Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,087)

Search Parameters:
Keywords = protein-protein interactions (PPI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1527 KB  
Communication
Comparative Transcriptome Analysis of White and Orange Skin of Clownfish Identifying Differentially Expressed Genes (DEGs) Underlying Pigment Expression
by Heegun Lee, Taehyug Jeong, Yeongkuk Kim, Sumi Jung, Jiyong Choi, Min-min Jung, Seunghwan Ko, Hayeong Oh, Juhyeok Kim, Jehee Lee and Seung Hwan Lee
Fishes 2026, 11(1), 56; https://doi.org/10.3390/fishes11010056 - 16 Jan 2026
Viewed by 151
Abstract
Although the clownfish, Amphiprion ocellaris (A. ocellaris), is a popular ornamental marine fish worldwide, the mechanisms underlying color pattern variation remain unclear. Given that the Platinum-type clownfish, nearly entirely white, has high economic value, understanding the biological mechanism that accounts for the [...] Read more.
Although the clownfish, Amphiprion ocellaris (A. ocellaris), is a popular ornamental marine fish worldwide, the mechanisms underlying color pattern variation remain unclear. Given that the Platinum-type clownfish, nearly entirely white, has high economic value, understanding the biological mechanism that accounts for the difference between orange and white colors in A. ocellaris is crucial. To investigate these coloration differences, we performed RNA sequencing analysis and identified differentially expressed genes (DEGs) by comparing white and orange skin samples from three A. ocellaris individuals. A total of 76 DEGs were detected, including 56 downregulated and 20 upregulated genes. DEG sequences were annotated using Danio rerio and Stegastus partitus as reference species, selecting the best hit based on the lowest E-value. A protein–protein interaction (PPI) network and Gene Ontology biological process terms were additionally analyzed. Several DEGs previously reported to be associated with pigmentation, including hpdb, cldn11b, sfrp5, slc2a9, slc2a11b, si:ch211-256m1.8, fhl2, rab38, and ttc39b were identified. Based on the functions of these DEGs, it is inferred that leucophores and xanthophores contribute to both white and orange coloration by modulating related genes, including slc2a11b and slc2a9. Additionally, sfrp5, sost, and sp7 genes were identified to interact with each other in the PPI analysis, with sfrp5 and sost being associated with the Wnt signaling pathway, which contributes to melanocyte specification and osteoblast differentiation. Based on these findings, we propose sost and sp7 as candidate genes that might provide insights relevant to extreme white pigmentation phenotypes, such as those observed in Platinum-type clownfish. For a clearer understanding, further studies integrating quantitative genetics and functional analyses are required. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

20 pages, 3172 KB  
Article
Molecular Investigation of Product Nkabinde in HIV Therapy: A Network Pharmacology and Molecular Docking Approach
by Samuel Chima Ugbaja, Mlungisi Ngcobo, Siphathimandla Authority Nkabinde, Magugu Nkabinde and Nceba Gqaleni
Int. J. Mol. Sci. 2026, 27(2), 808; https://doi.org/10.3390/ijms27020808 - 13 Jan 2026
Viewed by 226
Abstract
HIV/AIDS continues to pose a significant global public health concern, with Sub-Saharan Africa having the highest number of people living with HIV (PLHIV). Traditional medicines have been increasingly essential in treating and managing PLHIV. Product Nkabinde (PN), a polyherbal formulation derived from traditional [...] Read more.
HIV/AIDS continues to pose a significant global public health concern, with Sub-Saharan Africa having the highest number of people living with HIV (PLHIV). Traditional medicines have been increasingly essential in treating and managing PLHIV. Product Nkabinde (PN), a polyherbal formulation derived from traditional medicinal plants, has recently demonstrated significant potential in the treatment of HIV. This study aims to elucidate the molecular mechanisms underlying the therapeutic effects of phytochemicals identified from PN in HIV treatment, utilizing network pharmacology and molecular docking. The intersecting (common) genes of the 27 phytochemicals of PN and HIV were computed on a Venn diagram, while the protein–protein interaction (PPI) network of the intersecting genes was plotted using STRING. The hub (10) genes were computed and analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways using ShinyGO. Molecular docking and protein–ligand interaction analysis of the 27 phytochemicals with each of the 10 hub genes were performed using the Maestro Schrodinger suite. The KEGG analysis reveals an important network with lower False Discovery Rate (FDR) values and higher fold enrichment. The pathway enrichments reveal that the 10 hub genes regulated by PN focus on immune regulation, metabolic modulation, viral comorbidity, carcinogenesis, and inflammation. GO analysis further reveals that PN plays key roles in transcription regulation, such as miRNA, responses to hormones and endogenous stimuli, oxidative stress regulation, and apoptotic signalling, kinase binding, protein kinase binding, transcription factor binding, and ubiquitin ligase binding enriched pathways. Consequently, molecular docking unveils complexes with higher binding energies, such as rutin-HSP90AA1 (−10.578), catechin-JUN (−9.512), quercetin-3-O-arabinoside-AKT1 (−9.874), rutin-EGFR (−8.127), aloin-ESR1 (−8.585), and quercetin-3-0-β-D-(6′-galloyl)-glucopyranoside-BCL2 (−7.021 kcal/mol). Overall, the results reveal pathways associated with HIV pathology and possible anti-HIV mechanisms of PN. Therefore, further in silico, in vitro, and in vivo validations are required to substantiate these findings. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 7571 KB  
Article
Discontinued BACE1 Inhibitors in Phase II/III Clinical Trials and AM-6494 (Preclinical) Towards Alzheimer’s Disease Therapy: Repurposing Through Network Pharmacology and Molecular Docking Approach
by Samuel Chima Ugbaja, Hezekiel Matambo Kumalo and Nceba Gqaleni
Pharmaceuticals 2026, 19(1), 138; https://doi.org/10.3390/ph19010138 - 13 Jan 2026
Viewed by 201
Abstract
Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors demonstrated amyloid-lowering efficacy but failed in phase II/III clinical trials due to adverse effects and limited disease-modifying outcomes. This study employed an integrated network pharmacology and molecular docking approach to quantitatively elucidate [...] Read more.
Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors demonstrated amyloid-lowering efficacy but failed in phase II/III clinical trials due to adverse effects and limited disease-modifying outcomes. This study employed an integrated network pharmacology and molecular docking approach to quantitatively elucidate the multitarget mechanisms of 4 (phase II/III) discontinued BACE1 inhibitors (Verubecestat, Lanabecestat, Elenbecestat, and Umibecestat) and the preclinical compound AM-6494 in Alzheimer’s disease (AD). Methods: Drug-associated targets were intersected with AD-related genes to construct a protein–protein interaction (PPI) network, followed by topological analysis to identify hub proteins. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed using statistically significant thresholds (p < 0.05, FDR-adjusted). Molecular docking was conducted using AutoDock Vina to quantify binding affinities and interaction modes between the selected compounds and the identified hub proteins. Results: Network analysis identified 10 hub proteins (CASP3, STAT3, BCL2, AKT1, MTOR, BCL2L1, HSP90AA1, HSP90AB1, TNF, and MDM2). GO enrichment highlighted key biological processes, including the negative regulation of autophagy, regulation of apoptotic signalling, protein folding, and inflammatory responses. KEGG pathway analysis revealed significant enrichment in the PI3K–AKT–MTOR signalling, apoptosis, and TNF signalling pathways. Molecular docking demonstrated strong multitarget binding, with binding affinities ranging from approximately −6.6 to −11.4 kcal/mol across the hub proteins. Umibecestat exhibited the strongest binding toward AKT1 (−11.4 kcal/mol), HSP90AB1 (−9.5 kcal/mol), STAT3 (−8.9 kcal/mol), HSP90AA1 (−8.5 kcal/mol), and MTOR (−8.3 kcal/mol), while Lanabecestat showed high affinity for AKT1 (−10.6 kcal/mol), HSP90AA1 (−9.9 kcal/mol), BCL2L1 (−9.2 kcal/mol), and CASP3 (−8.5 kcal/mol), respectively. These interactions were stabilized by conserved hydrogen bonding, hydrophobic contacts, and π–alkyl interactions within key regulatory domains of the target proteins, supporting their multitarget engagement beyond BACE1 inhibition. Conclusions: This study demonstrates that clinically failed BACE1 inhibitors engage multiple non-structural regulatory proteins that are central to AD pathogenesis, particularly those governing autophagy, apoptosis, proteostasis, and neuroinflammation. The identified ligand–hub protein complexes provide a mechanistic rationale for repurposing and optimization strategies targeting network-level dysregulation in Alzheimer’s disease, warranting further in silico refinement and experimental validation. Full article
(This article belongs to the Special Issue NeuroImmunoEndocrinology)
Show Figures

Graphical abstract

21 pages, 78949 KB  
Article
FGF2 as a Potential Tumor Suppressor in Lung Adenocarcinoma
by Shih-Sen Lin, Hsin-Ying Lu, Tsung-Ming Chang, Ying-Sui Sun and Ju-Fang Liu
Diagnostics 2026, 16(2), 250; https://doi.org/10.3390/diagnostics16020250 - 13 Jan 2026
Viewed by 216
Abstract
Background/Objectives: Lung adenocarcinoma (LUAD), the predominant subtype of non-small cell lung cancer (NSCLC), is frequently diagnosed at advanced stages with distant metastasis, underscoring the need for effective prognostic biomarkers. Fibroblast growth factor 2 (FGF2), a multifunctional regulator, has shown to play contradictory [...] Read more.
Background/Objectives: Lung adenocarcinoma (LUAD), the predominant subtype of non-small cell lung cancer (NSCLC), is frequently diagnosed at advanced stages with distant metastasis, underscoring the need for effective prognostic biomarkers. Fibroblast growth factor 2 (FGF2), a multifunctional regulator, has shown to play contradictory roles in cancer progression. Methods: We analyzed three independent Gene Expression Omnibus (GEO) datasets (GSE19804, GSE18842, and GSE19188) to identify consistently dysregulated genes in LUAD. Functional enrichment (GO, KEGG, and cancer hallmark analysis), protein–protein interaction (PPI) network construction, and hub gene prioritization were performed using public bioinformatic tools. Survival analyses were conducted via the Kaplan–Meier Plotter. The expression of FGF2 was validated across multiple platforms, including TCGA, CPTAC, TNMplot, LCE, and the Human Protein Atlas. Functional assays (Transwell migration and wound healing) demonstrated that exogenous FGF2 significantly suppressed LUAD cell motility in vitro. Results: A total of 949 differentially expressed genes (DEGs) were commonly identified across datasets, with enrichment in cell adhesion and metastasis-related pathways. Among the 11 hub genes identified, FGF2 was consistently downregulated in LUAD tissues across all datasets and stages. Higher FGF2 expression was associated with longer overall and progression-free survival. In vitro, FGF2 treatment significantly suppressed the migration and wound healing abilities of LUAD cell lines. Conclusions: FGF2 is downregulated in LUAD and inversely associated with metastatic progression and poor prognosis. The observed reduction in cancer cell motility upon FGF2 treatment in vitro, together with its expression pattern, supports a potential tumor-suppressive role and suggests that FGF2 may serve as a candidate non-invasive biomarker for monitoring LUAD metastasis. Full article
Show Figures

Figure 1

17 pages, 20305 KB  
Article
Transcriptomic Analysis Identifies Acrolein Exposure-Related Pathways and Constructs a Prognostic Model in Oral Squamous Cell Carcinoma
by Yiting Feng, Lijuan Lou and Liangliang Ren
Int. J. Mol. Sci. 2026, 27(2), 632; https://doi.org/10.3390/ijms27020632 - 8 Jan 2026
Viewed by 112
Abstract
Acrolein, a highly reactive environmental toxicant widely present in urban air and tobacco smoke, has been implicated in the development of multiple malignancies. In oral tissues, chronic acrolein exposure induces oxidative stress, inflammation, and genetic mutations, all of which are closely linked to [...] Read more.
Acrolein, a highly reactive environmental toxicant widely present in urban air and tobacco smoke, has been implicated in the development of multiple malignancies. In oral tissues, chronic acrolein exposure induces oxidative stress, inflammation, and genetic mutations, all of which are closely linked to the development of oral squamous cell carcinoma (OSCC). Although accumulating evidence indicates a strong association between acrolein exposure and OSCC, its prognostic significance remains poorly understood. In this study, we analyzed transcriptome data to identify differentially expressed genes (DEGs) between tumor and adjacent normal tissues, and screened acrolein-related candidates by intersecting DEGs with previously identified acrolein-associated gene sets. Functional alterations of these genes were assessed using Gene Set Variation Analysis (GSVA), and a protein–protein interaction (PPI) network was constructed to identify key regulatory genes. A prognostic model was developed using Support Vector Machine–Recursive Feature Elimination (SVM-RFE) combined with LASSO-Cox regression and validated in an independent external cohort. Among the acrolein-related DEGs, four key genes (PLK1, AURKA, CTLA4, and PPARG) were ultimately selected for model construction. Kaplan–Meier analysis showed significantly worse overall survival in the high-risk group (p < 0.0001). Receiver operating characteristic (ROC) curve analysis further confirmed the strong predictive performance of the model, with area under the curve (AUC) values of 0.72 at 1 year, 0.72 at 3 years, and 0.75 at 5 years. Furthermore, the high risk score was significantly correlated with a ‘cold’ immune microenviroment, suggesting that acrolein-related genes may modulate the tumor immune microenvironment. Collectively, these findings highlight the role of acrolein in OSCC progression, suggesting the importance of reducing acrolein exposure for cancer prevention and public health, and call for increased attention to the relationship between environmental toxicants and disease initiation, providing a scientific basis for public health interventions and cancer prevention strategies. Full article
(This article belongs to the Special Issue Environmental Pollutants Exposure and Toxicity)
Show Figures

Figure 1

22 pages, 6894 KB  
Article
Genome-Wide Characterization of Four Gastropod Species Ionotropic Receptors Reveals Diet-Linked Evolutionary Patterns of Functional Divergence
by Gang Wang, Yi-Qi Sun, Fang Wang, Zhi-Yong Wang, Ni-Ying Sun, Meng-Jun Wei, Yu-Tong Shen, Yi-Jia Li, Quan-Qing Sun, Yushinta Fujaya, Xun-Guang Bian, Wen-Qi Yang and Kianann Tan
Animals 2026, 16(2), 172; https://doi.org/10.3390/ani16020172 - 7 Jan 2026
Viewed by 258
Abstract
Ionotropic receptors (IRs) are a divergent subfamily of ionotropic glutamate receptors (iGluRs) that detect olfactory and environmental cues, influencing behaviors such as foraging and adaptation. To explore the evolution of IRs in relation to feeding ecology, we identified IRs and iGluRs from the [...] Read more.
Ionotropic receptors (IRs) are a divergent subfamily of ionotropic glutamate receptors (iGluRs) that detect olfactory and environmental cues, influencing behaviors such as foraging and adaptation. To explore the evolution of IRs in relation to feeding ecology, we identified IRs and iGluRs from the genomes of four gastropods with distinct diets: Pomacea canaliculata (9 IRs/18 iGluRs), Bellamya purificata (10/22), Cipangopaludina chinensis (11/23), and Babylonia areolata (22/41). IRs were markedly expanded in B. areolata, suggesting lineage-specific diversification. Phylogenetic analysis grouped IRs and iGluRs into three clades, with IRs clustered with GluD, supporting early functional divergence following gene duplication. In all species, IR25b showed tandem duplication and played a central role in protein–protein interaction (PPI) networks. Most IRs were acidic, whereas IR-A and IR-C subgroups were basic, suggesting functional specialization among subfamilies. Structural analysis showed that IRs share conserved domains and motifs across species. Most IRs experienced purifying selection, while P. canaliculata showed relaxed constraints, suggesting weaker functional limitation. Collinearity analysis identified conserved genes, such as BarIR-A.6 and BarIR-D.1, across species. qPCR confirmed tissue-specific expression of IRs in multiple organs. Together, these results reveal the molecular features and evolutionary patterns of IRs in gastropods, highlighting their potential roles in olfaction and dietary adaptation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

27 pages, 6009 KB  
Article
Integrating Molecular Analysis and the Pharmacology Network to Discover the Antioxidative Effects of Zanthoxylum piperitum Fruits
by Ducdat Le, Thinhulinh Dang, Thientam Dinh, Soojung Yu, Vinhquang Truong, Minhee Kim, Su-Yun Lyu, Kwang Seok Ahn and Mina Lee
Plants 2026, 15(1), 148; https://doi.org/10.3390/plants15010148 - 4 Jan 2026
Viewed by 307
Abstract
Zanthoxylum piperitum is a food and culinary plant commonly used in East Asia. In traditional medicine, its fruits, seeds, and bark have been utilized to treat digestive disorders, pain, and stomachache. Prior research has demonstrated its health benefits, particularly its significant antioxidant properties. [...] Read more.
Zanthoxylum piperitum is a food and culinary plant commonly used in East Asia. In traditional medicine, its fruits, seeds, and bark have been utilized to treat digestive disorders, pain, and stomachache. Prior research has demonstrated its health benefits, particularly its significant antioxidant properties. However, limited research has investigated the specific metabolites responsible for these pharmacological effects. In this study, the antioxidant activities (EC50: 9.1–1084.5 μg/mL) and metabolite profiles of different organs (fruits, pericarps, and seeds) of Z. piperitum collected from different regions were comparatively analyzed. Chemical structures of 91 metabolites from different organs were identified using UHPLC-Orbitrap-MS/MS based on untargeted metabolomics. The LC-DPPH method was employed to screen antioxidants from the extracts of the most active organ (the pericarps). The potential effects of the active compounds on oxidation-related diseases were evaluated by integrating compound–target interaction network analysis. Protein–protein interaction (PPI) networks revealed EGFR, STAT3, AKT1, TNF, BCL2, CASP3, ESR1, PPARA, CYP19A1, and CDK2 as central hub genes. The significance of compound and target interactions was further supported by molecular docking studies, which demonstrated favorable binding affinities, with most proteins exhibiting docked scores below −4.27 kcal/mol. The extracts of Z. piperitum fruits and pericarps also exhibited antioxidative activity against ROS production in LPS-stimulated RAW264.7 cells. Our findings demonstrate the application of an optimized extraction process and underscore the medicinal value of this food-plant by characterizing its bioactive constituents. The results indicate that Z. piperitum may serve not only as a health-promoting food but also has the potential for prevention or treatment of oxidative-stress-related diseases. Future research should focus on in vivo studies by exploring the therapeutic mechanisms of actions of the active extracts. Full article
Show Figures

Figure 1

18 pages, 4597 KB  
Article
A Combined Bioinformatics and Clinical Validation Study Identifies MDM2, FKBP5 and CTNNA1 as Diagnostic Gene Signatures for COPD in Peripheral Blood Mononuclear Cells
by Innokenty A. Savin, Aleksandra V. Sen’kova, Andrey V. Markov, Olga S. Kotova, Ilya S. Shpagin, Lyubov A. Shpagina, Valentin V. Vlassov and Marina A. Zenkova
Int. J. Mol. Sci. 2026, 27(1), 273; https://doi.org/10.3390/ijms27010273 - 26 Dec 2025
Viewed by 348
Abstract
Chronic obstructive pulmonary disease (COPD) is often diagnosed after significant lung damage has already occurred, highlighting a need for minimally invasive biomarkers for early detection of COPD development. This study aims to identify transcriptional biomarkers in peripheral blood mononuclear cells (PBMCs). A Weighted [...] Read more.
Chronic obstructive pulmonary disease (COPD) is often diagnosed after significant lung damage has already occurred, highlighting a need for minimally invasive biomarkers for early detection of COPD development. This study aims to identify transcriptional biomarkers in peripheral blood mononuclear cells (PBMCs). A Weighted Gene Co-Expression Network Analysis (WGCNA) was performed on the GSE146560 transcriptomic dataset. Hub genes were cross-validated using independent transcriptomic data (GSE94916), topology analysis of a COPD-related protein–protein interaction (PPI) network, and a text-mining approach. The top candidate genes were validated using RT-qPCR in a clinical cohort, consisting of 28 COPD patients and 13 healthy volunteers, and their diagnostic value was evaluated using receiver operating characteristic (ROC) analysis. WGCNA identified four gene modules significantly correlated with COPD, the functional annotation of which revealed their enrichment in immune and tissue remodeling pathways. Further analysis of the PPI network topology structure and gene expression revealed a hub gene signature that was significantly upregulated in PBMCs of COPD patients, including MDM2 (6.3-fold, p < 0.001), FKBP5 (7.0-fold, p < 0.001), and CTNNA1 (10.0-fold, p < 0.001). ROC analysis demonstrated high diagnostic accuracy for these genes, with AUC values of 0.849, p < 0.001, for MDM2, 0.957, p < 0.001, for FKBP5, and 0.958, p < 0.001, for CTNNA1. MDM2, FKBP5, and CTNNA1 represent promising, readily accessible PBMC biomarkers for COPD diagnosis. Full article
Show Figures

Figure 1

14 pages, 1843 KB  
Article
Transcriptome Profiling of the Anterior Cingulate Cortex in a CFA-Induced Inflammatory Pain Model Identifies ECM-Related Genes in a Model of Rheumatoid Arthritis
by Guang-Xin Xie, Jian-Mei Li, Bai-Tong Liu, Jiang-Tao Wang, Lu-Shuang Xie, Xiao-Yi Xiong, Qiao-Feng Wu and Shu-Guang Yu
Genes 2026, 17(1), 15; https://doi.org/10.3390/genes17010015 - 25 Dec 2025
Viewed by 371
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation and progressive bone destruction. However, its complex pathogenesis remains poorly understood, and effective therapeutic targets are still lacking. Objective: This study aimed to identify key genes associated with RA [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent joint inflammation and progressive bone destruction. However, its complex pathogenesis remains poorly understood, and effective therapeutic targets are still lacking. Objective: This study aimed to identify key genes associated with RA and elucidate their biological significance by integrating bioinformatic analysis with experimental validation. Methods: Whole-transcriptome data from the anterior cingulate cortex (ACC) of Complete Freund’s Adjuvant (CFA)-induced inflammatory pain and control mice (GSE147216 dataset, GEO database) were collected from NCBI (National Center for Biotechnology Information). Differentially expressed genes (DEGs) were first identified. Subsequent analyses included Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, construction of a protein–protein interaction (PPI) network, and identification of hub genes using a Random Forest machine learning algorithm. Quantitative PCR (qPCR) was performed to validate gene expression levels. Results: A total of 76 DEGs were identified, including 64 upregulated and 12 downregulated genes. Among them, Fn1 (fibronectin 1), Bgn (biglycan), and Lum (lumican) were identified as hub genes. Functional enrichment analysis revealed inflammatory responses, extracellular matrix (ECM) remodeling, and the TGF-β signaling pathway. qPCR validation confirmed significant upregulation of Fn1, Bgn, and Lum mRNA in the CFA group. Conclusions: This study highlights the potential roles of Fn1, Bgn, and Lum in the central sensitization associated with inflammatory pain, offering insights relevant to RA. Full article
(This article belongs to the Topic Multi-Omics in Precision Medicine)
Show Figures

Figure 1

15 pages, 3721 KB  
Article
Comparative Analysis of the Oviducts in Wanyue Black Pigs with Different Parities Based on RNA-Seq
by Hanyu Zhou, Huibin Zhang, Ping Wu, Fang Tian, Jinyu Guan, Yifan Sun, Xiaodong Zhang and Zongjun Yin
Vet. Sci. 2026, 13(1), 24; https://doi.org/10.3390/vetsci13010024 - 25 Dec 2025
Viewed by 228
Abstract
This study investigates the molecular mechanisms underlying parity’s impact on sow reproductive function by comparing the transcriptome profiles of high-parity (9 parities) and low-parity (1 parity) Wanyue Black pigs. Oviduct tissues were collected and subjected to RNA-seq analysis. Differentially expressed genes (DEGs) were [...] Read more.
This study investigates the molecular mechanisms underlying parity’s impact on sow reproductive function by comparing the transcriptome profiles of high-parity (9 parities) and low-parity (1 parity) Wanyue Black pigs. Oviduct tissues were collected and subjected to RNA-seq analysis. Differentially expressed genes (DEGs) were identified using the DESeq2 algorithm. A total of 4218 DEGs were detected, with 2421 up-regulated and 1797 down-regulated genes. Functional enrichment analysis using GO and KEGG revealed that these DEGs were significantly associated with reproductive pathways, including cilium movement, oocyte maturation, and steroid hormone biosynthesis. Protein–protein interaction (PPI) network analysis highlighted key genes such as HSD3B1 and DNAI1, which play central roles in the parity differences. The expression patterns of selected candidate genes were further validated by real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the results were consistent with the RNA-seq data, confirming the reliability of our findings. This study provides valuable insights into the molecular regulation of parity in sows and offers a theoretical basis for optimizing reproductive management and breeding strategies in pig production. Full article
Show Figures

Figure 1

17 pages, 4500 KB  
Article
Molecular Characterization and Functional Insights into Goose IGF2BP2 During Skeletal Muscle Development
by Cui Wang, Yi Liu, Jiuli Dai, Shufang Chen and Daqian He
Animals 2026, 16(1), 58; https://doi.org/10.3390/ani16010058 - 24 Dec 2025
Viewed by 355
Abstract
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an RNA-binding protein known to play critical roles in metabolism, cell proliferation, and tumorigenesis. Although its involvement in muscle development has been documented in several species, the function of goose IGF2BP2 remains largely unexplored. [...] Read more.
Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an RNA-binding protein known to play critical roles in metabolism, cell proliferation, and tumorigenesis. Although its involvement in muscle development has been documented in several species, the function of goose IGF2BP2 remains largely unexplored. In this study, we cloned and characterized the full-length cDNA and genomic DNA sequences of goose IGF2BP2. The cDNA is 2957 bp in length and contains a 1662 bp open reading frame encoding a 553-amino acid protein with five conserved RNA-binding domains. The genomic sequence spans 12,183 bp and consists of 12 exons and 11 introns. A total of 60 genetic variants were identified, including a deletion of a G base at position 2299 (g.2299delG) that results in a frameshift mutation. Expression analysis revealed high levels of IGF2BP2 mRNA in the liver, heart, and muscle tissues of female geese across embryonic (E25d), growing (A70d), and laying (L270d) stages, consistent with a potential role in muscle development (p < 0.05). Functionally, overexpression of IGF2BP2 in skeletal muscle satellite cells (SMSCs) was associated with significant changes in the expression of several genes linked to muscle development and signaling pathways, including upregulation of IGF1, EGFR, FGF19, BMP6, BMP2, ACVR1C and WNT5A and downregulation of MYBPC3, NODAL, HOXD13, TNXB, and ADD2 (Padj < 0.01). Furthermore, protein–protein interaction (PPI) network analysis of these genes suggests that IGF2BP2 may coordinate key genes, contributing to its potential role in skeletal muscle development in geese. Full article
(This article belongs to the Special Issue Advances in Genetic Analysis of Important Traits in Poultry)
Show Figures

Graphical abstract

19 pages, 3250 KB  
Article
Integrative Multi-Omics and Machine Learning Reveal Shared Biomarkers in Type 2 Diabetes and Atherosclerosis
by Qingjie Wu, Zhaochu Wang, Mengzhen Fan, Linglun Hao, Jicheng Chen, Changwen Wu and Bizhen Gao
Int. J. Mol. Sci. 2026, 27(1), 136; https://doi.org/10.3390/ijms27010136 - 22 Dec 2025
Viewed by 468
Abstract
Atherosclerosis (AS) is a leading cause of death and disability in type 2 diabetes mellitus (T2DM). However, the shared molecular mechanisms linking T2DM and atherosclerosis have not been fully elucidated. We analyzed AS- and T2DM-related gene expression profiles from the Gene Expression Omnibus [...] Read more.
Atherosclerosis (AS) is a leading cause of death and disability in type 2 diabetes mellitus (T2DM). However, the shared molecular mechanisms linking T2DM and atherosclerosis have not been fully elucidated. We analyzed AS- and T2DM-related gene expression profiles from the Gene Expression Omnibus (GEO) database to identify overlapping differentially expressed genes and co-expression signatures. Functional enrichment (Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG)) and protein–protein interaction (PPI) network analyses were then used to describe the pathways and interaction modules associated with these shared signatures, We next applied the cytoHubba algorithm together with several machine learning methods to prioritize hub genes and evaluate their diagnostic potential and combined CIBERSORT-based immune cell infiltration analysis with single-cell RNA sequencing data to examine cell types and the expression patterns of the shared genes in specific cell populations. We identified 72 shared feature genes. Functional enrichment analysis of these genes revealed significant enrichment of inflammatory- and metabolism-related pathways. Three genes—IL1B, MMP9, and P2RY13—emerged as shared hub genes and yielded robust ANN-based predictive performance across datasets. Immune deconvolution and single-cell analyses consistently indicated inflammatory amplification and an imbalance of macrophage polarization in both conditions. Biology mapped to the hubs suggests IL1B drives inflammatory signaling, MMP9 reflects extracellular-matrix remodeling, and P2RY13 implicates cholesterol transport. Collectively, these findings indicate that T2DM and AS converge on immune and inflammatory processes with macrophage dysregulation as a central axis; IL1B, MMP9, and P2RY13 represent potential biomarkers and therapeutic targets and may influence disease progression by regulating macrophage states, supporting translational application to diagnosis and treatment of T2DM-related atherosclerosis. These findings are preliminary. Further experimental and clinical studies are needed to confirm their validity, given the limitations of the present study. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

15 pages, 23101 KB  
Article
Identification of Differentially Expressed Genes and Molecular Pathways Involved in Primary Biliary Cholangitis Using RNA-Seq
by Min Yang, Xiaoyun Shen, Haitao Fu, Jie Lu and Fengying Li
Genes 2026, 17(1), 10; https://doi.org/10.3390/genes17010010 - 22 Dec 2025
Viewed by 406
Abstract
Objective: This study aims to investigate the functional role of lncRNA STX17-DT, which was previously found to be upregulated in peripheral blood mononuclear cells (PBMCs) of PBC patients, by examining its impact on gene expression and cellular behavior in a human monocyte [...] Read more.
Objective: This study aims to investigate the functional role of lncRNA STX17-DT, which was previously found to be upregulated in peripheral blood mononuclear cells (PBMCs) of PBC patients, by examining its impact on gene expression and cellular behavior in a human monocyte model. Methods: STX17-DT was overexpressed in THP-1 cells, which was assessed via plasmid transfection. Transcriptomic changes were analyzed by RNA sequencing, followed by comprehensive bioinformatics analyses including differential expression, functional enrichment, transcription factor network, and protein–protein interaction (PPI) analysis. Functional validation was performed using CCK-8 and TUNEL assays to assess proliferation and apoptosis, respectively. Results: Overexpression of STX17-DT led to 1973 differentially expressed genes (DEGs), with 1201 upregulated and 772 downregulated. Key upregulated genes included interferon-stimulated genes (e.g., interferon induced protein 44 like (IFI44L), interferon induced protein 44 (IFI44), guanylate binding protein 1(GBP1)) and chemokines (CCL4, CCL8). Upregulated DEGs were significantly enriched in immune-related pathways such as NF-κB signaling, Toll-like receptor signaling, TNF signaling, and cytokine–cytokine receptor interaction. Downregulated genes were involved in metabolic and signaling pathways such as PI3K–Akt, cAMP, and butanoate metabolism. Transcription factor analysis revealed significant alterations in regulators like Yes1 associated transcriptional regulator(YAP1), nuclear receptor subfamily 4 group A member 1(NR4A1), and MAF bZIP transcription factor B(MAFB). PPI network analysis suggested TNF, TLR4, TLR6, and STAT2 as central hubs. Functionally, STX17-DT overexpression enhanced THP-1 cell proliferation and significantly reduced apoptosis. Conclusions: STX17-DT promoted a pro-inflammatory transcriptomic profile and enhanced monocyte survival in our study, suggesting a potential role in PBC immunopathology. It may represent a potential biomarker and therapeutic target, particularly for patients with advanced disease or suboptimal response to ursodeoxycholic acid. Further studies in primary cells, animal models, and histological samples are warranted to validate its role in PBC pathogenesis. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

15 pages, 2775 KB  
Article
Transcriptome-Wide Identification and Analysis Reveals m6A Regulation of Porcine Intestinal Epithelial Cells Under TGEV Infection
by Ying Liu, Gang Zhou, Guolian Wang and Zhengchang Wu
Vet. Sci. 2026, 13(1), 10; https://doi.org/10.3390/vetsci13010010 - 21 Dec 2025
Viewed by 311
Abstract
Transmissible gastroenteritis virus (TGEV) represents a critical intestinal pathogen responsible for acute enteritis in pigs, posing significant challenges to global swine production biosecurity. N6-methyladenosine (m6A), the most abundant epitranscriptomic mark in eukaryotic messenger RNA, has emerged as a regulatory [...] Read more.
Transmissible gastroenteritis virus (TGEV) represents a critical intestinal pathogen responsible for acute enteritis in pigs, posing significant challenges to global swine production biosecurity. N6-methyladenosine (m6A), the most abundant epitranscriptomic mark in eukaryotic messenger RNA, has emerged as a regulatory factor in host–virus interactions. Despite its recognized importance, the functional significance of m6A modifications during TGEV infection of porcine jejunal epithelial (IPEC-J2) cells remains unexplored. Here, we established a TGEV-infected IPEC-J2 cell model and we employed methylated RNA immunoprecipitation sequencing (MeRIP-seq) to comprehensively profile the m6A epitranscriptomic landscape and identify N6-methyladenosine-bearing transcripts in IPEC-J2 cells following TGEV challenge. A total of 14,813 m6A peaks were identified in the IPEC-J2, distributed in 7728 genes, mainly enriched in the CDS and 3′-UTRs. After TGEV infection, we identified 832 m6A peaks and 1660 genes with significant changes. Integrative analysis revealed a direct positive relationship between N6-methyladenosine modification abundance and transcript expression levels. Through integrated examination of MeRIP-Seq and RNA-Seq datasets, we identified 105 transcripts bearing m6A modifications, which were mainly enriched in the mTOR signaling pathway. Protein–protein interaction (PPI) network and RT-qPCR analysis demonstrated that SOS2 probably acts an important moderator in TGEV infection. This work contributes to understanding the m6A modification landscape in the TGEV-swine model and suggests SOS2 as potential target for future antiviral strategies. Full article
(This article belongs to the Special Issue Emerging Viral Pathogens in Domestic and Wild Animals)
Show Figures

Figure 1

30 pages, 11628 KB  
Article
Advancing Drug Repurposing for Rheumatoid Arthritis: Integrating Protein–Protein Interaction, Molecular Docking, and Dynamics Simulations for Targeted Therapeutic Approaches
by Krishna Swaroop Akey, Bharat Kumar Reddy Sanapalli, Dilep Kumar Sigalapalli, Ramya Tokala and Vidyasrilekha Sanapalli
Curr. Issues Mol. Biol. 2025, 47(12), 1039; https://doi.org/10.3390/cimb47121039 - 12 Dec 2025
Viewed by 573
Abstract
Background: Rheumatoid arthritis (RA) is a systemic chronic inflammatory autoimmune disease causing progressive joint destruction, resulting in significant morbidity and increased mortality. Despite advances in treatment, current pharmacological options, including NSAIDs, DMARDs, and biological agents, have limitations in tissue repair and can [...] Read more.
Background: Rheumatoid arthritis (RA) is a systemic chronic inflammatory autoimmune disease causing progressive joint destruction, resulting in significant morbidity and increased mortality. Despite advances in treatment, current pharmacological options, including NSAIDs, DMARDs, and biological agents, have limitations in tissue repair and can lead to severe side effects. Objectives: This study aims to explore drug repurposing as a viable approach to identify novel therapeutic agents for RA by utilizing existing FDA-approved drugs. Methods: We applied an integrated computational strategy that uniquely combines network pharmacology with molecular docking and dynamics simulations. The process began with the construction of a protein–protein interaction (PPI) network from 2723 RA-associated genes, which identified five central targets: TNF-α, IL-6, IL-1β, STAT3, and AKT1. We then built protein–drug interaction (PDI) networks by screening 2637 FDA-approved drugs against these targets. Critically, the top candidates from this network analysis were not just docked but were further validated using 100 ns molecular dynamics simulations to thoroughly evaluate binding affinity, complex stability, and interaction dynamics. Results: This multi-tiered computational workflow identified Rifampicin, Telmisartan, Danazol, and Pimozide as the most promising repurposing candidates. They demonstrated strong binding affinities and, importantly, formed stable complexes with TNF-α, IL-6, IL-1β, and STAT3, respectively, in dynamic simulations. The key innovation of this study is this sequential funnel approach, which integrates large-scale network data with atomic-level simulation to prioritize high-confidence drug candidates for RA. Conclusions: In conclusion, this study highlights the potential of repurposing FDA-approved drugs to target key proteins involved in RA, offering a cost-effective and time-efficient strategy to discover new therapies. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

Back to TopTop