Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (212)

Search Parameters:
Keywords = protein tyrosine phosphatase 1B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 412
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

49 pages, 5285 KiB  
Review
Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges
by Muhammad Azhari, Novi Merliani, Marlia Singgih, Masayoshi Arai and Elin Julianti
Mar. Drugs 2025, 23(7), 279; https://doi.org/10.3390/md23070279 - 3 Jul 2025
Viewed by 716
Abstract
Tuberculosis (TB) poses a persistent global health threat exacerbated by the emergence of drug-resistant strains; hence, there is a continuous quest for novel antimicrobial agents. Despite efforts to develop effective therapies, existing treatments require a relatively long duration of therapy to eradicate the [...] Read more.
Tuberculosis (TB) poses a persistent global health threat exacerbated by the emergence of drug-resistant strains; hence, there is a continuous quest for novel antimicrobial agents. Despite efforts to develop effective therapies, existing treatments require a relatively long duration of therapy to eradicate the pathogen due to its virulence factors, pathogenesis patterns, and ability to enter dormant states. This can lead to a higher risk of treatment failure due to poor patient adherence to the complex regimen. As a result, considerable research is necessary to identify alternative antituberculosis agents. The marine environment, particularly marine-derived fungi, has recently gained interest due to its potential as an abundant source of bioactive natural products. This review covers 19 genera of marine-derived fungi and 139 metabolites, 131 of which exhibit antimycobacterial activity. The integrated dataset pinpoints the fungal genera and chemical classes that most frequently yield potent antimycobacterial hits while simultaneously exposing critical gaps, such as the minimal evaluation of compounds against dormant bacilli and the presence of underexplored ecological niches and fungal genera. Several compounds exhibit potent activity through uncommon mechanisms, including the inhibition of mycobacterial protein tyrosine phosphatases (MptpB/MptpA), protein kinase PknG, ATP synthase and the disruption of mycobacterial DNA via G-quadruplex stabilization. Structure–activity relationship (SAR) trends are highlighted for the most potent agents, illuminating how specific functional groups underpin target engagement and potency. This review also briefly proposes a dereplication strategy and approaches for toxicity mitigation in the exploration of marine-derived fungi’s natural products. Through this analysis, we offer insights into the potency and challenges of marine-derived fungi’s natural products as hit compounds or scaffolds for further antimycobacterial research. Full article
Show Figures

Figure 1

14 pages, 1413 KiB  
Review
Advances in the Exploration of Coordination Complexes of Vanadium in the Realm of Alzheimer’s Disease: A Mini Review
by Jesús Antonio Cruz-Navarro, Luis Humberto Delgado-Rangel, Ricardo Malpica-Calderón, Arturo T. Sánchez-Mora, Hugo Ponce-Bolaños, Andrés Felipe González-Oñate, Jorge Alí-Torres, Raúl Colorado-Peralta, Daniel Canseco-Gonzalez, Viviana Reyes-Márquez and David Morales-Morales
Molecules 2025, 30(12), 2547; https://doi.org/10.3390/molecules30122547 - 11 Jun 2025
Viewed by 594
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss and limited therapeutic options. Metal-based drugs have emerged as promising alternatives in the search for effective treatments, and vanadium coordination complexes have shown significant potential due to their neuroprotective [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss and limited therapeutic options. Metal-based drugs have emerged as promising alternatives in the search for effective treatments, and vanadium coordination complexes have shown significant potential due to their neuroprotective and anti-aggregant properties. This review explores the advances in the development of vanadium-based metallodrugs for AD, focusing on their ability to modulate amyloid-beta (Aβ) aggregation, oxidative stress, and neuroinflammation. Recent in vitro and in vivo studies highlight the efficacy of oxovanadium (IV) and peroxovanadium (V) complexes in inhibiting Aβ fibril formation and reducing neuronal toxicity. Additionally, the interaction of vanadium complexes with key biological targets, such as peroxisome proliferator-activated receptor gamma (PPARγ) and protein-tyrosine phosphatase 1B (PTP1B), suggests a multifaceted therapeutic approach. While these findings underscore the potential of vanadium compounds as innovative treatments for AD, further research is needed to optimize their bioavailability, selectivity, and safety for clinical applications. Full article
Show Figures

Graphical abstract

23 pages, 4971 KiB  
Article
Functional Characterization of MIP_07528 of Mycobacterium indicus pranii for Tyrosine Phosphatase Activity Displays Sensitivity to Oxidative Inactivation and Plays a Role in Immunomodulation
by Raunak Raunak, Roopshali Rakshit, Aayush Bahl, Soumya Sinha, Saurabh Pandey, Sashi Kant and Deeksha Tripathi
Biology 2025, 14(5), 565; https://doi.org/10.3390/biology14050565 - 18 May 2025
Viewed by 665
Abstract
Mycobacterium indicus pranii (MIP), an atypical mycobacterium originally developed as an anti-leprosy vaccine, has emerged as a potent immunomodulator with diverse therapeutic applications. Despite its clinical significance, molecular mechanisms underlying MIP’s immunomodulatory properties remain largely unexplored. Bacterial phosphatases are recognized as crucial virulence [...] Read more.
Mycobacterium indicus pranii (MIP), an atypical mycobacterium originally developed as an anti-leprosy vaccine, has emerged as a potent immunomodulator with diverse therapeutic applications. Despite its clinical significance, molecular mechanisms underlying MIP’s immunomodulatory properties remain largely unexplored. Bacterial phosphatases are recognized as crucial virulence factors that enable pathogens to evade host defenses by modulating host immune signaling pathways, including phosphoinositide metabolism. MIP_07528 was identified as a putative protein tyrosine phosphatase B (PtpB) ortholog through in silico analysis, with significant sequence conservation observed within catalytic domains of pathogenic mycobacterial PtpB proteins. Phosphatase activity was detected in both cell lysate and culture filtrate fractions, revealing differential expression patterns between MIP and M. tuberculosis. Upregulation of MIP_07528 was demonstrated under oxidative stress, suggesting involvement in stress adaptation. The recombinant protein exhibited distinctive kinetic properties, characterized by higher substrate affinity yet increased susceptibility to oxidative inactivation compared to its M. tuberculosis counterpart. In macrophages, MIP_07528 suppressed pro-inflammatory cytokines while enhancing anti-inflammatory IL-10 production. These findings establish MIP_07528 as a functional phosphatase that may contribute to MIP’s immunomodulatory properties. This work advances understanding of phosphatase function in non-pathogenic mycobacteria while providing insights into virulence factor evolution and establishing a foundation for novel antimicrobial strategies. Full article
(This article belongs to the Special Issue Host–Pathogen Interactions and Pathogenesis)
Show Figures

Figure 1

18 pages, 2286 KiB  
Article
Dietary Supplementation with Complex Enzymes and Tea Residue Improved the Production Efficiency of Xiangling Pigs
by Runhua Yang, Yulian Li, Zhenyu Lei, Maisheng Wu, Hong Tan, Fang Liu, Yanmei Gong, Weijian Zhong, Jiayan He, Shujuan Zeng, Zhiyong Fan and Shusong Wu
Animals 2025, 15(9), 1229; https://doi.org/10.3390/ani15091229 - 27 Apr 2025
Viewed by 433
Abstract
This study evaluated the effects of tea residue combined with complex enzymes on the growth performance, serum biochemistry, meat quality, and intestinal microbiota of Xiangling fattening pigs. A total of 120 healthy Xiangling fattening pigs, with an average weight of 47.93 kg (±15.28 [...] Read more.
This study evaluated the effects of tea residue combined with complex enzymes on the growth performance, serum biochemistry, meat quality, and intestinal microbiota of Xiangling fattening pigs. A total of 120 healthy Xiangling fattening pigs, with an average weight of 47.93 kg (±15.28 kg), were randomly assigned to five treatment groups, each comprising four replicates of six pigs. The control group (CON) received a basal diet; the experimental groups received a diet containing 5.8% fermented tea residue as an alternative energy and protein source (dry matter basis) and mixed additional 0 (CZ), 200 (M200), 400 (M400), and 800 (M800) complex enzymes. The trial lasted for 83 days. The results showed that tea residue and complex enzymes failed to affect growth performance (p > 0.05). Tea residue reduced the serum aspartate aminotransferase and alkaline phosphatase activities (p < 0.01), and complex enzyme supplementation lowered the total cholesterol levels and reduced the alanine aminotransferase activity (p < 0.05). Additionally, tea residue decreased the pH24h and b*1h values (p < 0.05), and complex enzyme supplementation increased the L*24h value and pork shear force (p < 0.05). In terms of amino acid content, tea residue significantly elevated aspartic acid and inosine monophosphate (p < 0.05), and complex enzyme addition increased the glutamic acid, lysine, alanine, valine, tyrosine, isoleucine, leucine, and phenylalanine levels (p < 0.05). The 800 mg/kg complex enzyme group exhibited a reduction in the C10:0, C15:0, and C17:0 contents (p < 0.05). Microbial analysis showed that tea residue promoted the abundance of Oribacterium and Butyricicoccus, while enzyme supplementation enriched Eggerthellaceae, Oscillospirales, and Peptococcaceae. Overall, the combination of tea residue and complex enzymes improved the pork quality, enhanced metabolic health markers, and modulated the gut microbiota composition, with the 400 mg/kg enzyme dose (M400) achieving the most pronounced benefits. These findings suggest a potential feeding strategy for improving pork quality without compromising growth performance. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

23 pages, 4813 KiB  
Review
Marine Fungal Metabolites as Potential Antidiabetic Agents: A Comprehensive Review of Their Structures and Enzyme Inhibitory Activities
by Zimin Wang, Meirong Zhao, Yunxia Yu, Fandong Kong, Nanxin Lin and Qi Wang
Mar. Drugs 2025, 23(4), 142; https://doi.org/10.3390/md23040142 - 26 Mar 2025
Viewed by 997
Abstract
Diabetes mellitus has emerged as a global public health crisis, with Type 2 diabetes (T2D) constituting over 90% of cases. Current treatments are palliative, primarily focusing on blood glucose modulation. This review systematically evaluates 181 bioactive compounds isolated from 66 marine fungal strains [...] Read more.
Diabetes mellitus has emerged as a global public health crisis, with Type 2 diabetes (T2D) constituting over 90% of cases. Current treatments are palliative, primarily focusing on blood glucose modulation. This review systematically evaluates 181 bioactive compounds isolated from 66 marine fungal strains for their inhibitory activities against key diabetes-related enzymes, including α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), dipeptidyl peptidase-4 (DPP-4), glycogen synthase kinase-3β (GSK-3β), and fatty acid-binding protein 4 (FABP4). These compounds, categorized into polyketides, alkaloids, terpenoids, and lignans, exhibit multitarget engagement and nanomolar-to-micromolar potency. The review highlights the potential of marine fungal metabolites as novel antidiabetic agents, emphasizing their structural novelty and diverse mechanisms of action. Future research should focus on overcoming challenges related to yield and extraction, leveraging advanced technologies such as genetic engineering and synthetic biology to enhance drug development. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi, 3rd Edition)
Show Figures

Figure 1

18 pages, 3452 KiB  
Article
Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus
by Jingwei He, He Ma, Dongneng Jiang, Tuo Wang, Zhiyuan Li, Gang Shi, Yucong Hong, Chunhua Zhu and Guangli Li
Fishes 2025, 10(3), 128; https://doi.org/10.3390/fishes10030128 - 15 Mar 2025
Viewed by 724
Abstract
The impact of dietary lipid sources on nutrient metabolism and reproductive development is a critical focus in aquaculture broodstock nutrition. Previous studies have demonstrated that fish oil supplementation modulates the expression of genes involved in steroid hormone synthesis, glucose, and lipid metabolism promoting [...] Read more.
The impact of dietary lipid sources on nutrient metabolism and reproductive development is a critical focus in aquaculture broodstock nutrition. Previous studies have demonstrated that fish oil supplementation modulates the expression of genes involved in steroid hormone synthesis, glucose, and lipid metabolism promoting ovarian development in female Scatophagus argus (spotted scat). However, the effects of fish oil on hepatic function at the protein level remain poorly characterized. In this study, female S. argus were fed diets containing 8% fish oil (FO, experimental group) or 8% soybean oil (SO, control group) for 60 days. Comparative proteomic analysis of liver tissue identified significant differential protein expression between groups. The FO group exhibited upregulation of lipid metabolism-related proteins, including COMM domain-containing protein 1 (Commd1), tetraspanin 8 (Tspan8), myoglobin (Mb), transmembrane protein 41B (Tmem41b), stromal cell-derived factor 2-like protein 1 (Sdf2l1), and peroxisomal biogenesis factor 5 (Pex5). Additionally, glucose metabolism-associated proteins, such as Sdf2l1 and non-POU domain-containing octamer-binding protein (Nono), were elevated in the FO group. Moreover, proteins linked to inflammation and antioxidant responses, including G protein-coupled receptor 108 (Gpr108), protein tyrosine phosphatase non-receptor type 2 (Ptpn2), Pex5, p120 catenin (Ctnnd1), tripartite motif-containing protein 16 (Trim16), and aquaporin 11 (Aqp11), were elevated in the FO group, while proteins involved in oxidative stress, such as reactive oxygen species modulator 1 (Romo1), cathepsin A (Ctsa), and Cullin 4A (Cul4a), were downregulated. These proteomic findings align with prior transcriptomic data, indicating that dietary fish oil enhances hepatic lipid metabolism, mitigates oxidative stress, and strengthens antioxidant capacity. Furthermore, these hepatic adaptations may synergistically support ovarian maturation in S. argus. This study provides novel proteomic-level evidence supporting the role of fish oil in modulating hepatic lipid and energy metabolism, thereby elucidating the role of fish oil in optimizing hepatic energy metabolism and redox homeostasis to influence reproductive processes, advancing our understanding of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in teleost liver physiology. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

16 pages, 737 KiB  
Review
Graves’ Disease: Is It Time for Targeted Therapy? A Narrative Review
by Nicola Viola, Alessandro Colleo, Mauro Casula, Chiara Mura, Francesco Boi and Giulia Lanzolla
Medicina 2025, 61(3), 500; https://doi.org/10.3390/medicina61030500 - 13 Mar 2025
Cited by 1 | Viewed by 4414
Abstract
Current therapies for Graves’ disease (GD) primarily aim to manage hyperthyroidism through synthetic antithyroid drugs, radioiodine, or surgery. However, these approaches are often limited by their incomplete efficacy and the risk of inducing hypothyroidism. The latest advances in understanding the autoimmune mechanisms driving [...] Read more.
Current therapies for Graves’ disease (GD) primarily aim to manage hyperthyroidism through synthetic antithyroid drugs, radioiodine, or surgery. However, these approaches are often limited by their incomplete efficacy and the risk of inducing hypothyroidism. The latest advances in understanding the autoimmune mechanisms driving GD have paved the way for novel therapies targeting the thyrotropin receptor (TSH-R) or immune pathways. Overall, key targets include cluster of differentiation 20 (CD20), cluster of differentiation 40 (CD40), protein tyrosine phosphatase non-receptor type 22 (PTPN22), cytotoxic T lymphocyte antigen-4 (CTLA-4), B cell-activating factor (BAFF), and the Fc receptor-like protein 3 (FcRL3). Recent preclinical studies and clinical trials testing targeted therapies have shown promising results in terms of efficacy and safety. Here, we present a narrative review of the literature on emerging therapeutic approaches for GD that are currently under investigation. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

21 pages, 4007 KiB  
Article
Unveiling the Multitarget Potential of a Rare Caffeoyl Ester from Artemisia capillaris for Diabetes Mellitus: An Integrated In Vitro and In Silico Study
by Md. Nurul Islam, Manh Tuan Ha, Byung-Sun Min, Jae Sue Choi and Hyun Ah Jung
Int. J. Mol. Sci. 2025, 26(3), 1286; https://doi.org/10.3390/ijms26031286 - 2 Feb 2025
Viewed by 1590
Abstract
As a part of our ongoing search for bioactive constituents of Artemisia capillaris, we isolated 4-O-caffeoyl-2-C-methyl-d-threonic acid (PPT-14). This is a rare caffeic acid ester derivative that is reported here for the first time in the [...] Read more.
As a part of our ongoing search for bioactive constituents of Artemisia capillaris, we isolated 4-O-caffeoyl-2-C-methyl-d-threonic acid (PPT-14). This is a rare caffeic acid ester derivative that is reported here for the first time in the Artemisia species, which is the third occurrence in any plant species worldwide. In this study, we evaluated the anti-diabetic potential of PPT-14 using in vitro and in silico approaches. PPT-14 demonstrated significant inhibitory activity against two crucial enzymes linked to diabetes progression and complications: protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR). These had IC50 values of 64.92 and 19.50 µM, respectively. Additionally, PPT-14 exhibited free radical scavenging activity with 2,2-diphenyl-2-picrylhydrazyl (IC50 14.46 µM). Molecular docking and 200 ns molecular dynamics simulations confirmed that there were stable binding interactions with the key residues of PTP1B and AR, highlighting strong affinity and dynamic stability. Pharmacokinetic analyses revealed favorable water solubility, adherence to Lipinski’s Rule of Five, and minimal interactions with cytochrome P450 enzymes, indicating the drug-like potential of PPT-14. Toxicity studies confirmed its safety profile, showing no genotoxicity, hepatotoxicity, or significant toxicity risks, with an acceptable oral LD50 value of 2.984 mol/kg. These findings suggest that PPT-14 could be a promising multitarget lead compound for ameliorating diabetes and its associated complications. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 2755 KiB  
Article
Loss of Tyrosine Phosphatase Mu Promotes Scoliosis Progression Through Osteopontin-α5β1 Integrin Signaling and PIPK1γ90 Activity
by Mohamed Elbakry, Nasrin Khatami, Marie-Yvonne Akoume, Cédric Julien, Saadallah Bouhanik, Anita Franco, Iurie Caraus, Wesam Elremaly and Alain Moreau
Int. J. Mol. Sci. 2025, 26(3), 1042; https://doi.org/10.3390/ijms26031042 - 26 Jan 2025
Viewed by 1781
Abstract
Adolescent idiopathic scoliosis (AIS) is characterized by a curvature of the spine affecting approximately 4% of the pediatric population, and the mechanisms driving its progression remain poorly understood. Whole-exome sequencing of a French-Canadian AIS cohort with severe scoliosis identified rare variants in the [...] Read more.
Adolescent idiopathic scoliosis (AIS) is characterized by a curvature of the spine affecting approximately 4% of the pediatric population, and the mechanisms driving its progression remain poorly understood. Whole-exome sequencing of a French-Canadian AIS cohort with severe scoliosis identified rare variants in the PTPRM gene, which encodes Protein Tyrosine Phosphatase μ (PTPµ). However, these rare variants alone did not account for the pronounced reduction in PTPµ at both mRNA and protein levels in severe AIS cases. This led us to investigate epigenetic regulators and the identification of five microRNAs (miR-103a-3p, miR-107, miR-148a-3p, miR-148b-3p, and miR-152-3p) that target PTPRM mRNA. These microRNAs were significantly elevated in plasma from severe AIS patients, and miR-148b-3p was also upregulated in AIS osteoblasts. Phenotypic analysis of bipedal Ptrprm knockout (PTPµ −/−) mice showed increased prevalence and severity of scoliosis, while quadrupedal PTPµ −/− mice did not develop scoliosis, underscoring PTPµ’s role as a disease-modifying factor. Mechanistically, PTPµ deficiency was found to disrupt Gi-coupled receptor signaling in osteoblasts by enhancing the interaction between osteopontin (OPN) and α5β1 integrin, along with increased tyrosine phosphorylation of phosphatidylinositol-4-phosphate 5-kinase type I (PIPKIγ90). These findings provide novel insights into the molecular mechanisms underlying spinal deformity progression in AIS, linking PTPµ depletion to aberrant OPN-α5β1 integrin signaling and highlighting potential therapeutic targets to stop, mitigate, or prevent scoliosis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 4255 KiB  
Article
Exploring the Antimycobacterial Potential of Podocarpusflavone A from Kielmeyera membranacea: In Vitro and In Vivo Insights
by Marlon Heggdorne de Araujo, Salomé Muñoz Sánchez, Thatiana Lopes Biá Ventura Simão, Natalia Nowik, Stella Schuenck Antunes, Shaft Corrêa Pinto, Davide Sorze, Francesca Boldrin, Riccardo Manganelli, Nelilma Correia Romeiro, Elena B. Lasunskaia, Fons J. Verbeek, Herman P. Spaink and Michelle Frazão Muzitano
Pharmaceuticals 2024, 17(12), 1560; https://doi.org/10.3390/ph17121560 - 21 Nov 2024
Viewed by 1315
Abstract
Background/Objectives: Tuberculosis (TB) is one of the leading infectious causes of death worldwide, highlighting the importance of identifying new anti-TB agents. In previous research, our team identified antimycobacterial activity in Kielmeyera membranacea leaf extract; therefore, this study aims to conduct further exploration [...] Read more.
Background/Objectives: Tuberculosis (TB) is one of the leading infectious causes of death worldwide, highlighting the importance of identifying new anti-TB agents. In previous research, our team identified antimycobacterial activity in Kielmeyera membranacea leaf extract; therefore, this study aims to conduct further exploration of its potential. Methods: Classical chromatography was applied for fractionation and spectrometric techniques were utilized for chemical characterization. For in vitro tests, samples were assessed against Mycobacterium tuberculosis and Mycobacterium marinum. The toxicity and efficacy of active samples were evaluated in vivo using different zebrafish models. Chemogenomics studies were applied to predict the isolated active compound’s potential mode of action. Results: We performed fractionation of K. membranacea ethanolic extract (EE) and then its dichloromethane fraction (DCM), and the biflavonoid podocarpusflavone A (PCFA) was isolated and identified as a promising active compound. The EE and PCFA were found to be non-toxic to zebrafish larvae and were able to inhibit M. tuberculosis growth extracellularly. Additionally, PCFA demonstrated antimycobacterial activity within infected macrophages, especially when combined with isoniazid. In addition, the EE, DCM, and PCFA have shown the ability to inhibit M. marinum’s growth during in vivo zebrafish larvae yolk infection. Notably, PCFA also effectively countered systemic infection established through the caudal vein, showing a similar inhibitory activity profile to rifampicin, both at 32 µM. A reduction in the transcriptional levels of pro-inflammatory cytokines confirmed the infection resolution. The protein tyrosine phosphatase B (PtpB) of M. tuberculosis, which inhibits the macrophage immune response, was predicted as a theoretical target of PCFA. This finding is in agreement with the higher activity observed for PCFA intracellularly and in vivo on zebrafish, compared with the direct action in M. tuberculosis. Conclusions: Here, we describe the discovery of PCFA as an intracellular inhibitor of M. tuberculosis and provide evidence of its in vivo efficacy and safety, encouraging its further development as a combination drug in novel therapeutic regimens for TB. Full article
Show Figures

Graphical abstract

26 pages, 2949 KiB  
Article
Enzyme (α-Glucosidase, α-Amylase, PTP1B & VEGFR-2) Inhibition and Cytotoxicity of Fluorinated Benzenesulfonic Ester Derivatives of the 5-Substituted 2-Hydroxy-3-nitroacetophenones
by Temitope O. Olomola, Jackson K. Nkoana, Garland K. More, Samantha Gildenhuys and Malose J. Mphahlele
Int. J. Mol. Sci. 2024, 25(22), 11862; https://doi.org/10.3390/ijms252211862 - 5 Nov 2024
Cited by 1 | Viewed by 1615
Abstract
The prevalence of small multi-target drugs containing a fluorinated aromatic moiety among approved drugs in the market is due to the unique properties of this halogen atom. With the aim to develop potent antidiabetic agents, a series of phenylsulfonic esters based on the [...] Read more.
The prevalence of small multi-target drugs containing a fluorinated aromatic moiety among approved drugs in the market is due to the unique properties of this halogen atom. With the aim to develop potent antidiabetic agents, a series of phenylsulfonic esters based on the conjugation of the 5-substituted 2-hydroxy-3-nitroacetophenones 1ad with phenylsulfonyl chloride derivatives substituted with a fluorine atom or fluorine-containing (-CF3 or -OCF3) group were prepared. Their structures were characterized using a combination of spectroscopic techniques complemented with a single-crystal X-ray diffraction (XRD) analysis on a representative example. The compounds were, in turn, assayed for inhibitory effect against α-glucosidase, α-amylase, protein tyrosine phosphatase 1 B (PTP1B) and the vascular endothelial growth factor receptor-2 (VEGFR-2) all of which are associated with the pathogenesis and progression of type 2 diabetes mellitus (T2DM). The antigrowth effect of selected compounds was evaluated on the human breast (MCF-7) and lung (A549) cancer cell lines. The compounds were also evaluated for cytotoxicity against the African Green Monkey kidney (Vero) cell line. The results of an in vitro enzymatic study were augmented by molecular docking (in silico) analysis. Their ADME (absorption, distribution, metabolism and excretion) properties have been evaluated on the most active compounds against α-glucosidase and/or α-amylase to predict their drug likeness. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

18 pages, 4216 KiB  
Article
Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables
by Shiyu Wang, Ziyu Nie, Li Zhu, Yanyang Wu, Yashi Wen, Fangming Deng and Lingyan Zhao
Microorganisms 2024, 12(11), 2159; https://doi.org/10.3390/microorganisms12112159 - 26 Oct 2024
Cited by 5 | Viewed by 1984
Abstract
Currently, there is increasing interest in the commercial utilization of probiotics isolated from traditional fermented food products. Therefore, this study aimed to investigate the probiotic potential of Lactiplantibacillus plantarum (L. plantarum) Z22 isolated from naturally fermented mustard. The results suggest that [...] Read more.
Currently, there is increasing interest in the commercial utilization of probiotics isolated from traditional fermented food products. Therefore, this study aimed to investigate the probiotic potential of Lactiplantibacillus plantarum (L. plantarum) Z22 isolated from naturally fermented mustard. The results suggest that L. plantarum Z22 exhibits good adhesion ability, antibacterial activity, safety, and tolerance to acidic conditions and bile salts. We further determined the anti-inflammatory mechanism and properties of L. plantarum Z22 and found that L. plantarum Z22 could significantly reduce the secretion of pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the expression of the pro-inflammatory mediator cyclooxygenase-2 (COX-2) protein in LPS-induced RAW 264.7 cells. In addition, L. plantarum Z22 also effectively inhibited the signaling pathways of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs). This effect can be attributed to a decrease in the levels of reactive oxygen species (ROS) and increased heme oxygenase-1 (HO-1) expression. Moreover, whole-genome sequencing revealed that L. plantarum Z22 contains gene-encoding proteins with anti-inflammatory functions, such as beta-glucosidase (BGL) and pyruvate kinase (PK), as well as antioxidant functions, including thioredoxin reductase (TrxR), tyrosine-protein phosphatase, and ATP-dependent intracellular proteases ClpP. In summary, these results indicated that L. plantarum Z22 can serve as a potential candidate probiotic for use in fermented foods such as yogurt (starter cultures), providing a promising strategy for the development of functional foods to prevent chronic diseases. Full article
(This article belongs to the Special Issue Anti-inflammatory Property of Probiotics)
Show Figures

Figure 1

15 pages, 2681 KiB  
Article
Fucosylated Chondroitin Sulfate from Bohadschia ocellata: Structure Analysis and Bioactivities
by Pham Duc Thinh, Hang Thi Thuy Cao, Dinh Thanh Trung, Duong Khanh Minh, Thao Quyen Cao, Tran Thi Thanh Van, Anastasia O. Zueva, Svetlana P. Ermakova and Thanh-Danh Nguyen
Processes 2024, 12(10), 2108; https://doi.org/10.3390/pr12102108 - 27 Sep 2024
Cited by 2 | Viewed by 1568
Abstract
Fucosylated chondroitin sulfate (FCS) was prepared from Bohadschia ocellata using protease hydrolysis. The structural characteristics of FCS were confirmed through chemical composition analysis using FTIR spectroscopy, 1H NMR, and 13C NMR. FCS from B. ocellata (FCS-Bo) exhibited an average molecular weight [...] Read more.
Fucosylated chondroitin sulfate (FCS) was prepared from Bohadschia ocellata using protease hydrolysis. The structural characteristics of FCS were confirmed through chemical composition analysis using FTIR spectroscopy, 1H NMR, and 13C NMR. FCS from B. ocellata (FCS-Bo) exhibited an average molecular weight of approximately 122 kDa. The biological activities of FCS-Bo, including anticoagulant, anti-cancer, and Protein Tyrosine Phosphatase 1B (PTP1B) inhibition, were evaluated. FCS-Bo displayed potent anticoagulant properties, markedly extending activated partial thromboplastin time, prothrombin time, and thrombin time when compared to the heparin control. In anti-cancer bioactivity research, FCS-Bo efficiently inhibited colony formation in the colon cancer cell lines HCT-116, HT-29, and DLD-1, achieving inhibition rates of up to 65%. Additionally, FCS-Bo exhibited significant inhibition of PTP1B, with an IC50 as low as 0.0326 µg/mL, suggesting its potential for improving insulin sensitivity and managing conditions such as type 2 diabetes and obesity. Full article
Show Figures

Figure 1

17 pages, 1523 KiB  
Article
Design and Synthesis of Pyridyl and 2-Hydroxyphenyl Chalcones with Antitubercular Activity
by Kelphina Aziafor, Ketan Ruparelia, Brandon Moulds, Mire Zloh, Tanya Parish and Federico Brucoli
Molecules 2024, 29(19), 4539; https://doi.org/10.3390/molecules29194539 - 24 Sep 2024
Cited by 2 | Viewed by 1812
Abstract
A focussed library of pyridyl and 2-hydroxyphenyl chalcones were synthesized and tested for growth inhibitory activity against Mycobacterium tuberculosis H37Rv, and normal and cancer breast cell lines. Pyridyl chalcones bearing lipophilic A-ring, e.g., dichloro-phenyl-(14), pyrene-1-yl (20)- and biphenyl-4-yl ( [...] Read more.
A focussed library of pyridyl and 2-hydroxyphenyl chalcones were synthesized and tested for growth inhibitory activity against Mycobacterium tuberculosis H37Rv, and normal and cancer breast cell lines. Pyridyl chalcones bearing lipophilic A-ring, e.g., dichloro-phenyl-(14), pyrene-1-yl (20)- and biphenyl-4-yl (21) moieties were found to be the most potent of the series inhibiting the growth of M. tuberculosis H37Rv with IC90 values ranging from 8.9–28 µM. Aryl chalcones containing a 3-methoxyphenyl A-ring and either p-Br-phenyl (25) or p-Cl-phenyl (26) B-rings showed an IC90 value of 28 µM. Aryl-chalcones were generally less toxic to HepG2 cells compared to pyridyl-chalcones. Dose-dependent antiproliferative activity against MDA468 cells was observed for trimethoxy-phenyl (16) and anthracene-9-yl (19) pyridyl-chalcones with IC50 values of 0.7 and 0.3 µM, respectively. Docking studies revealed that chalone 20 was predicted to bind to the M. tuberculosis protein tyrosine phosphatases B (PtpB) with higher affinity compared to a previously reported PtpB inhibitor. Full article
Show Figures

Figure 1

Back to TopTop