by Khadeijah Yahya Faqeih, Mohamed Nejib El Melki, Somayah Moshrif Alamri, Afaf Rafi AlAmri, Maha Abdullah Aldubehi and Eman Rafi Alamery
Sustainability 2025, 17(14), 6288; https://doi.org/10.3390/su17146288 - 9 Jul 2025
Viewed by 547
Abstract
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach [...] Read more.
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach that combines CMIP6 climate projections with localized air quality data. We analyzed daily concentrations of major pollutants (SO2, NO2) across 15 strategically selected monitoring stations representing diverse urban environments, including traffic corridors, residential areas, healthcare facilities, and semi-natural zones. Climate data from two Earth System Models (CNRM-ESM2-1 and MPI-ESM1.2) were bias-corrected and integrated with historical pollution measurements (2000–2015) using hierarchical Bayesian statistical modeling under SSP2-4.5 and SSP5-8.5 emission scenarios. Our results revealed substantial deterioration in air quality, with projected increases of 80–130% for SO2 and 45–55% for NO2 concentrations by 2070 under high-emission scenarios. Spatial analysis demonstrated pronounced pollution gradients, with traffic corridors (Eastern Ring Road, Northern Ring Road, Southern Ring Road) and densely urbanized areas (King Fahad Road, Makkah Road) experiencing the most severe increases, exceeding WHO guidelines by factors of 2–3. Even semi-natural areas showed significant increases in pollution due to regional transport effects. The hierarchical Bayesian framework effectively quantified uncertainties while revealing consistent degradation trends across both climate models, with the MPI-ESM1.2 model showing a greater sensitivity to anthropogenic forcing. Future concentrations are projected to reach up to 70 μg m−3 for SO2 and exceed 100 μg m−3 for NO2 in heavily trafficked areas by 2070, representing 2–3 times the Traffic corridors showed concentration increases of 21–24% compared to historical baselines, with some stations (R5, R13, and R14) recording projected levels above 4.0 ppb for SO2 under the SSP5-8.5 scenario. These findings highlight the urgent need for comprehensive emission reduction strategies, accelerated renewable energy transition, and reformed urban planning approaches in rapidly developing arid cities. Full article
Show Figures

Figure 1

23 pages, 12120 KiB  
Article
Estimating Macroplastic Mass Transport from Urban Runoff in a Data-Scarce Watershed: A Case Study from Cordoba, Argentina
by María Fernanda Funes, Teresa María Reyna, Carlos Marcelo García, María Lábaque, Sebastián López, Ingrid Strusberg and Susana Vanoni
Sustainability 2025, 17(13), 6177; https://doi.org/10.3390/su17136177 - 5 Jul 2025
Viewed by 485
Abstract
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby [...] Read more.
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby watercourses during storm events. Focusing on the Villa Páez neighborhood in Cordoba, Argentina—a data-scarce and flood-prone urban basin—the approach integrates socio-environmental surveys, field observations, Google Street View analysis, and hydrologic modeling using EPA SWMM 5.2. Macroplastic accumulation on streets was estimated based on observed waste density, and its transport under varying garbage collection intervals and rainfall intensities was simulated using a conceptual pollutant model. Results indicate that plastic mobilization increases substantially with storm intensity and accumulation duration, with the majority of macroplastic mass transported during high-return-period rainfall events. The study highlights the need for frequent waste collection, improved monitoring in vulnerable urban areas, and scenario-based modeling tools to support more effective waste and stormwater management. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 1695 KiB  
Systematic Review
IoT Applications in Agriculture and Environment: A Systematic Review Based on Bibliometric Study in West Africa
by Michel Dossou, Steaven Chédé, Anne-Carole Honfoga, Marianne Balogoun, Péniel Dassi and François Rottenberg
Network 2025, 5(3), 23; https://doi.org/10.3390/network5030023 - 2 Jul 2025
Viewed by 380
Abstract
The Internet of Things (IoT) is an upcoming technology that is increasingly being used for monitoring and analysing environmental parameters and supports the progress of farm machinery. Agriculture is the main source of living for many people, including, for instance, farmers, agronomists and [...] Read more.
The Internet of Things (IoT) is an upcoming technology that is increasingly being used for monitoring and analysing environmental parameters and supports the progress of farm machinery. Agriculture is the main source of living for many people, including, for instance, farmers, agronomists and transporters. It can raise incomes, improve food security and benefit the environment. However, food systems are responsible for many environmental problems. While the use of IoT in agriculture and environment is widely deployed in many developed countries, it is underdeveloped in Africa, particularly in West Africa. This paper aims to provide a systematic review on this technology adoption for agriculture and environment in West African countries. To achieve this goal, the analysis of scientific contributions is performed by performing first a bibliometric study, focusing on the selected articles obtained using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method, and second a qualitative study. The PRISMA analysis was performed based on 226 publications recorded from one database: Web Of Science (WoS). It has been demonstrated that the annual scientific production significantly increased during this last decade. Our conclusions highlight promising directions where IoT could significantly progress sustainability. Full article
(This article belongs to the Special Issue Advanced Technologies in Network and Service Management)
Show Figures

Figure 1

40 pages, 3259 KiB  
Review
Artificial Intelligence Application in Nonpoint Source Pollution Management: A Status Update
by Almando Morain, Ryan Nedd, Kevin Poole, Lauren Hawkins, Micala Jones, Brian Washington and Aavudai Anandhi
Sustainability 2025, 17(13), 5810; https://doi.org/10.3390/su17135810 - 24 Jun 2025
Viewed by 688
Abstract
Artificial intelligence (AI) has the potential to significantly advance the management of nonpoint source pollution (NPSP), a critical environmental issue characterized by diffuse sources and complex transport mechanisms. This study systematically examines current AI applications addressing NPSP through bibliometric and systematic analyses. A [...] Read more.
Artificial intelligence (AI) has the potential to significantly advance the management of nonpoint source pollution (NPSP), a critical environmental issue characterized by diffuse sources and complex transport mechanisms. This study systematically examines current AI applications addressing NPSP through bibliometric and systematic analyses. A total of 124 studies were included after rigorous identification, screening, and eligibility assessments based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Key findings from the bibliometric analysis include publication trends, regional research contributions, author and journal contributions, and core concepts in NPSP. The systematic analysis further provided: (a) a comprehensive synthesis of NPSP characterization, covering pollution sources, key drivers, pollutants, transport pathways, and environmental impacts; (b) identification of emerging AI technologies such as the Internet of Things, unmanned aerial vehicles, and geographic information systems, and their potential applications in NPSP contexts; (c) a detailed classification of AI models used in NPSP assessment, highlighting predictors, predictands, and performance metrics specifically in water quality prediction and monitoring, groundwater vulnerability mapping, and pollutant-specific modeling; and (d) a critical assessment of knowledge gaps categorized into AI model development and validation, data constraints, governance and policy challenges, and system integration, alongside proposed targeted future research directions emphasizing adaptive governance, transparent AI modeling, and interdisciplinary collaboration. The findings from this study provide essential insights for researchers, policymakers, environmental managers, and communities aiming to implement AI-driven strategies to mitigate NPSP. Full article
(This article belongs to the Special Issue AI Application in Sustainable MSWI Process)
Show Figures

Figure 1

29 pages, 14871 KiB  
Article
Landslide Risk Assessment as a Reference for Disaster Prevention and Mitigation: A Case Study of the Renhe District, Panzhihua City, China
by Yimeng Zhou, Lei Xue, Hao Ding, Haoyu Wang, Kun Huang, Longfei Li and Zhuan Li
Remote Sens. 2025, 17(13), 2120; https://doi.org/10.3390/rs17132120 - 20 Jun 2025
Viewed by 528
Abstract
In this study, landslide risk assessment was conducted in the Renhe District, Panzhihua City, China. Firstly, based on 190 landslide points and 10 influencing factors, the landslide hazard was assessed using three models: random forest (RF), eXtreme Gradient Boosting (XGBoost), and Tabular Prior-data [...] Read more.
In this study, landslide risk assessment was conducted in the Renhe District, Panzhihua City, China. Firstly, based on 190 landslide points and 10 influencing factors, the landslide hazard was assessed using three models: random forest (RF), eXtreme Gradient Boosting (XGBoost), and Tabular Prior-data Fitted Network (TabPFN). The results indicate that the RF and XGBoost models exhibit comparable performance, both demonstrating strong generalization and accuracy, with the RF model achieving superior generalization, as evidenced by an area-under-the-curve (AUC) value of 0.9471. While the AUC value of TabPFN is 0.9243, indicating higher accuracy, it also poses a risk of overfitting and is therefore more suitable for applications involving small sample sizes and the need for rapid responses. The vulnerability assessment utilized the Analytic Hierarchy Process (AHP) to determine the weights of four disaster-bearing bodies, with sensitivity analysis revealing that road type was the most sensitive vulnerability factor. Finally, the landslide risk-assessment map of the Renhe District was produced by integrating the landslide hazard assessment map with the vulnerability assessment map. The findings indicate that the high-risk zones comprised 2.08% of the research region, which includes three principal train stations and necessitates enhanced protective measures. The medium-risk zones comprise 34.23% of the total area and are scattered throughout the region. It is important to enhance local capabilities for landslide monitoring and early warning systems. Relevant conclusions can provide a significant reference for landslide disaster prevention and mitigation work in the Renhe District and help ensure the safe operation of public transport infrastructure, such as railway stations and airports in the district. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

22 pages, 1199 KiB  
Article
Assessment of Health Risks Associated with PM10 and PM2.5 Air Pollution in the City of Zvolen and Comparison with Selected Cities in the Slovak Republic
by Patrick Ivan, Marián Schwarz and Miriama Mikušová
Environments 2025, 12(7), 212; https://doi.org/10.3390/environments12070212 - 20 Jun 2025
Viewed by 808
Abstract
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with [...] Read more.
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with increased incidence of respiratory and cardiovascular diseases, asthma attacks, and heart attacks, as well as chronic illnesses and premature mortality. The most vulnerable groups include children, the elderly, and individuals with pre-existing health conditions. This study focuses on the analysis of health risks associated with PM10 and PM2.5 air pollution in the city of Zvolen, which serves as a representative case due to its urban structure, traffic load, and industrial activity. The aim is to assess the current state of air quality, identify the main sources of pollution, and evaluate the health impacts of particulate matter on the local population. The results will be compared with selected Slovak cities—Banská Bystrica and Ružomberok—to understand regional differences in exposure and its health consequences. The results revealed consistently elevated concentrations of particulate matter (PM) across all analyzed cities, frequently exceeding the guideline values recommended by the World Health Organization (WHO), although remaining below the thresholds set by current national legislation. The lowest average concentrations were recorded in the city of Zvolen (PM10: 20 μg/m3; PM2.5: 15 μg/m3). These lower values may be attributed to the location of the reference monitoring station operated by the Slovak Hydrometeorological Institute (SHMÚ), situated on J. Alexy Street in the southern part of the city—south of Zvolen’s primary industrial emitter, Kronospan. Due to predominantly southerly wind patterns, PM particles are transported northward, potentially leading to higher pollution loads in the northern areas of the city, which are currently not being monitored. We analyzed trends in PM10 and PM2.5 concentrations and their relationship with hospitalization data for respiratory diseases. The results indicate a clear correlation between the concentration of suspended particulate matter and the number of hospital admissions due to respiratory illnesses. Our findings thus confirm the significant adverse effects of particulate air pollution on population health and highlight the urgent need for systematic monitoring and effective measures to reduce emissions, particularly in urban areas. Full article
Show Figures

Figure 1

Back to TopTop