Integrating Molecular Analysis and the Pharmacology Network to Discover the Antioxidative Effects of Zanthoxylum piperitum Fruits
Abstract
1. Introduction
2. Results
2.1. Screening Antioxidative Effects of Z. piperitum Extracts
2.2. Optimization of Extraction Time
2.3. Identification of Active Components by Application of LC-DPPH
2.4. Antioxidant Diseases Investigated Through Network Pharmacology
2.5. Molecular Docking Verification
2.6. Identification of Compounds from the Different Organ Extracts of Z. piperitum
2.7. Relative Quantification of Compounds from Z. piperitum Extracts
3. Discussion
4. Materials and Methods
4.1. Sample Preparation and Extraction
4.2. DPPH Radical Scavenging Assay
4.3. ABTS Radical Scavenging Assay
4.4. ROS Assay
4.4.1. Cell Culture and Viability
4.4.2. ROS Determinations
4.5. Analytical Method and Metabolomic Procedures
4.6. LC-DPPH Screening Antioxidant from SDM and GRE Extracts
4.7. Data Processing and Compound Annotation
4.8. Network Pharmacology
4.8.1. Prediction of Compounds and Oxidation-Related Targets
4.8.2. PPI Network Construction
4.8.3. Construction of Compound–Target Disease Network
4.9. Molecular Docking
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitani, T.; Yawata, Y.; Yamamoto, N.; Okuno, Y.; Sakamoto, H.; Nishide, M.; Kayano, S.-I. Stabilization of hydroxy-α-sanshool by antioxidants present in the genus Zanthoxylum. Foods 2023, 12, 3444. [Google Scholar] [CrossRef]
- Donald, G.R.; Fernandes, P.D.; Boylan, F. Antinociceptive activity of Zanthoxylum piperitum DC. essential oil. Evid.-Based Complement. Altern. Med. 2016, 2016, 3840398. [Google Scholar] [CrossRef] [PubMed]
- Rigillo, G.; Pressi, G.; Bertaiola, O.; Guarnerio, C.; Merlin, M.; Zambonin, R.; Pandolfo, S.; Golosio, A.; Masin, F.; Tascedda, F.; et al. Biotechnological phytocomplex of Zanthoxylum piperitum (L.) DC. enhances collagen biosynthesis in vitro and improves skin elasticity in vivo. Pharmaceutics 2025, 17, 138. [Google Scholar] [CrossRef]
- El Tayeb, N.S.; Younis, N.A.; Mouneir, S.M.; Ahmed, K.A.; Al-Karmalawy, A.A.; Alnajjar, R.; Abdel-monem, A.R.; Fayek, N.M. LC-MS/MS profiling of Zanthoxylum piperitum (L.) DC. leaves cultivated in Egypt, isolation of its bioactive components, and interrelationships with anti-ulcerative activities: In vitro and in vivo approaches, molecular docking, and dynamics studies. J. Ethnopharmacol. 2025, 350, 119984. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lee, S.-H.; Tai, B.H.; Jang, H.-D.; Kim, Y.H. Antioxidant and anti-osteoporosis activities of chemical constituents of the stems of Zanthoxylum piperitum. Molecules 2018, 23, 457. [Google Scholar] [CrossRef]
- Lu, I.C.; Hu, P.-Y.; Lin, C.-H.; Chang, L.-L.; Wang, H.-C.; Cheng, K.-I.; Gau, T.-P.; Lin, K.-W. Alkamides in Zanthoxylum species: Phytochemical profiles and local anesthetic activities. Int. J. Mol. Sci. 2024, 25, 12228. [Google Scholar] [CrossRef]
- Wu, Q.; Yu, P.; Li, J.; Wang, Y.; Chen, K. Mechanistic elucidation of the degradation and transformation of hydroxy-α-sanshool and its conformers as the pungent dietary components in Sichuan pepper: A DFT study. Food Chem. 2024, 430, 137078. [Google Scholar] [CrossRef]
- Balkrishna, A.; Panwar, M.; Mishra, S.; Kala, V.; Arya, V.; Dabas, A. A mechanistic review on Zanthoxylum species for anti-inflammatory and analgesic potentials. Pharmacol. Res.-Mod. Chin. Med. 2024, 13, 100553. [Google Scholar] [CrossRef]
- Lee, J.H.; Chang, K.M.; Kim, G.-H. Anti-inflammatory activities of Chopi (Zanthoxylum piperitum AP DC) essential oil: Suppression of the inducible nitric oxide synthase and cellular adhesion. Food Sci. Biotechnol. 2009, 18, 1371–1378. [Google Scholar]
- Chen, Z.; Tan, L.; Li, L.; Wang, H.; Feng, X.; Liu, X.; Rao, C. Sanshools from Zanthoxylum genus and their antioxidant properties in vitro and in vivo. Front. Sustain. Food Syst. 2024, 8, 1256568. [Google Scholar] [CrossRef]
- Kim, S.W.; Jeong, S.H.; Kim, J.U.; Kim, M.H.; Lee, W.; Lee, C.-J.; Yook, T.H.; Yang, G. Zanthoxylum piperitum Benn. Attenuates monosodium urate-induced gouty arthritis: A network pharmacology investigation of its anti-inflammatory mechanisms. Pharmaceuticals 2025, 18, 29. [Google Scholar] [CrossRef]
- Le, D.; Truong, V.; Dang, T.; Yu, S.; Dinh, T.; Lee, M. Phenolics from Ilex rotunda possess antioxidative effects and block activation of MAPK and NF-κB signaling by inhibiting IL-2 production in CD3/CD8 activated Jurkat T cells. Antioxidants 2025, 14, 281. [Google Scholar] [CrossRef]
- Le, D.; Han, S.; Ahn, J.; Yu, J.; Kim, C.-K.; Lee, M. Analysis of antioxidant phytochemicals and anti-Inflammatory effect from Vitex rotundifolia L.f. Antioxidants 2022, 11, 454. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Yang, L.; He, C.; He, Y.; Chen, L.; Dong, Q.; Zhang, H.; Chen, S.; Li, P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023, 18, 146. [Google Scholar] [CrossRef] [PubMed]
- Chlopicka, J.; Pasko, P.; Gorinstein, S.; Jedryas, A.; Zagrodzki, P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci. Technol. 2012, 46, 548–555. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Park, Y.S.; Nam, G.H.; Jo, K.J.; Kawk, H.W.; Kim, S.Y.; Kim, Y.M. Extract from Zanthoxylum piperitum induces apoptosis of AGS gastric cancer cells through Akt/MDM2/p53 signaling pathway. Chin. J. Integr. Med. 2021, 27, 752–759. [Google Scholar] [CrossRef]
- Lee, S.-J.; Lim, K.-T. ZPDC glycoprotein inhibits inflammation-related cytokine and protein via nuclear factor-kappa B in dextran sulfate sodium-stimulated ICR mouse. Biomed. Pharmacother. 2009, 63, 528–536. [Google Scholar] [CrossRef]
- Jang, M.J.; Rhee, S.J.; Cho, S.H.; Woo, M.H.; Choi, J.H. A study on the antioxidative, anti-inflammatory and anti-thrombogenic effects of Zanthozylum piperitum DC. extract. J. Korean Soc. Food Sci. Nutr. 2006, 35, 21–27. [Google Scholar] [CrossRef]
- Kim, S.C.; Moon, M.Y.; Lee, H.Y.; Kim, J.; Chang, M.S.; Cha, J. Skin care benefits of bioactive compounds isolated from Zanthoxylum piperitum DC. (Rutaceae). Trop. J. Pharm. Res. 2019, 18, 2385–2390. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, L.; Zheng, X.; Huang, Q.; Farag, M.A.; Zhu, R.; Zhao, C. Emerging applications of metabolomics in food science and future trends. Food Chem. X 2022, 16, 100500. [Google Scholar] [CrossRef]
- Zahoor, I.; Rui, B.; Khan, J.; Datta, I.; Giri, S. An emerging potential of metabolomics in multiple sclerosis: A comprehensive overview. Cell. Mol. Life Sci. 2021, 78, 3181–3203. [Google Scholar] [CrossRef]
- Le, D.D.; Kim, E.; Dang, T.; Lee, J.; Shin, C.H.; Park, J.W.; Lee, S.-g.; Seo, J.B.; Lee, M. Chemical investigation and regulation of adipogenic differentiation of cultivated Moringa oleifera. Pharmaceuticals 2024, 17, 1310. [Google Scholar] [CrossRef]
- Barceló, D.; Petrovic, M. Challenges and achievements of LC-MS in environmental analysis: 25 years on. TrAC Trends Anal. Chem. 2007, 26, 2–11. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, X.; Zhang, J.; Liu, Y.; Xu, X.; Li, L.; Wang, W.; Xu, H.; Jiang, W.; Wang, Y. Application of LC-MS-based global metabolomic profiling methods to human mental fatigue. Anal. Chem. 2016, 88, 11293–11296. [Google Scholar] [CrossRef]
- Plumb, R.S.; Gethings, L.A.; Rainville, P.D.; Isaac, G.; Trengove, R.; King, A.M.; Wilson, I.D. Advances in high throughput LC/MS based metabolomics: A review. TrAC Trends Anal. Chem. 2023, 160, 116954. [Google Scholar] [CrossRef]
- Ha, S.-Y.; Youn, H.; Song, C.-S.; Kang, S.C.; Bae, J.J.; Kim, H.T.; Lee, K.M.; Eom, T.H.; Kim, I.S.; Kwak, J.H. Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J. Microbiol. 2014, 52, 340–344. [Google Scholar] [CrossRef]
- Liao, D.Y.; Chai, Y.C.; Wang, S.H.; Chen, C.W.; Tsai, M.S. Antioxidant activities and contents of flavonoids and phenolic acids of Talinum triangulare extracts and their immunomodulatory effects. J. Food Drug Anal. 2015, 23, 294–302. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, L.; Nie, Q.; Huang, M.; Luo, C.; Sun, Y.; Ma, Y.; Yu, J.; Du, F. HPLC-based metabolomics of Dendrobium officinale revealing its antioxidant ability. Front. Plant Sci. 2023, 14, 1060242. [Google Scholar] [CrossRef]
- Ayele, D.T.; Akele, M.L.; Melese, A.T. Analysis of total phenolic contents, flavonoids, antioxidant and antibacterial activities of Croton macrostachyus root extracts. BMC Chem. 2022, 16, 30. [Google Scholar] [CrossRef]
- Susnow, N.; Zeng, L.; Margineantu, D.; Hockenbery, D.M. Bcl-2 family proteins as regulators of oxidative stress. Semin. Cancer Biol. 2009, 19, 42–49. [Google Scholar] [CrossRef]
- Zhou, Z.; Ribas, V.; Rajbhandari, P.; Drew, B.G.; Moore, T.M.; Fluitt, A.H.; Reddish, B.R.; Whitney, K.A.; Georgia, S.; Vergnes, L.; et al. Estrogen receptor α protects pancreatic β-cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. J. Biol. Chem. 2018, 293, 4735–4751. [Google Scholar] [CrossRef]
- Brocker, C.N.; Patel, D.P.; Velenosi, T.J.; Kim, D.; Yan, T.; Yue, J.; Li, G.; Krausz, K.W.; Gonzalez, F.J. Extrahepatic PPARα modulates fatty acid oxidation and attenuates fasting-induced hepatosteatosis in mice. J. Lipid Res. 2018, 59, 2140–2152. [Google Scholar] [CrossRef]
- Lee, Y.-b.; Kim, C.; Hong, J.; Kim, D. Molecular insights into CYP19A1 mutations and their role in estrogen production. Arch. Biochem. Biophys. 2025, 772, 110573. [Google Scholar] [CrossRef]
- Kirova, D.G.; Judasova, K.; Vorhauser, J.; Zerjatke, T.; Leung, J.K.; Glauche, I.; Mansfeld, J. A ROS-dependent mechanism promotes CDK2 phosphorylation to drive progression through S phase. Dev. Cell 2022, 57, 1712–1727.e9. [Google Scholar] [CrossRef]
- Truong, T.H.; Carroll, K.S. Redox Regulation of Epidermal Growth Factor Receptor Signaling through Cysteine Oxidation. Biochemistry 2012, 51, 9954–9965. [Google Scholar] [CrossRef]
- Antonia, R.J.; Karelehto, E.; Toriguchi, K.; Matli, M.; Warren, R.S.; Pfeffer, L.M.; Donner, D.B. STAT3 regulates inflammatory cytokine production downstream of TNFR1 by inducing expression of TNFAIP3/A20. J. Cell. Mol. Med. 2022, 26, 4591–4601. [Google Scholar] [CrossRef]
- Wen, X.; Tang, S.; Wan, F.; Zhong, R.; Chen, L.; Zhang, H. The PI3K/Akt-Nrf2 Signaling Pathway and Mitophagy Synergistically Mediate Hydroxytyrosol to Alleviate Intestinal Oxidative Damage. Int. J. Biol. Sci. 2024, 20, 4258–4276. [Google Scholar] [CrossRef]
- Blaser, H.; Dostert, C.; Mak, T.W.; Brenner, D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol. 2016, 26, 249–261. [Google Scholar] [CrossRef]
- Dho, S.H.; Cho, M.; Woo, W.; Jeong, S.; Kim, L.K. Caspases as master regulators of programmed cell death: Apoptosis, pyroptosis and beyond. Exp. Mol. Med. 2025, 57, 1121–1132. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Kwak, J.H.; Kim, J.H.; Choi, G.N.; Kim, D.-O.; Heo, H.J. Neuronal cell protective and antioxidant effects of phenolics obtained from Zanthoxylum piperitum leaf using in vitro model system. Food Chem. 2011, 125, 417–422. [Google Scholar] [CrossRef]
- Yamazaki, E.; Inagaki, M.; Kurita, O.; Inoue, T. Antioxidant activity of Japanese pepper (Zanthoxylum piperitum DC.) fruit. Food Chem. 2007, 100, 171–177. [Google Scholar] [CrossRef]
- Aşçı, S.; Demirci, S.; Aşçı, H.; Doğuç, D.K.; Onaran, İ. europrotective effects of pregabalin on cerebral ischemia and reperfusion. Balk. Med. J. 2016, 33, 221–227. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yang, S.; Lu, Z.; Li, G.; Wu, S.; Wu, D.-R.; Liu, J.; Zhou, B.; Wang, H.-M.D.; et al. The beneficial effects of edible kynurenic acid from marine horseshoe crab (Tachypleus tridentatus) on obesity, hyperlipidemia, and gut microbiota in high-fat diet-fed mice. Oxidative Med. Cell. Longev. 2021, 2021, 8874503. [Google Scholar] [CrossRef]
- Xia, D.; Shi, J.; Gong, J.; Wu, X.; Yang, Q.; Zhang, Y. Antioxidant activity of Chinese mei (Prunus mume) and its active phytochemicals. J. Med. Plants Res. 2010, 4, 1156–1160. [Google Scholar]
- Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone—An antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010, 120, 825–830. [Google Scholar] [CrossRef]
- Arumugam, B.; Palanisamy, U.D.; Chua, K.H.; Kuppusamy, U.R. Protective effect of myricetin derivatives from Syzygium malaccense against hydrogen peroxide-induced stress in ARPE-19 cells. Mol. Vis. 2019, 25, 47–59. [Google Scholar]
- Khushboo, S.; Umesh, P.; Maddala, M.; Isha, J.; Ishita, C.; Lovely, S.; Arshiya, K.; Anushka, B.; Abhyuday Singh, P.; Vineeth Pazharathu, M.; et al. Unveiling the ESR1 conformational stability and screening potent inhibitors for breast cancer treatment. Med. Chem. 2024, 20, 352–368. [Google Scholar] [CrossRef]
- Li, Y.; Wan, C.; Li, F.; Xin, G.; Wang, T.; Zhou, Q.; Wen, T.; Li, S.; Chen, X.; Huang, W. Indirubin attenuates sepsis by targeting the EGFR/SRC/PI3K and NF-κB/MAPK signaling pathways in macrophages. Front. Pharmacol. 2025, 16, 1542061. [Google Scholar] [CrossRef]
- Le, D.D.; Jang, Y.S.; Truong, V.; Dinh, T.; Dang, T.; Yu, S.; Lee, M. Anti-inflammatory effects and metabolomic analysis of Ilex Rotunda extracted by supercritical fluid extraction. Int. J. Mol. Sci. 2024, 25, 11965. [Google Scholar] [CrossRef]
- Le, D.D.; Yu, S.; Dang, T.; Lee, M. Molecular networking and bioassay-guided preparation and separation of active extract and constituents from Vicia tenuifolia Roth. Antioxidants 2023, 12, 1876. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, J.; Zhou, X.; Wu, H.; Zhang, B. Integrated network pharmacology and molecular docking to investigate the potential mechanism of Tufuling on Alzheimer’s disease. Heliyon 2024, 10, e36471. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, J.; Qu, Z.; Peng, H.; Meng, S.; Peng, Y.; Liu, T.; Luo, Q.; Dai, L. Network pharmacology and molecular docking elucidate the pharmacological mechanism of the OSTEOWONDER capsule for treating osteoporosis. Front. Genet. 2022, 13, 833027. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Yan, H.; Li, H.; Feng, Y.; Sun, W.; Ren, Y.; Ma, L.; Zeng, W.; Huang, F.; Jiang, Z.; et al. Use of network pharmacology and molecular docking to explore the mechanism of action of curcuma in the treatment of osteosarcoma. Sci. Rep. 2023, 13, 9569. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, X.; Xu, H.; Wu, W.; He, X.; Wang, X.; Jiang, M.; Hou, Y.; Bai, G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J. 2020, 287, e15112. [Google Scholar] [CrossRef] [PubMed]









| Organ | Location | SDM | GRE |
| Extract (EtOH, %) | ABTS (EC50, μg/mL) | ||
| F | 0 | 117.2 | 147.4 |
| 20 | 62.1 | 104.3 | |
| 40 | 60.9 | 81.8 | |
| 60 | 61.5 | 84.9 | |
| 80 | 89.8 | 91.8 | |
| 100 | 73.3 | 480.5 | |
| P | 0 | 75.1 | 77.4 |
| 20 | 72.9 | 89.2 | |
| 40 | 75.4 | 76.8 | |
| 60 | 55.9 | 78.5 | |
| 80 | 58.6 | 114.4 | |
| 100 | 71.3 | 160.9 | |
| S | 0 | 301.5 | 315.9 |
| 20 | 519.7 | 441.2 | |
| 40 | 643.8 | 300.7 | |
| 60 | 638.8 | 715.9 | |
| 80 | 210.5 | 193.2 | |
| 100 | 967.2 | 893.1 | |
| A.A. | Pos. | 7.5 | 7.9 |
| Organ | Location | SDM | GRE |
| Extract (EtOH, %) | DPPH (EC50, μg/mL) | ||
| F | 0 | 184.1 | 352.4 |
| 20 | 98.5 | 137.3 | |
| 40 | 98.1 | 81.6 | |
| 60 | 91.8 | 104.4 | |
| 80 | 85.5 | 100.4 | |
| 100 | 118.1 | 621.4 | |
| P | 0 | 80.1 | 64.5 |
| 20 | 60.5 | 93.2 | |
| 40 | 78.3 | 64.1 | |
| 60 | 48.0 | 62.5 | |
| 80 | 67.4 | 141.3 | |
| 100 | 71.1 | 158.5 | |
| S | 0 | 666.3 | 483.6 |
| 20 | 242.1 | 236.8 | |
| 40 | 840.1 | 1012.6 | |
| 60 | 900.3 | 1084.5 | |
| 80 | 421.2 | 347.7 | |
| 100 | 1011.7 | 783.3 | |
| A.A. | Pos. | 5.9 | 5.9 |
| Organ | Location | SDM | GRE |
|---|---|---|---|
| Extract (EtOH, %) | (IC50, μg/mL) | ||
| F | 0 | 729.4 | 471.9 |
| 20 | 100.0 | 97.1 | |
| 40 | 87.2 | 43.7 | |
| 60 | 87.9 | 51.2 | |
| 80 | 70.9 | 58.5 | |
| 100 | 38.0 | 34.4 | |
| P | 0 | 102.3 | 80.1 |
| 20 | 92.6 | 32.4 | |
| 40 | 84.7 | 30.1 | |
| 60 | 49.9 | 12.0 | |
| 80 | 57.1 | 10.1 | |
| 100 | 17.9 | 9.1 | |
| A.A. | Pos. | 10.6 | 10.6 |
| Organ | Extract (EtOH, %) | Yield (mg) | SDM (%) | Yield (mg) | GRE (%) |
|---|---|---|---|---|---|
| F | 0 | 123.0 | 12.3 | 111.8 | 11.2 |
| 20 | 149.0 | 14.9 | 145.0 | 14.5 | |
| 40 | 179.1 | 17.9 | 212.9 | 21.3 | |
| 60 | 139.2 | 13.9 | 157.1 | 15.7 | |
| 80 | 135.3 | 13.5 | 132.8 | 13.3 | |
| 100 | - | - | - | - | |
| P | 0 | 188.9 | 18.9 | 151.9 | 15.2 |
| 20 | 270.8 | 27.1 | 191.2 | 19.1 | |
| 40 | 299.0 | 29.9 | 182.0 | 18.2 | |
| 60 | 295.9 | 29.6 | 225.8 | 22.6 | |
| 80 | 228.1 | 22.8 | 175.0 | 17.5 | |
| 100 | 124.2 | 12.4 | 61.2 | 6.1 | |
| S | 0 | 110.8 | 11.1 | 119.7 | 12.0 |
| 20 | 152.0 | 15.2 | 102.3 | 10.2 | |
| 40 | 279.8 | 28.0 | 159.6 | 16.0 | |
| 60 | 205.2 | 20.5 | 135.0 | 13.5 | |
| 80 | 37.7 | 3.8 | 45.1 | 4.5 | |
| 100 | 110.8 | 11.1 | 37.2 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Le, D.; Dang, T.; Dinh, T.; Yu, S.; Truong, V.; Kim, M.; Lyu, S.-Y.; Ahn, K.S.; Lee, M. Integrating Molecular Analysis and the Pharmacology Network to Discover the Antioxidative Effects of Zanthoxylum piperitum Fruits. Plants 2026, 15, 148. https://doi.org/10.3390/plants15010148
Le D, Dang T, Dinh T, Yu S, Truong V, Kim M, Lyu S-Y, Ahn KS, Lee M. Integrating Molecular Analysis and the Pharmacology Network to Discover the Antioxidative Effects of Zanthoxylum piperitum Fruits. Plants. 2026; 15(1):148. https://doi.org/10.3390/plants15010148
Chicago/Turabian StyleLe, Ducdat, Thinhulinh Dang, Thientam Dinh, Soojung Yu, Vinhquang Truong, Minhee Kim, Su-Yun Lyu, Kwang Seok Ahn, and Mina Lee. 2026. "Integrating Molecular Analysis and the Pharmacology Network to Discover the Antioxidative Effects of Zanthoxylum piperitum Fruits" Plants 15, no. 1: 148. https://doi.org/10.3390/plants15010148
APA StyleLe, D., Dang, T., Dinh, T., Yu, S., Truong, V., Kim, M., Lyu, S.-Y., Ahn, K. S., & Lee, M. (2026). Integrating Molecular Analysis and the Pharmacology Network to Discover the Antioxidative Effects of Zanthoxylum piperitum Fruits. Plants, 15(1), 148. https://doi.org/10.3390/plants15010148

