Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Bacterial Strain and Culture Conditions
2.3. Cells Culture
2.4. Cell Viability
2.5. Acid Tolerance
2.6. Tolerance to Bile Salts
2.7. Hydrophobicity of the Cells Surface
2.8. Adhesion to HT-29 Cells
2.9. Antimicrobial Activity
2.10. Inflammatory Cytokines Assay
2.11. Measurement of ROS
2.12. Western Blot
2.13. Whole Genome Sequencing
2.14. Statistical Analysis
3. Results and Discussion
3.1. Insight into Probiotic Potential of L. plantarum Z22
3.1.1. Acid and Bile Tolerance
3.1.2. Hydrophobicity and Adhesion Abilities
3.1.3. Antimicrobial Activity
3.2. Understanding the Anti-Inflammatory Mechanism of L. plantarum Z22
3.2.1. Inhibition of Pro-Inflammatory Cytokines Release in RAW264.7 Cells by L. plantarum Z22
3.2.2. Inhibition of NF-κB Activation and IκB-α Phosphorylation in RAW264.7 Cells by L. plantarum Z22
3.2.3. Inhibition of MAPK Activation in RAW264.7 Cells by L. plantarum Z22
3.3. L. plantarum Z22 Inhibited ROS Production and Increased HO-1 Expression in LPS-Induced RAW264.7 Cells
3.4. Phylogenetic Tree Construction and Genome Properties of L. plantarum Z22
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amerian Córdoba Park Hotel. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. In Proceedings of the Joint FAO/WHO Expert Consultation, Córdoba, Argentina, 1–4 October 2001; Volume 2014. [Google Scholar]
- Oh, N.; Joung, J.; Lee, J.; Kim, Y. Probiotic and Anti-Inflammatory Potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 Isolated from Infant Feces. PLoS ONE 2018, 13, e0192021. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, H.; Kulyar, M.F.-A.; Pan, H.; Li, K.; Li, A.; Mo, Q.; Wang, Y.; Dong, H.; Bao, Y.; et al. Complete Genome Analysis of Lactobacillus fermentum YLF016 and Its Probiotic Characteristics. Microb. Pathog. 2022, 162, 105212. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Ye, Z.; Zhang, G.; Nie, W.; Cheng, H.; Peng, M.; Zhang, K.; Liu, J.; Zhang, Z.; et al. Physiologically Inspired Mucin Coated Escherichia Coli Nissle 1917 Enhances Biotherapy by Regulating the Pathological Microenvironment to Improve Intestinal Colonization. ACS Nano 2022, 16, 4041–4058. [Google Scholar] [CrossRef] [PubMed]
- Niazi Amraii, H.; Abtahi, H.; Jafari, P.; Mohajerani, H.R.; Fakhroleslam, M.R.; Akbari, N. In Vitro Study of Potentially Probiotic Lactic Acid Bacteria Strains Isolated from Traditional Dairy Products. Jundishapur J. Microbiol. 2014, 7, e10168. [Google Scholar] [CrossRef]
- Hati, S.; Ramanuj, K.; Basaiawmoit, B.; Sreeja, V.; Maurya, R.; Bishnoi, M.; Kondepudi, K.K.; Mishra, B. Safety Aspects, Probiotic Potentials of Yeast and Lactobacillus Isolated from Fermented Foods in North-Eastern India, and Its Anti-Inflammatory Activity. Braz. J. Microbiol. 2023, 54, 2073–2091. [Google Scholar] [CrossRef]
- Sathiyaseelan, A.; Saravanakumar, K.; Han, K.; Naveen, K.V.; Wang, M.-H. Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int. J. Mol. Sci. 2022, 23, 10062. [Google Scholar] [CrossRef] [PubMed]
- Soemarie, Y.B.; Milanda, T.; Barliana, M.I. Fermented Foods as Probiotics: A Review. J. Adv. Pharm. Technol. Res. 2021, 12, 335–339. [Google Scholar] [CrossRef]
- Yu, H.-S.; Lee, N.-K.; Choi, A.-J.; Choe, J.-S.; Bae, C.; Paik, H.-D. Anti-Inflammatory Potential of Probiotic Strain Weissella Cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells. J. Microbiol. Biotechnol. 2019, 29, 1022–1032. [Google Scholar] [CrossRef]
- Bansal, S.; Singh, A.; Mangal, M.; Sharma, S. Isolation and Characterization of Lactic Acid Bacteria from Fermented Foods. Vegetos Int. J. Plant Res. 2013, 26, 325–330. [Google Scholar] [CrossRef]
- Liu, C.; Xue, W.-J.; Ding, H.; An, C.; Ma, S.-J.; Liu, Y. Probiotic Potential of Lactobacillus Strains Isolated From Fermented Vegetables in Shaanxi, China. Front. Microbiol. 2021, 12, 774903. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, C.; Zhang, J.; Xin, X.; Liao, X. Metagenomics Reveals the Formation Mechanism of Flavor Metabolites during the Spontaneous Fermentation of Potherb Mustard (Brassica juncea Var. multiceps). Food Res. Int. 2021, 148, 110622. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, Y.; Li, L.; Yu, Y.; Xu, Z. Dynamic Evolution of Flavor Substances and Bacterial Communities during Fermentation of Leaf Mustard (Brassica juncea Var. multiceps) and Their Correlation. LWT 2022, 167, 113796. [Google Scholar] [CrossRef]
- Lee, M.-E.; Jang, J.-Y.; Lee, J.-H.; Park, H.-W.; Choi, H.-J.; Kim, T.-W. Starter Cultures for Kimchi Fermentation. J. Microbiol. Biotechnol. 2015, 25, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.-H.; Kim, J.-S.; Park, H.M.; Kim, S.; Paek, N.-S. Antioxidant Activity and Short-Chain Fatty Acid Production of Lactic Acid Bacteria Isolated from Korean Individuals and Fermented Foods. 3 Biotech 2021, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.-Y.; Rod-In, W.; Monmai, C.; Sohn, M.; Kim, T.-R.; Jeon, M.-G.; Park, W.J. Anti-Inflammatory Potential of Lactobacillus reuteri LM1071 via Eicosanoid Regulation in LPS-Stimulated RAW264.7 Cells. J. Appl. Microbiol. 2022, 133, 67–75. [Google Scholar] [CrossRef]
- Shi, J.; Li, H.; Liang, S.; Evivie, S.; Huo, G.; Li, B.; Liu, F. Selected Lactobacilli Strains Inhibit Inflammation in LPS-Induced RAW264.7 Macrophages by Suppressing the TLR4-Mediated NF-κB and MAPKs Activation. Food Sci. Technol. 2022, 42, e107621. [Google Scholar] [CrossRef]
- Chen, T.; Mou, Y.; Tan, J.; Wei, L.; Qiao, Y.; Wei, T.; Xiang, P.; Peng, S.; Zhang, Y.; Huang, Z.; et al. The Protective Effect of CDDO-Me on Lipopolysaccharide-Induced Acute Lung Injury in Mice. Int. Immunopharmacol. 2015, 25, 55–64. [Google Scholar] [CrossRef]
- Vincenzi, A.; Goettert, M.I.; Volken de Souza, C.F. An Evaluation of the Effects of Probiotics on Tumoral Necrosis Factor (TNF-α) Signaling and Gene Expression. Cytokine Growth Factor Rev. 2021, 57, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.-W.; Kim, J.-K.; Lee, K.-E.; Oh, Y.J.; Choi, H.-J.; Han, M.J.; Kim, D.-H. A Probiotic Lactobacillus gasseri Alleviates Escherichia Coli-Induced Cognitive Impairment and Depression in Mice by Regulating IL-1β Expression and Gut Microbiota. Nutrients 2020, 12, 3441. [Google Scholar] [CrossRef]
- Chen, Y.; Li, R.; Chang, Q.; Dong, Z.; Yang, H.; Xu, C. Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB1-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis? Toxins 2019, 11, 17. [Google Scholar] [CrossRef]
- Baeuerle, P.A.; Henkel, T. Function and Activation of NF-Kappa B in the Immune System. Annu. Rev. Immunol. 1994, 12, 141–179. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Kang, C.-H. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms 2022, 10, 2247. [Google Scholar] [CrossRef] [PubMed]
- Chon, H.; Choi, B.; Jeong, G.; Lee, E.; Lee, S. Suppression of Proinflammatory Cytokine Production by Specific Metabolites of Lactobacillus plantarum 10hk2 via Inhibiting NF-κB and P38 MAPK Expressions. Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, e41–e49. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.Y.; Jeong, Y.; Kang, C.-H. Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria. Fermentation 2022, 8, 29. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Kim, O.-S.; Yoo, S.-R.; Seo, C.-S.; Kim, Y.; Shin, H.-K. Anti-inflammatory and Antioxidant Activity of the Traditional Herbal Formula Gwakhyangjeonggi-san via Enhancement of Heme Oxygenase-1 Expression in RAW264.7 Macrophages. Mol. Med. Rep. 2016, 13, 4365–4371. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Z.; Li, C.; Liu, D.; Li, X.; Xu, J.; Chen, N.; Wang, X.; Li, Q.; Li, Y. Multiple Beneficial Effects of Aloesone from Aloe Vera on LPS-Induced RAW264.7 Cells, Including the Inhibition of Oxidative Stress, Inflammation, M1 Polarization, and Apoptosis. Molecules 2023, 28, 1617. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef]
- Aktan, F. iNOS-Mediated Nitric Oxide Production and Its Regulation. Life Sci. 2004, 75, 639–653. [Google Scholar] [CrossRef]
- Nakagawa, H.; Miyazaki, T. Beneficial Effects of Antioxidative Lactic Acid Bacteria. AIMS Microbiol. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, W.; Hu, Z.; Liu, Z.; Du, T.; Dai, Y.; Xiong, T. Isolation, Characterization and Selection of Potential Probiotic Lactic Acid Bacteria from Feces of Wild Boar, Native Pig and Commercial Pig. Livest. Sci. 2020, 237, 104036. [Google Scholar] [CrossRef]
- HE Shan-shan, B.Z. Screening of Cholesterol-Reducing Probiotics and Its Acid and Bile Salt Tolerance. Mod. Food Sci. Technol. 2019, 35, 198–206. [Google Scholar] [CrossRef]
- Busscher, H.J.; van de Belt-Gritter, B.; van der Mei, H.C. Implications of Microbial Adhesion to Hydrocarbons for Evaluating Cell Surface Hydrophobicity 1. Zeta Potentials of Hydrocarbon Droplets. Colloids Surf. B Biointerfaces 1995, 5, 111–116. [Google Scholar] [CrossRef]
- Ramos, C.L.; Thorsen, L.; Schwan, R.F.; Jespersen, L. Strain-Specific Probiotics Properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis Isolates from Brazilian Food Products. Food Microbiol. 2013, 36, 22–29. [Google Scholar] [CrossRef]
- Schillinger, U.; Lücke, F.K. Antibacterial Activity of Lactobacillus Sake Isolated from Meat. Appl. Environ. Microbiol. 1989, 55, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Gou, X.; Cai, P.; Xu, C.; Cao, L.; Zhao, Z.; Huang, M.; Jin, J. Sesamin Enhances Nrf2-Mediated Protective Defense against Oxidative Stress and Inflammation in Colitis via AKT and ERK Activation. Oxid. Med. Cell. Longev. 2019, 2019, 2432416. [Google Scholar] [CrossRef] [PubMed]
- Rajneesh; Pathak, J.; Chatterjee, A.; Singh, S.P.; Sinha, R.P. Detection of Reactive Oxygen Species (ROS) in Cyanobacteria Using the Oxidant-Sensing Probe 2′,7′-Dichlorodihydrofluorescein Diacetate (DCFH-DA). Bio-Protocol 2017, 7, e2545. [Google Scholar] [CrossRef]
- Li, P.; Gu, Q.; Zhou, Q. Complete Genome Sequence of Lactobacillus plantarum LZ206, a Potential Probiotic Strain with Antimicrobial Activity against Food-Borne Pathogenic Microorganisms. J. Biotechnol. 2016, 238, 52–55. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.-S.; Yu, H.-Y.; Kwon, M.; Kim, K.-K.; In, G.; Hong, S.-K.; Kim, S.-K. Anti-Inflammatory Effects of Limosi Lactobacillus fermentum KGC1601 Isolated from Panax Ginseng and Its Probiotic Characteristics. Foods 2022, 11, 1707. [Google Scholar] [CrossRef]
- Tokatlı, M.; Gülgör, G.; Bağder Elmacı, S.; Arslankoz İşleyen, N.; Özçelik, F. In Vitro Properties of Potential Probiotic Indigenous Lactic Acid Bacteria Originating from Traditional Pickles. Biomed Res. Int. 2015, 2015, 315819. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Staley, T.E.; Bush, L.J. Importance of Bile Tolerance of Lactobacillus acidophilus Used as a Dietary Adjunct. J. Dairy Sci. 1984, 67, 3045–3051. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Bong, Y.-J.; Lee, H.; Kim, H.-Y.; Park, K.-Y. Probiotic Effects of Lactobacillus plantarum and Leuconostoc Mesenteroides Isolated from Kimchi. J. Korean Soc. Food Sci. Nutr. 2016, 45, 12–19. [Google Scholar] [CrossRef]
- Bonatsou, S.; Karamouza, M.; Zoumpopoulou, G.; Mavrogonatou, E.; Kletsas, D.; Papadimitriou, K.; Tsakalidou, E.; Nychas, G.-J.E.; Panagou, E.Ζ. Evaluating the Probiotic Potential and Technological Characteristics of Yeasts Implicated in Cv. Kalamata Natural Black Olive Fermentation. Int. J. Food Microbiol. 2018, 271, 48–59. [Google Scholar] [CrossRef]
- Hernández-Alcántara, A.; Wacher, C.; Llamas-Arriba, M.; López, P.; Pérez-Chabela, M. Probiotic Properties and Stress Response of Thermotolerant Lactic Acid Bacteria Isolated from Cooked Meat Products. LWT 2018, 91, 249–257. [Google Scholar] [CrossRef]
- Jacobsen, C.N.; Rosenfeldt Nielsen, V.; Hayford, A.E.; Møller, P.L.; Michaelsen, K.F.; Pærregaard, A.; Sandström, B.; Tvede, M.; Jakobsen, M. Screening of Probiotic Activities of Forty-Seven Strains of Lactobacillus spp. by In Vitro Techniques and Evaluation of the Colonization Ability of Five Selected Strains in Humans. Appl. Environ. Microbiol. 1999, 65, 4949–4956. [Google Scholar] [CrossRef]
- Ahmad, A.; Yap, W.B.; Kofli, N.T.; Ghazali, A.R. Probiotic Potentials of Lactobacillus plantarum Isolated from Fermented Durian (Tempoyak), a Malaysian Traditional Condiment. Food Sci. Nutr. 2018, 6, 1370–1377. [Google Scholar] [CrossRef]
- García-Cayuela, T.; Korany, A.M.; Bustos, I.; de Cadiñanos, L.P.G.; Requena, T.; Peláez, C.; Martínez-Cuesta, M.C. Adhesion Abilities of Dairy Lactobacillus plantarum Strains Showing an Aggregation Phenotype. Food Res. Int. 2014, 57, 44–50. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion Mechanisms Mediated by Probiotics and Prebiotics and Their Potential Impact on Human Health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef]
- Krausova, G.; Hyrslova, I.; Hynstova, I. In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation 2019, 5, 100. [Google Scholar] [CrossRef]
- Xu, H.; Jeong, H.S.; Lee, H.Y.; Ahn, J. Assessment of Cell Surface Properties and Adhesion Potential of Selected Probiotic Strains. Lett. Appl. Microbiol. 2009, 49, 434–442. [Google Scholar] [CrossRef]
- Saboori, B.; Shahidi, F.; Hedayati, S.; Javadmanesh, A. Investigating the Probiotic Properties and Antimicrobial Activity of Lactic Acid Bacteria Isolated from an Iranian Fermented Dairy Product, Kashk. Foods 2022, 11, 3904. [Google Scholar] [CrossRef] [PubMed]
- Paramita Pal, P.; Sajeli Begum, A.; Ameer Basha, S.; Araya, H.; Fujimoto, Y. New Natural Pro-Inflammatory Cytokines (TNF-α, IL-6 and IL-1β) and iNOS Inhibitors Identified from Penicillium polonicum through in Vitro and in Vivo Studies. Int. Immunopharmacol. 2023, 117, 109940. [Google Scholar] [CrossRef]
- Nazemian, V.; Shadnoush, M.; Manaheji, H.; Zaringhalam, J. Probiotics and Inflammatory Pain: A Literature Review Study. Middle East J. Rehabil Health. 2016, 3, e36087. [Google Scholar] [CrossRef]
- Aly, S.M.; Abdel-Galil Ahmed, Y.; Abdel-Aziz Ghareeb, A.; Mohamed, M.F. Studies on Bacillus subtilis and Lactobacillus acidophilus, as Potential Probiotics, on the Immune Response and Resistance of Tilapia Nilotica (Oreochromis niloticus) to Challenge Infections. Fish Shellfish. Immunol. 2008, 25, 128–136. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Ahn, C.-B.; Je, J.-Y. Anti-Inflammatory Action of High Molecular Weight Mytilus Edulis Hydrolysates Fraction in LPS-Induced RAW264.7 Macrophage via NF-κB and MAPK Pathways. Food Chem. 2016, 202, 9–14. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Niu, Y.; Zhang, X.; Lu, R. Surface-Layer Protein from Lactobacillus acidophilus NCFM Attenuates Tumor Necrosis Factor-α-Induced Intestinal Barrier Dysfunction and Inflammation. Int. J. Biol. Macromol. 2019, 136, 27–34. [Google Scholar] [CrossRef]
- Hao, R.; Liu, Q.; Wang, L.; Jian, W.; Cheng, Y.; Zhang, Q.; Hayer, K.; Kamarudin Raja Idris, R.; Zhang, Y.; Lu, H.; et al. Anti-Inflammatory Effect of Lactiplantibacillus plantarum T1 Cell-Free Supernatants through Suppression of Oxidative Stress and NF-κB- and MAPK-Signaling Pathways. Appl. Environ. Microbiol. 2023, 89, e0060823. [Google Scholar] [CrossRef]
- Shin, K.-S.; SEO, H.; Lee, S.; SUNG, S.; Hwang, D. Polysaccharide Isolated from Korean-Style Soy Sauce Activates Macrophages via the MAPK and NK-κB Pathways. Food Sci. Technol. 2021, 41, 817–824. [Google Scholar] [CrossRef]
- Olson, C.M.; Hedrick, M.N.; Izadi, H.; Bates, T.C.; Olivera, E.R.; Anguita, J. P38 Mitogen-Activated Protein Kinase Controls NF-kappaB Transcriptional Activation and Tumor Necrosis Factor Alpha Production through RelA Phosphorylation Mediated by Mitogen- and Stress-Activated Protein Kinase 1 in Response to Borrelia Burgdorferi Antigens. Infect. Immun. 2007, 75, 270–277. [Google Scholar] [CrossRef]
- Hong, J.-P.; Yoo, B.-G.; Lee, J.-H.; Song, H.-Y.; Byun, E.-H. Immunostimulatory Activity of Allomyrina Dichotoma Larva Extract through the Activation of MAPK and the NF-κB Signaling Pathway in Macrophage Cells. J. Korean Soc. Food Sci. Nutr. 2022, 51, 229–236. [Google Scholar] [CrossRef]
- Kim, G.; Choi, K.-H.; Kim, H.; Chung, D.-K. Alleviation of LPS-Induced Inflammation and Septic Shock by Lactiplantibacillus plantarum K8 Lysates. Int. J. Mol. Sci. 2021, 22, 5921. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Pan, L.-L.; Sun, J. Novel Probiotic Lactic Acid Bacteria Were Identified from Healthy Infant Feces and Exhibited Anti-Inflammatory Capacities. Antioxidants 2022, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Suhartatik, N.; Cahyanto, M.N.; Rahardjo, S.; Miyashita, M.; Rahayu, E.S. Isolation and Identification of Lactic Acid Bacteria Producing β Glucosidase from Indonesian Fermented Foods. Int. Food Res. J. 2014, 21, 937. [Google Scholar]
- Okamoto, T.; Sugimoto, S.; Noda, M.; Yokooji, T.; Danshiitsoodol, N.; Higashikawa, F.; Sugiyama, M. Interleukin-8 Release Inhibitors Generated by Fermentation of Artemisia Princeps Pampanini Herb Extract With Lactobacillus plantarum SN13T. Front. Microbiol. 2020, 11, 1159. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shin, H.; Wang, T.; Zhao, Y.; Lee, S.; Lim, C.; Zhang, S. Whole Genome Sequence of Lactiplantibacillus plantarum HOM3204 and Its Antioxidant Effect on D-Galactose-Induced Aging in Mice. J. Microbiol. Biotechnol. 2023, 33, 1030–1038. [Google Scholar] [CrossRef]
- Liu, D.-M.; Huang, Y.-Y.; Liang, M.-H. Analysis of the Probiotic Characteristics and Adaptability of Lactiplantibacillus plantarum DMDL 9010 to Gastrointestinal Environment by Complete Genome Sequencing and Corresponding Phenotypes. LWT 2022, 158, 113129. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, H.; Zhang, D.; Liu, H.; Wang, S.; Wang, J.; Wang, Y. Complete Genome Sequencing of Lactobacillus plantarum ZLP001, a Potential Probiotic That Enhances Intestinal Epithelial Barrier Function and Defense Against Pathogens in Pigs. Front. Physiol. 2018, 9, 1689. [Google Scholar] [CrossRef]
Characteristics | Survival Rate (%) * |
---|---|
pH 2.5 | 102.20 ± 3.00 |
0.3% Bile Salt | 101.19 ± 2.00 |
Characteristics | Survival Rate (%) * |
---|---|
Hydrophobicity | 45.67 ± 3.06 |
Adhesion | 72.75 ± 16.69 |
Pathogen Strain | Inhibitory Zone Diameter (mm) * |
---|---|
S. aureus (ATCC 6538) | 20.68 ± 0.03 a |
E. coli (CGMCC 9181) | 19.27 ± 0.03 c |
S. enterica (ATCC 14028) | 19.16 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Nie, Z.; Zhu, L.; Wu, Y.; Wen, Y.; Deng, F.; Zhao, L. Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables. Microorganisms 2024, 12, 2159. https://doi.org/10.3390/microorganisms12112159
Wang S, Nie Z, Zhu L, Wu Y, Wen Y, Deng F, Zhao L. Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables. Microorganisms. 2024; 12(11):2159. https://doi.org/10.3390/microorganisms12112159
Chicago/Turabian StyleWang, Shiyu, Ziyu Nie, Li Zhu, Yanyang Wu, Yashi Wen, Fangming Deng, and Lingyan Zhao. 2024. "Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables" Microorganisms 12, no. 11: 2159. https://doi.org/10.3390/microorganisms12112159
APA StyleWang, S., Nie, Z., Zhu, L., Wu, Y., Wen, Y., Deng, F., & Zhao, L. (2024). Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables. Microorganisms, 12(11), 2159. https://doi.org/10.3390/microorganisms12112159