Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (958)

Search Parameters:
Keywords = public antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2150 KiB  
Article
First Survey on the Seroprevalence of Coxiella burnetii in Positive Human Patients from 2015 to 2024 in Sardinia, Italy
by Cinzia Santucciu, Maria Paola Giordo, Antonio Tanda, Giovanna Chessa, Matilde Senes, Gabriella Masu, Giovanna Masala and Valentina Chisu
Pathogens 2025, 14(8), 790; https://doi.org/10.3390/pathogens14080790 (registering DOI) - 7 Aug 2025
Abstract
Coxiella burnetii, the etiological agent of Q fever, is a globally distributed zoonotic pathogen affecting both animals and humans. Despite its known endemicity in various Mediterranean regions, data on human seroprevalence in Sardinia are still lacking. This study aimed to assess seroprevalence [...] Read more.
Coxiella burnetii, the etiological agent of Q fever, is a globally distributed zoonotic pathogen affecting both animals and humans. Despite its known endemicity in various Mediterranean regions, data on human seroprevalence in Sardinia are still lacking. This study aimed to assess seroprevalence in patients and to analyze the annual positivity rate related to the serum samples collected in Sardinia over a ten-year period (2015–2024). For this purpose, a total of 1792 patients were involved in the survey, and 4310 serum samples were analyzed using indirect immunofluorescence assay (IFI) to detect IgM and IgG antibodies against C. burnetii. The global seroprevalence rates relating to all the patients over a ten-year period were determined along with the annual positivity rate and trends from all sera. An overall seroprevalence of 27.0% and an average of annual positivity rate of 16.0% were determined, with the IFI detecting IgG antibodies in 15.2% of positive samples and IgM antibodies in 0.9%, suggesting significant prior exposure of the population evaluated. Annual positivity rates ranged from 24.8% in 2016 to 8.0% in 2020. These results confirmed the endemic circulation of C. burnetii in Sardinia and the ongoing risk of human exposure. A GIS-based map was built to evidence the spatial distribution of Q fever in Sardinia. Interestingly, areas with higher seroprevalence appear to coincide with the distribution of sheep and goat farms, indicating a link between livestock and human exposure. These findings confirm the circulation of C. burnetii in Sardinia and underscore the importance of epidemiological monitoring, public health interventions, and educational efforts in populations at increased risk. Full article
(This article belongs to the Section Bacterial Pathogens)
13 pages, 2106 KiB  
Article
Diagnosis of the Multiepitope Protein rMELEISH3 for Canine Visceral Leishmaniasis
by Rita Alaide Leandro Rodrigues, Mariana Teixeira de Faria, Isadora Braga Gandra, Juliana Martins Machado, Ana Alice Maia Gonçalves, Daniel Ferreira Lair, Diana Souza de Oliveira, Lucilene Aparecida Resende, Maykelin Fuentes Zaldívar, Ronaldo Alves Pinto Nagem, Rodolfo Cordeiro Giunchetti, Alexsandro Sobreira Galdino and Eduardo Sergio da Silva
Appl. Sci. 2025, 15(15), 8683; https://doi.org/10.3390/app15158683 - 6 Aug 2025
Abstract
Canine visceral leishmaniasis (CVL) is a major zoonosis that poses a growing challenge to public health services, as successful disease management requires sensitive, specific, and rapid diagnostic methods capable of identifying infected animals even at a subclinical level. The objective of this study [...] Read more.
Canine visceral leishmaniasis (CVL) is a major zoonosis that poses a growing challenge to public health services, as successful disease management requires sensitive, specific, and rapid diagnostic methods capable of identifying infected animals even at a subclinical level. The objective of this study was to evaluate the performance of the recombinant chimeric protein rMELEISH3 as an antigen in ELISA assays for the robust diagnosis of CVL. The protein was expressed in a bacterial system, purified by affinity chromatography, and evaluated through a series of serological assays using serum samples from dogs infected with Leishmania infantum. ROC curve analysis revealed a diagnostic sensitivity of 96.4%, a specificity of 100%, and an area under the curve of 0.996, indicating excellent discriminatory power. Furthermore, rMELEISH3 was recognized by antibodies present in the serum of dogs with low parasite loads, reinforcing the diagnostic potential of the assay in asymptomatic cases. It is concluded that the use of the recombinant antigen rMELEISH3 could significantly contribute to the improvement of CVL surveillance and control programs in endemic areas of Brazil and other countries, by offering a safe, reproducible and effective alternative to the methods currently recommended for the serological diagnosis of the disease. Full article
Show Figures

Figure 1

17 pages, 1472 KiB  
Article
Single-Dose Intranasal or Intramuscular Administration of Simian Adenovirus-Based H1N1 Vaccine Induces a Robust Humoral Response and Complete Protection in Mice
by Daria V. Voronina, Irina V. Vavilova, Olga V. Zubkova, Tatiana A. Ozharovskaia, Olga Popova, Anastasia S. Chugunova, Polina P. Goldovskaya, Denis I. Zrelkin, Daria M. Savina, Irina A. Favorskaya, Dmitry V. Shcheblyakov, Denis Y. Logunov and Alexandr L. Gintsburg
Viruses 2025, 17(8), 1085; https://doi.org/10.3390/v17081085 - 5 Aug 2025
Abstract
Despite the widespread accessibility of vaccines and antivirals, seasonal influenza virus epidemics continue to pose a threat to public health. In this study, we constructed a recombinant replication-deficient simian adenovirus type 25 vector carrying the full-length hemagglutinin (HA) of the H1N1 influenza virus, [...] Read more.
Despite the widespread accessibility of vaccines and antivirals, seasonal influenza virus epidemics continue to pose a threat to public health. In this study, we constructed a recombinant replication-deficient simian adenovirus type 25 vector carrying the full-length hemagglutinin (HA) of the H1N1 influenza virus, named rSAd25-H1. Both systemic and mucosal humoral immune responses, as well as the protective efficacy, were assessed in mice immunized via the intramuscular (IM) or intranasal (IN) route. A single-dose IM or IN administration of rSAd25-H1 elicited a robust systemic IgG antibody response, including hemagglutination inhibition antibodies. As expected, only IN immunization was able to induce IgA production in serum and respiratory mucosa. Notably, a single dose of rSAd25-H1 at the highest dose (1010 viral particles) conferred complete protection against lethal homologous H1N1 challenge in mice despite the route of administration. These findings demonstrate the potential of simian adenovirus type 25-based vectors as a promising candidate for intranasal vaccine development targeting respiratory pathogens. Full article
Show Figures

Figure 1

17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 - 3 Aug 2025
Viewed by 224
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

17 pages, 3738 KiB  
Article
Beyond Spheres: Evaluating Gold Nano-Flowers and Gold Nano-Stars for Enhanced Aflatoxin B1 Detection in Lateral Flow Immunoassays
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2025, 15(8), 495; https://doi.org/10.3390/bios15080495 - 1 Aug 2025
Viewed by 243
Abstract
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the [...] Read more.
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the introduction of gold nanoparticles, which provide enhanced sensitivity and selectivity (compared, for example, to latex beads or carbon nanoparticles) for the detection of target analytes, due to their optical properties, chemical stability and ease of functionalization. In this work, gold nanoparticle-based LFIAs are developed for the detection of aflatoxin B1, and the relative performance of different morphology particles is evaluated. LFIA using gold nano-labels allowed for aflatoxin B1 detection over a range of 0.01 ng/mL–100 ng/mL. Compared to spherical gold nanoparticles and gold nano-flowers, star-shaped gold nanoparticles show increased antibody binding efficiency of 86% due to their greater surface area. Gold nano-stars demonstrated the highest sensitivity, achieving a limit of detection of 0.01ng/mL, surpassing the performance of both spherical gold nanoparticles and gold nano-flowers. The use of star-shaped particles as nano-labels has demonstrated a five-fold improvement in sensitivity, underscoring the potential of integrating diverse nanostructures into LFIA for significantly improving analyte detection. Moreover, the robustness and feasibility of gold nano-stars employed as labels in LFIA was assessed in detecting aflatoxin B1 in a wheat matrix. Improved sensitivity with gold nano-stars holds promise for applications in food safety monitoring, public health diagnostics and rapid point-of-care diagnostics. This work opens the pathway for further development of LFIA utilizing novel nanostructures to achieve unparallel precision in diagnostics and sensing. Full article
Show Figures

Figure 1

27 pages, 2147 KiB  
Systematic Review
Immunogenicity, Safety, and Protective Efficacy of Mucosal Vaccines Against Respiratory Infectious Diseases: A Systematic Review and Meta-Analysis
by Jiaqi Chen, Weitong Lin, Chaokai Yang, Wenqi Lin, Xinghui Cheng, Haoyuan He, Xinhua Li and Jingyou Yu
Vaccines 2025, 13(8), 825; https://doi.org/10.3390/vaccines13080825 - 31 Jul 2025
Viewed by 303
Abstract
Background/Objectives: Mucosal vaccines, delivered intranasally or via inhalation, are being studied for respiratory infectious diseases like COVID-19 and influenza. These vaccines aim to provide non-invasive administration and strong immune responses at infection sites, making them a promising area of research. This systematic review [...] Read more.
Background/Objectives: Mucosal vaccines, delivered intranasally or via inhalation, are being studied for respiratory infectious diseases like COVID-19 and influenza. These vaccines aim to provide non-invasive administration and strong immune responses at infection sites, making them a promising area of research. This systematic review and meta-analysis assessed their immunogenicity, safety, and protective efficacy. Methods: The study design was a systematic review and meta-analysis, searching PubMed and Cochrane databases up to 30 May 2025. Inclusion criteria followed the PICOS framework, focusing on mucosal vaccines for COVID-19, influenza, RSV, pertussis, and tuberculosis. Results: A total of 65 studies with 229,614 participants were included in the final analysis. Mucosal COVID-19 vaccines elicited higher neutralizing antibodies compared to intramuscular vaccines (SMD = 2.48, 95% CI: 2.17–2.78 for wild-type; SMD = 1.95, 95% CI: 1.32–2.58 for Omicron), with varying efficacy by route (inhaled VE = 47%, 95% CI: 22–74%; intranasal vaccine VE = 17%, 95% CI: 0–31%). Mucosal influenza vaccines protected children well (VE = 62%, 95% CI: 30–46%, I2 = 17.1%), but seroconversion rates were lower than those of intramuscular vaccines. RSV and pertussis vaccines had high seroconversion rates (73% and 52%, respectively). Tuberculosis vaccines were reviewed systemically, exhibiting robust cellular immunogenicity. Safety was comparable to intramuscular vaccines or placebo, with no publication bias detected. Conclusions: Current evidence suggests mucosal vaccines are immunogenic, safe, and protective, particularly for respiratory diseases. This review provides insights for future research and vaccination strategies, though limitations include varying efficacy by route and study heterogeneity. Full article
(This article belongs to the Special Issue Immune Correlates of Protection in Vaccines, 2nd Edition)
Show Figures

Figure 1

19 pages, 8583 KiB  
Article
Development and Immunogenic Evaluation of a Recombinant Vesicular Stomatitis Virus Expressing Nipah Virus F and G Glycoproteins
by Huijuan Guo, Renqiang Liu, Dan Pan, Yijing Dang, Shuhuai Meng, Dan Shan, Xijun Wang, Jinying Ge, Zhigao Bu and Zhiyuan Wen
Viruses 2025, 17(8), 1070; https://doi.org/10.3390/v17081070 - 31 Jul 2025
Viewed by 307
Abstract
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics [...] Read more.
Nipah virus (NiV) is a highly pathogenic bat-borne zoonotic pathogen that poses a significant threat to human and animal health, with fatality rates exceeding 70% in some outbreaks. Despite its significant public health impact, there are currently no licensed vaccines or specific therapeutics available. Various virological tools—such as reverse genetics systems, replicon particles, VSV-based pseudoviruses, and recombinant Cedar virus chimeras—have been widely used to study the molecular mechanisms of NiV and to support vaccine development. Building upon these platforms, we developed a replication-competent recombinant vesicular stomatitis virus (rVSVΔG-eGFP-NiVBD F/G) expressing NiV attachment (G) and fusion (F) glycoproteins. This recombinant virus serves as a valuable tool for investigating NiV entry mechanisms, cellular tropism, and immunogenicity. The virus was generated by replacing the VSV G protein with NiV F/G through reverse genetics, and protein incorporation was confirmed via immunofluorescence and electron microscopy. In vitro, the virus exhibited robust replication, characteristic cell tropism, and high viral titers in multiple cell lines. Neutralization assays showed that monoclonal antibodies HENV-26 and HENV-32 effectively neutralized the recombinant virus. Furthermore, immunization of golden hamsters with inactivated rVSVΔG-eGFP-NiVBD F/G induced potent neutralizing antibody responses, demonstrating its robust immunogenicity. These findings highlight rVSVΔG-eGFP-NiVBD F/G as an effective platform for NiV research and vaccine development. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 666 KiB  
Article
Low Hepatitis B Immunity Among Ukrainian Refugee Children and Adolescents in Poland: Need for Targeted Screening and Vaccination
by Lidia Stopyra, Karolina Banach, Magdalena Wood, Justyna Stala and Anna Merklinger-Gruchała
Vaccines 2025, 13(8), 816; https://doi.org/10.3390/vaccines13080816 - 31 Jul 2025
Viewed by 284
Abstract
Background: The 2022 conflict in Ukraine triggered mass migration, leading to a significant influx of Ukrainian refugee children into Poland. This situation raises concerns about hepatitis B virus immunity, as Ukraine’s hepatitis B vaccination coverage has been inconsistent compared to Poland’s high vaccination [...] Read more.
Background: The 2022 conflict in Ukraine triggered mass migration, leading to a significant influx of Ukrainian refugee children into Poland. This situation raises concerns about hepatitis B virus immunity, as Ukraine’s hepatitis B vaccination coverage has been inconsistent compared to Poland’s high vaccination rates. Objective: To evaluate hepatitis B immunity and infection prevalence among Ukrainian refugee children residing in Southern Poland and to assess implications for vaccination strategies in the host country. Methods: A prospective cross-sectional study was conducted on 1322 Ukrainian refugee children (0–18 years) presenting to a pediatric infectious diseases department in Southern Poland between February 2022 and March 2024. Data on vaccination history, demographic characteristics, and selected laboratory parameters, including hepatitis B surface antigen and anti-HBs antibody levels, were collected. Protective immunity was defined as anti-HBs antibody levels ≥10 IU/L. Results: Among the participants (mean age 9.9 years; 50.2% female), 83.2% were reported as vaccinated according to national immunization programs, but only 64.9% demonstrated protective anti-HBs antibody levels. Protective antibody prevalence declined significantly with age, with less than half of adolescents aged 15–18 years showing immunity. Five children (0.4%) were diagnosed with chronic hepatitis B, four of whom were unvaccinated. Conclusions: This study identifies a significant gap in hepatitis B immunity among Ukrainian adolescent refugees residing in Southern Poland, with less than half possessing protective anti-HBs antibody levels. This immunity gap and the high risk of sexual transmission of the hepatitis B virus in adolescents highlight the urgent need for comprehensive surveillance, screening, and catch-up vaccination programs. Full article
(This article belongs to the Special Issue Vaccination, Public Health and Epidemiology)
Show Figures

Figure 1

36 pages, 7948 KiB  
Review
Advancing Food Safety Surveillance: Rapid and Sensitive Biosensing Technologies for Foodborne Pathogenic Bacteria
by Yuerong Feng, Jiyong Shi, Jiaqian Liu, Zhecong Yuan and Shujie Gao
Foods 2025, 14(15), 2654; https://doi.org/10.3390/foods14152654 - 29 Jul 2025
Viewed by 448
Abstract
Foodborne pathogenic bacteria critically threaten public health and food industry sustainability, serving as a predominant trigger of food contamination incidents. To mitigate these risks, the development of rapid, sensitive, and highly specific detection technologies is essential for early warning and effective control of [...] Read more.
Foodborne pathogenic bacteria critically threaten public health and food industry sustainability, serving as a predominant trigger of food contamination incidents. To mitigate these risks, the development of rapid, sensitive, and highly specific detection technologies is essential for early warning and effective control of foodborne diseases. In recent years, biosensors have gained prominence as a cutting-edge tool for detecting foodborne pathogens, owing to their operational simplicity, rapid response, high sensitivity, and suitability for on-site applications. This review provides a comprehensive evaluation of critical biorecognition elements, such as antibodies, aptamers, nucleic acids, enzymes, cell receptors, molecularly imprinted polymers (MIPs), and bacteriophages. We highlight their design strategies, recent advancements, and pivotal contributions to improving detection specificity and sensitivity. Additionally, we systematically examine mainstream biosensor-based detection technologies, with a focus on three dominant types: electrochemical biosensors, optical biosensors, and piezoelectric biosensors. For each category, we analyze its fundamental principles, structural features, and practical applications in food safety monitoring. Finally, this review identifies future research priorities, including multiplex target detection, enhanced processing of complex samples, commercialization, and scalable deployment of biosensors. These advancements are expected to bridge the gap between laboratory research and real-world food safety surveillance, fostering more robust and practical solutions. Full article
Show Figures

Figure 1

13 pages, 1778 KiB  
Article
Preparation and Characterization of Monoclonal Antibodies Against the Porcine Rotavirus VP6 Protein
by Botao Sun, Dingyi Mao, Jing Chen, Xiaoqing Bi, Linke Zou, Jishan Bai, Rongchao Liu, Ping Hao, Qi Wang, Linhan Zhong, Panchi Zhang and Bin Zhou
Vet. Sci. 2025, 12(8), 710; https://doi.org/10.3390/vetsci12080710 - 29 Jul 2025
Viewed by 298
Abstract
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, [...] Read more.
Porcine Rotavirus (PoRV), a predominant causative agent of neonatal diarrhea in piglets, shares substantial genetic homology with human rotavirus and represents a considerable threat to both public health and the global swine industry in the absence of specific antiviral interventions. The VP6 protein, an internal capsid component, is characterized by exceptional sequence conservation and robust immunogenicity, rendering it an ideal candidate for viral genotyping and vaccine development. In the present study, the recombinant plasmid pET28a(+)-VP6 was engineered to facilitate the high-yield expression and purification of the VP6 antigen. BALB/c mice were immunized to generate monoclonal antibodies (mAbs) through hybridoma technology, and the antigenic specificity of the resulting mAbs was stringently validated. Subsequently, a panel of truncated protein constructs was designed to precisely map linear B-cell epitopes, followed by comparative conservation analysis across diverse PoRV strains. Functional validation demonstrated that all three mAbs exhibited high-affinity binding to VP6, with a peak detection titer of 1:3,000,000 and exclusive specificity toward PoRVA. These antibodies effectively recognized representative genotypes such as G3 and X1, while exhibiting no cross-reactivity with unrelated viral pathogens; however, their reactivity against other PoRV serogroups (e.g., types B and C) remains to be further elucidated. Epitope mapping identified two novel linear B-cell epitopes, 128YIKNWNLQNR137 and 138RQRTGFVFHK147, both displaying strong sequence conservation among circulating PoRV strains. Collectively, these findings provide a rigorous experimental framework for the functional dissection of VP6 and reinforce its potential as a valuable diagnostic and immunoprophylactic target in PoRV control strategies. Full article
Show Figures

Figure 1

19 pages, 4424 KiB  
Article
Humoral and Memory B Cell Responses Following SARS-CoV-2 Infection and mRNA Vaccination
by Martina Bozhkova, Ralitsa Raycheva, Steliyan Petrov, Dobrina Dudova, Teodora Kalfova, Marianna Murdjeva, Hristo Taskov and Velizar Shivarov
Vaccines 2025, 13(8), 799; https://doi.org/10.3390/vaccines13080799 - 28 Jul 2025
Viewed by 374
Abstract
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T [...] Read more.
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T cells plays a vital role in sustaining immunity. Materials and Methods: We conducted a longitudinal prospective study over 12 months, enrolling 285 participants in total, either after natural infection or vaccination with BNT162b2 or mRNA-1273. Peripheral blood samples were collected at four defined time points (baseline, 1–2 months, 6–7 months, and 12–13 months after vaccination or disease onset). Immune responses were assessed through serological assays quantifying anti-RBD IgG and neutralizing antibodies, B-ELISPOT, and multiparameter flow cytometry for S1-specific memory B cells. Results: Both mRNA vaccines induced robust B cell and antibody responses, exceeding those observed after natural infection. Memory B cell frequencies peaked at 6 months and declined by 12 months, but remained above the baseline. The mRNA-1273 vaccine elicited stronger and more durable humoral and memory B-cell-mediated immunity compared to BNT162b2, likely influenced by its higher mRNA dose and longer prime-boost interval. Class-switched memory B cells and S1-specific B cells were significantly expanded in vaccine recipients. Natural infection induced more heterogeneous immune memory. Conclusions: Both mRNA vaccination and natural SARS-CoV-2 infection induce a comparable expansion of memory B cell subsets, reflecting a consistent pattern of humoral immune responses across all studied groups. These findings highlight the importance of vaccination in generating sustained immunological memory and suggest that the vaccine platform and dosage influence the magnitude and durability of immune responses against SARS-CoV-2. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

15 pages, 271 KiB  
Review
The Number Needed to Immunize (NNI) to Assess the Benefit of a Prophylaxis Intervention with Monoclonal Antibodies Against RSV
by Sara Boccalini, Veronica Gironi, Primo Buscemi, Paolo Bonanni, Barbara Muzii, Salvatore Parisi, Marta Borchiellini and Angela Bechini
Vaccines 2025, 13(8), 791; https://doi.org/10.3390/vaccines13080791 - 25 Jul 2025
Viewed by 369
Abstract
Introduction: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections in infants and children, as well as hospitalizations for respiratory infections in the pediatric population, representing a significant public health concern. Nirsevimab, a long-acting anti-RSV monoclonal antibody, has recently [...] Read more.
Introduction: Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory tract infections in infants and children, as well as hospitalizations for respiratory infections in the pediatric population, representing a significant public health concern. Nirsevimab, a long-acting anti-RSV monoclonal antibody, has recently been approved by the European Medicines Agency (EMA). The aim of this study is to assess the utility of certain parameters, such as the Number Needed to Immunize (NNI), in supporting decision-makers regarding the introduction of nirsevimab as a universal prophylactic measure. Methods: A literature review was conducted to identify the definition and application of the NNI in the context of infectious disease prevention. The following online databases were consulted: Scopus, MEDLINE, Google Scholar, Web of Science, and Cochrane Library. The search was restricted to English-language texts published between 1 January 2000 and 30 January 2025. Results: The NNI represents the number of individuals who need to be immunized to prevent clinical outcomes such as medical visits and hospitalizations caused by infectious diseases. Six studies were identified that utilized this parameter to outline the benefits of immunization and describe the advantages of using monoclonal antibodies for RSV disease. Finelli and colleagues report that to prevent one RSV-related hospitalization, 37–85 infants aged 0–5 months and 107–280 infants aged 6–11 months would need to be immunized with long-acting anti-RSV antibodies. A recent study by Mallah et al. on the efficacy of nirsevimab estimates that the NNI required to prevent one RSV-related hospitalization is 25 infants. Studies by Francisco and O’Leary report NNI values of 82 and 128 infants, respectively, to prevent one RSV-related hospitalization with nirsevimab. Mallah et al. describe NNI as a metric useful to quantify the immunization effort needed to prevent a single RSV hospitalization. A recent Italian study reports that 35 infants need to be immunized to prevent one hospitalization due to RSV-LRTI and 3 infants need to be immunized to prevent one primary care visit due to RSV-LRTI. The studies indicate that the NNI for anti-RSV monoclonal antibodies is lower than the corresponding Number Needed to Vaccinate (NNV) for vaccines already included in national immunization programs. The main limitations of using this parameter include the absence of a shared threshold for interpreting results and the lack of consideration for the indirect effects of immunization on the population. Conclusions: The NNI is an easily understandable tool that can be used to convey the value of an immunization intervention to a variety of stakeholders, thereby supporting public health decision-making processes when considered in association with the uptake of the preventative strategy. At the current status, the estimated NNI of monoclonal antibodies against RSV results favourable and confirms the use in the first year of life for the prevention of RSV disease. Full article
16 pages, 3032 KiB  
Article
Severe Scrub Typhus with Acute Kidney Injury: Urine PCR Evidence from an East Coast Malaysian Cluster
by Siti Roszilawati Ramli, Nuridayu Arifin, Mohd Fahmi Ismail, Shirley Yi Fen Hii, Nur Suffia Sulaiman, Ernieenor Faraliana Che Lah and Nik Abdul Hadi Nik Abdul Aziz
Trop. Med. Infect. Dis. 2025, 10(8), 208; https://doi.org/10.3390/tropicalmed10080208 - 25 Jul 2025
Viewed by 492
Abstract
Background: Scrub typhus (ST) is caused by Orientia tsutsugamushi (OT) infection, which is transmitted to humans through the bites of infected chiggers. The clinical presentations range from mild to life-threatening multi-organ dysfunction. This report describes a cluster of ST cases involving five oil [...] Read more.
Background: Scrub typhus (ST) is caused by Orientia tsutsugamushi (OT) infection, which is transmitted to humans through the bites of infected chiggers. The clinical presentations range from mild to life-threatening multi-organ dysfunction. This report describes a cluster of ST cases involving five oil palm estate workers in Pekan district, Pahang, Malaysia. Methods: The clinical history, laboratory, and entomological investigation were conducted on the patients, including the index case and four suspected cases in the cluster. Polymerase chain reaction (PCR) tests for OT and genotyping were performed on the patients’ blood and urine samples. Serological testing by indirect immunoperoxidase (IIP) test against Rickettsial diseases was also conducted. Principal Findings: Patients presented with fever, myalgia, headache, rash, cough, and eschar. The index case developed severe ST complicated by acute kidney injury (AKI) and respiratory distress, requiring intubation and ventilation at the intensive care unit of a tertiary hospital. ST was confirmed through PCR analysis of a urine sample, showcasing a novel diagnostic approach. The other four cases were confirmed by a four-fold rise in immunoglobulin G (IgG) antibody titers. Conclusions: oil palm estate workers are at high risk for chigger exposure in Malaysia. Awareness among clinicians and the public of ST is crucial for effective prevention, accurate diagnosis, and optimal management. Full article
Show Figures

Figure 1

19 pages, 14428 KiB  
Article
Bivalent Oral Vaccine Using Attenuated Salmonella Gallinarum Delivering HA and NA-M2e Confers Dual Protection Against H9N2 Avian Influenza and Fowl Typhoid in Chickens
by Muhammad Bakhsh, Amal Senevirathne, Jamal Riaz, Jun Kwon, Ram Prasad Aganja, Jaime C. Cabarles, Sang-Ik Oh and John Hwa Lee
Vaccines 2025, 13(8), 790; https://doi.org/10.3390/vaccines13080790 - 25 Jul 2025
Viewed by 414
Abstract
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lon [...] Read more.
Background: Fowl typhoid (FT), a septicemic infection caused by Salmonella Gallinarum (SG), and H9N2 avian influenza are two economically important diseases that significantly affect the global poultry industry. Methods: We exploited the live attenuated Salmonella Gallinarum (SG) mutant JOL3062 (SG: ∆lonpagLasd) as a delivery system for H9N2 antigens to induce an immunoprotective response against both H9N2 and FT. To enhance immune protection against H9N2, a prokaryotic and eukaryotic dual expression plasmid, pJHL270, was employed. The hemagglutinin (HA) consensus sequence from South Korean avian influenza A virus (AIV) was cloned under the Ptrc promoter for prokaryotic expression, and the B cell epitope of neuraminidase (NA) linked with matrix protein 2 (M2e) was placed for eukaryotic expression. In vitro and in vivo expressions of the H9N2 antigens were validated by qRT-PCR and Western blot, respectively. Results: Oral immunization with JOL3121 induced a significant increase in SG and H9N2-specific serum IgY and cloacal swab IgA antibodies, confirming humoral and mucosal immune responses. Furthermore, FACS analysis showed increased CD4+ and CD8+ T cell populations. On day 28 post-immunization, there was a substantial rise in the hemagglutination inhibition titer in the immunized birds, demonstrating neutralization capabilities of immunization. Both IFN-γ and IL-4 demonstrated a significant increase, indicating a balance of Th1 and Th2 responses. Intranasal challenge with the H9N2 Y280 strain resulted in minimal to no clinical signs with significantly lower lung viral titer in the JOL3121 group. Upon SG wildtype challenge, the immunized birds in the JOL3121 group yielded 20% mortality, while 80% mortality was recorded in the PBS control group. Additionally, bacterial load in the spleen and liver was significantly lower in the immunized birds. Conclusions: The current vaccine model, designed with a host-specific pathogen, SG, delivers a robust immune boost that could enhance dual protection against FT and H9N2 infection, both being significant diseases in poultry, as well as ensure public health. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Graphical abstract

24 pages, 528 KiB  
Review
Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review
by Ioana Cristina Rotar, Elena Bernad, Liviu Moraru, Viviana Ivan, Adrian Apostol, Sandor Ianos Bernad, Daniel Muresan and Melinda-Ildiko Mitranovici
Diagnostics 2025, 15(15), 1872; https://doi.org/10.3390/diagnostics15151872 - 25 Jul 2025
Viewed by 250
Abstract
The biggest challenge in cancer therapy is tumor resistance to the classical approach. Thus, research interest has shifted toward the cancer stem cell population (CSC). CSCs are a small subpopulation of cancer cells within tumors with self-renewal, differentiation, and metastasis/malignant potential. They are [...] Read more.
The biggest challenge in cancer therapy is tumor resistance to the classical approach. Thus, research interest has shifted toward the cancer stem cell population (CSC). CSCs are a small subpopulation of cancer cells within tumors with self-renewal, differentiation, and metastasis/malignant potential. They are involved in tumor initiation and development, metastasis, and recurrence. Method. A narrative review of significant scientific publications related to the topic and its applicability in endometrial cancer (EC) was performed with the aim of identifying current knowledge about the identification of CSC populations in endometrial cancer, their biological significance, prognostic impact, and therapeutic targeting. Results: Therapy against the tumor population alone has no or negligible effect on CSCs. CSCs, due to their stemness and therapeutic resistance, cause tumor relapse. They target CSCs that may lead to noticeable persistent tumoral regression. Also, they can be used as a predictive marker for poor prognosis. Reverse transcription–polymerase chain reaction (RT-PCR) demonstrated that the cultured cells strongly expressed stemness-related genes, such as SOX-2 (sex-determining region Y-box 2), NANOG (Nanog homeobox), and Oct 4 (octamer-binding protein 4). The expression of surface markers CD133+ and CD44+ was found on CSC as stemness markers. Along with surface markers, transcription factors such as NF-kB, HIF-1a, and b-catenin were also considered therapeutic targets. Hypoxia is another vital feature of the tumor environment and aids in the maintenance of the stemness of CSCs. This involves the hypoxic activation of the WNT/b-catenin pathway, which promotes tumor survival and metastasis. Specific antibodies have been investigated against CSC markers; for example, anti-CD44 antibodies have been demonstrated to have potential against different CSCs in preclinical investigations. Anti-CD-133 antibodies have also been developed. Targeting the CSC microenvironment is a possible drug target for CSCs. Focusing on stemness-related genes, such as the transcription pluripotency factors SOX2, NANOG, and OCT4, is another therapeutic option. Conclusions: Stemness surface and gene markers can be potential prognostic biomarkers and management approaches for cases with drug-resistant endometrial cancers. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

Back to TopTop