Emerging Viral Pathogens in Domestic and Wild Animals

A special issue of Veterinary Sciences (ISSN 2306-7381). This special issue belongs to the section "Veterinary Microbiology, Parasitology and Immunology".

Deadline for manuscript submissions: 20 March 2026 | Viewed by 2346

Special Issue Editor


E-Mail Website
Guest Editor
Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
Interests: zoonoses; infectious disease; emerging; viruses; emerging infectious diseases; viral enteric pathogens; domestic animals; wildlife animals; diagnostics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The recent spread of highly pathogenic avian influenza A(H5N1) into dairy cattle and other mammals, the sustained westward march of African swine fever through European wild boar and domestic herds, and the enduring establishment of SARS‑CoV‑2 in free‑ranging white‑tailed deer together illustrate how interspecies interfaces are reshaping viral ecology. Parallel surges of H3N2 canine influenza, canine circovirus infections, widespread feline morbillivirus circulation, and the rise in virulent systemic feline calicivirus strains in companion animals underscore that identical demographic and environmental accelerants, global animal trade, dense urban cohabitation, habitat fragmentation, and climate‑driven range shifts currently propel viral emergence, even in dogs and cats. This Special Issue therefore welcomes high‑impact studies that unravel the molecular evolution, host–pathogen interactions, and transmission dynamics of emerging viruses across livestock, wildlife, and small companion animals, and that advance integrated One Health surveillance, predictive modelling, and intervention strategies capable of mitigating future zoonotic and epizootic threats.

Dr. Vittorio Sarchese
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Veterinary Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • infectious diseases
  • emerging viruses
  • domestic animals
  • wildlife animals
  • domestic–wildlife interface

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2775 KB  
Article
Transcriptome-Wide Identification and Analysis Reveals m6A Regulation of Porcine Intestinal Epithelial Cells Under TGEV Infection
by Ying Liu, Gang Zhou, Guolian Wang and Zhengchang Wu
Vet. Sci. 2026, 13(1), 10; https://doi.org/10.3390/vetsci13010010 - 21 Dec 2025
Viewed by 380
Abstract
Transmissible gastroenteritis virus (TGEV) represents a critical intestinal pathogen responsible for acute enteritis in pigs, posing significant challenges to global swine production biosecurity. N6-methyladenosine (m6A), the most abundant epitranscriptomic mark in eukaryotic messenger RNA, has emerged as a regulatory [...] Read more.
Transmissible gastroenteritis virus (TGEV) represents a critical intestinal pathogen responsible for acute enteritis in pigs, posing significant challenges to global swine production biosecurity. N6-methyladenosine (m6A), the most abundant epitranscriptomic mark in eukaryotic messenger RNA, has emerged as a regulatory factor in host–virus interactions. Despite its recognized importance, the functional significance of m6A modifications during TGEV infection of porcine jejunal epithelial (IPEC-J2) cells remains unexplored. Here, we established a TGEV-infected IPEC-J2 cell model and we employed methylated RNA immunoprecipitation sequencing (MeRIP-seq) to comprehensively profile the m6A epitranscriptomic landscape and identify N6-methyladenosine-bearing transcripts in IPEC-J2 cells following TGEV challenge. A total of 14,813 m6A peaks were identified in the IPEC-J2, distributed in 7728 genes, mainly enriched in the CDS and 3′-UTRs. After TGEV infection, we identified 832 m6A peaks and 1660 genes with significant changes. Integrative analysis revealed a direct positive relationship between N6-methyladenosine modification abundance and transcript expression levels. Through integrated examination of MeRIP-Seq and RNA-Seq datasets, we identified 105 transcripts bearing m6A modifications, which were mainly enriched in the mTOR signaling pathway. Protein–protein interaction (PPI) network and RT-qPCR analysis demonstrated that SOS2 probably acts an important moderator in TGEV infection. This work contributes to understanding the m6A modification landscape in the TGEV-swine model and suggests SOS2 as potential target for future antiviral strategies. Full article
(This article belongs to the Special Issue Emerging Viral Pathogens in Domestic and Wild Animals)
Show Figures

Figure 1

30 pages, 3992 KB  
Article
Sheep Pox Susceptibility: Role of Genetic Variants, Gene Expression, and Immune-Oxidative Markers
by Asmaa A. Darwish, Huda A. Alqahtani, Amin Tahoun, Ahmed Ateya, Noha A. Helmy, Amani A. Hafez, Hanan M. Alharbi, Khairiah M. Alwutayd, Manal A. Babaker, Ammar AL-Farga, Eman A. Al-Shahari, Zakaria A. Salih, Mohammed Ali. Al-Duais and Ahmed El-Sayed
Vet. Sci. 2025, 12(9), 867; https://doi.org/10.3390/vetsci12090867 - 8 Sep 2025
Viewed by 1696
Abstract
Sheep pox, caused by sheep pox virus (SPV), is a transboundary disease that threatens sheep production and trade. This study aimed to identify genetic, immunological, and biochemical markers associated with susceptibility to SPV in Barki ewes. A total of 100 adult ewes were [...] Read more.
Sheep pox, caused by sheep pox virus (SPV), is a transboundary disease that threatens sheep production and trade. This study aimed to identify genetic, immunological, and biochemical markers associated with susceptibility to SPV in Barki ewes. A total of 100 adult ewes were examined, including 50 clinically healthy and 50 naturally infected animals. PCR detected SPV DNA in 60% of suspected scab samples, highlighting diagnostic challenges in field investigations. Blood samples were analyzed for hematological indices, cytokine profiles, acute phase proteins, oxidative stress biomarkers, iron metabolism, and hormonal parameters. Expression profiles and single-nucleotide polymorphisms (SNPs) in 15 immune and antioxidant genes were characterized from cDNA-derived sequences. Infected animals exhibited microcytic hypochromic anemia, leukocytosis, elevated proinflammatory cytokines, and reduced IL-10. Acute phase proteins, oxidative stress markers, and cortisol were increased, whereas antioxidant capacity and transferrin were reduced. Twenty-three SNPs were identified, including non-synonymous variants, which showed promising but unvalidated associations with disease status. These findings highlight immune, oxidative, and genetic alterations in SPV-infected sheep, but further longitudinal and cross-validated studies are needed to establish their diagnostic or breeding utility. Full article
(This article belongs to the Special Issue Emerging Viral Pathogens in Domestic and Wild Animals)
Show Figures

Figure 1

Back to TopTop