Graves’ Disease: Is It Time for Targeted Therapy? A Narrative Review
Abstract
1. Introduction
2. Pathogenesis and Molecular Mechanisms
2.1. TSH-R Autoantibodies and Immune Tolerance Escape
2.2. Genetic and Environmental Risk Factors for GD
3. Conventional Treatments
4. Novel Therapeutic Approaches
4.1. Anti-CD20 Monoclonal Antibody—Rituximab
4.2. Anti-CD40 Monoclonal Antibody—Iscalimab
4.3. Anti-BAFF Monoclonal Antibody—Belimumab
4.4. Anti-FcRn Monoclonal Antibody—Batoclimab
4.5. TSHR-Blocking Antibodies—K1-70
4.6. Small Molecule TSHR Antagonists—ANTAG-3, VA-K-14 and S37
4.7. DRβ1-Arg74 Blocker—Cepharantine
4.8. Immune Tolerance—ATX-GD-59
4.9. Chimeric Antigen Receptor (CAR) T-Cell Therapy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weetman, A.P.; Yateman, M.E.; Ealey, P.A.; Black, C.M.; Reimer, C.B.; Williams, R.C., Jr.; Shine, B.; Marshall, N.J. Thyroid-stimulating antibody activity between different immunoglobulin G subclasses. J. Clin. Investig. 1990, 86, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hegedus, L. Graves’ Disease. N. Engl. J. Med. 2016, 375, 1552–1565. [Google Scholar] [CrossRef]
- Wemeau, J.L.; Klein, M.; Sadoul, J.-L.; Briet, C.; Vélayoudom-Céphise, F.-L. Graves’ disease: Introduction, epidemiology, endogenous and environmental pathogenic factors. Ann. Endocrinol. 2018, 79, 599–607. [Google Scholar] [CrossRef]
- Antonelli, A.; Fallahi, P.; Elia, G.; Ragusa, F.; Paparo, S.R.; Ruffilli, I.; Patrizio, A.; Gonnella, D.; Giusti, C.; Virili, C. Graves’ disease: Clinical manifestations, immune pathogenesis (cytokines and chemokines) and therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101388. [Google Scholar] [CrossRef]
- Selmer, C.; Olesen, J.B.; Hansen, M.L.; Lindhardsen, J.; Olsen, A.-M.S.; Madsen, J.C.; Faber, J.; Hansen, P.R.; Pedersen, O.D.; Torp-Pedersen, C. The spectrum of thyroid disease and risk of new onset atrial fibrillation: A large population cohort study. BMJ 2012, 345, e7895. [Google Scholar] [CrossRef]
- Fatourechi, V. Thyroid dermopathy and acropachy. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 553–565. [Google Scholar] [CrossRef]
- Antonelli, A.; Ferrari, S.M.; Ragusa, F.; Elia, G.; Paparo, S.R.; Ruffilli, I.; Patrizio, A.; Giusti, C.; Gonnella, D.; Cristaudo, A. Graves’ disease: Epidemiology, genetic and environmental risk factors and viruses. Best Pract. Res. Clin. Endocrinol. Metab. 2020, 34, 101387. [Google Scholar] [CrossRef]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016, 26, 1343–1421. [Google Scholar] [CrossRef]
- Burch, H.B.; Perros, P.; Bednarczuk, T.; Cooper, D.S.; Dolman, P.J.; Leung, A.M.; Mombaerts, I.; Salvi, M.; Stan, M.N. Management of Thyroid Eye Disease: A Consensus Statement by the American Thyroid Association and the European Thyroid Association. Thyroid 2022, 32, 1439–1470. [Google Scholar] [CrossRef]
- Lanzolla, G.; Marino, M.; Menconi, F. Graves disease: Latest understanding of pathogenesis and treatment options. Nat. Rev. Endocrinol. 2024, 20, 647–660. [Google Scholar] [CrossRef]
- Davies, T.F.; Andersen, S.; Latif, R.; Nagayama, Y.; Barbesino, G.; Brito, M.; Eckstein, A.K.; Stagnaro-Green, A.; Kahaly, G.J. Graves’ disease. Nat. Rev. Dis. Primers 2020, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Chazenbalk, G.D.; Pichurin, P.; Chen, C.-R.; Latrofa, F.; Johnstone, A.P.; McLachlan, S.M.; Rapoport, B. Thyroid-stimulating autoantibodies in Graves disease preferentially recognize the free A subunit, not the thyrotropin holoreceptor. J. Clin. Investig. 2002, 110, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Costagliola, S.; Bonomi, M.; Morgenthaler, N.G.; Van Durme, J.; Panneels, V.; Refetoff, S.; Vassart, G. Delineation of the discontinuous-conformational epitope of a monoclonal antibody displaying full in vitro and in vivo thyrotropin activity. Mol. Endocrinol. 2004, 18, 3020–3034. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.R.; Sanders, J.; Furmaniak, J. TSH receptor antibodies. Thyroid 2007, 17, 923–938. [Google Scholar] [CrossRef]
- Mariotti, S.; Caturegli, P.; Piccolo, P.; Barbesino, G.; Pinchera, A. Antithyroid peroxidase autoantibodies in thyroid diseases. J. Clin. Endocrinol. Metab. 1990, 71, 661–669. [Google Scholar] [CrossRef]
- Takasu, N.; Matsushita, M. Changes of TSH-Stimulation Blocking Antibody (TSBAb) and Thyroid Stimulating Antibody (TSAb) Over 10 Years in 34 TSBAb-Positive Patients with Hypothyroidism and in 98 TSAb-Positive Graves’ Patients with Hyperthyroidism: Reevaluation of TSBAb and TSAb in TSH-Receptor-Antibody (TRAb)-Positive Patients. J. Thyroid Res. 2012, 2012, 182176. [Google Scholar]
- Wang, Y.; Zhang, X.; Ge, J.; Jin, J.; Zheng, Z.; Li, J.; Wang, X.; Zhang, S.; Wang, Z.; Dong, G. Single-cell landscape of peripheral blood mononuclear cells in patients with Graves’ disease. Endocrinology, 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Mao, C.; Wang, S.; Xiao, Y.; Xu, J.; Jiang, Q.; Jin, M.; Jiang, X.; Guo, H.; Ning, G.; Zhang, Y. Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ disease. J. Immunol. 2011, 186, 4734–4743. [Google Scholar] [CrossRef]
- Chen, K.; Yang, Y.; Wu, Y.; Cao, W.; Zhao, Y.; Wang, S.; Wang, K. PLGA nanoparticles encapsulating TSHR-A and rapamycin enhance the induction of dendritic cell-specific immune tolerance in mice with Graves’ disease. Biomed. Mater. 2025; Online ahead of print. [Google Scholar] [CrossRef]
- Bartalena, L.; Tanda, M.L. Current concepts regarding Graves’ orbitopathy. J. Intern. Med. 2022, 292, 692–716. [Google Scholar] [CrossRef]
- Biscarini, F.; Masetti, G.; Muller, I.; Verhasselt, H.L.; Covelli, D.; Colucci, G.; Zhang, L.; Draman, M.S.; Okosieme, O.; Taylor, P. Gut Microbiome Associated With Graves Disease and Graves Orbitopathy: The INDIGO Multicenter European Study. J. Clin. Endocrinol. Metab. 2023, 108, 2065–2077. [Google Scholar] [CrossRef]
- Tomer, Y.; Barbesino, G.; Greenberg, D.A.; Concepcion, E.; Davies, T.F. Linkage analysis of candidate genes in autoimmune thyroid disease. III. Detailed analysis of chromosome 14 localizes Graves’ disease-1 (GD-1) close to multinodular goiter-1 (MNG-1). International Consortium for the Genetics of Autoimmune Thyroid Disease. J. Clin. Endocrinol. Metab. 1998, 83, 4321–4327. [Google Scholar]
- Bufalo, N.E.; dos Santos, R.B.; Marcello, M.A.; Piai, R.P.; Secolin, R.; Romaldini, J.H.; Ward, L.S. TSHR intronic polymorphisms (rs179247 and rs12885526) and their role in the susceptibility of the Brazilian population to Graves’ disease and Graves’ ophthalmopathy. J. Endocrinol. Investig. 2015, 38, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Li, H.N.; Li, X.; Du, Y.; Yang, Z.; Lv, Z. The Association Between Foxp3 Polymorphisms and Risk of Graves’ Disease: A Systematic Review and Meta-Analysis of Observational Studies. Front. Endocrinol. 2020, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Shehjar, F.; Afroze, D.; Misgar, R.A.; Malik, S.A.; Laway, B.A. Association of FoxP3 promoter polymorphisms with the risk of Graves’ disease in ethnic Kashmiri population. Gene 2018, 672, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Qiu, X.; Li, J.; Zheng, S.; Li, L.; Zhao, H. MiR-23a-3p-regulated abnormal acetylation of FOXP3 induces regulatory T cell function defect in Graves’ disease. Biol. Chem. 2019, 400, 639–650. [Google Scholar] [CrossRef]
- Tan, G.; Wang, X.; Zheng, G.; Du, J.; Zhou, F.; Liang, Z.; Wei, W.; Yu, H. Meta-analysis reveals significant association between FOXP3 polymorphisms and susceptibility to Graves’ disease. J. Int. Med. Res. 2021, 49, 3000605211004199. [Google Scholar] [CrossRef]
- Simmonds, M.J.; Heward, J.M.; Carr-Smith, J.; Foxall, H.; Franklyn, J.A.; Gough, S.C.L. Contribution of single nucleotide polymorphisms within FCRL3 and MAP3K7IP2 to the pathogenesis of Graves’ disease. J. Clin. Endocrinol. Metab. 2006, 91, 1056–1061. [Google Scholar] [CrossRef]
- Inoue, N.; Watanabe, M.; Yamada, H.; Takemura, K.; Hayashi, F.; Yamakawa, N.; Akahane, M.; Shimizuishi, Y.; Hidaka, Y.; Iwatani, Y. Associations between autoimmune thyroid disease prognosis and functional polymorphisms of susceptibility genes, CTLA4, PTPN22, CD40, FCRL3, and ZFAT, previously revealed in genome-wide association studies. J. Clin. Immunol. 2012, 32, 1243–1252. [Google Scholar] [CrossRef]
- Khong, J.J.; Burdon, K.P.; Lu, Y.; Laurie, K.; Leonardos, L.; Baird, P.N.; Sahebjada, S.; Walsh, J.P.; Gajdatsy, A.; Ebeling, P.R. Pooled genome wide association detects association upstream of FCRL3 with Graves’ disease. BMC Genom. 2016, 17, 939. [Google Scholar] [CrossRef]
- Hasham, A.; Tomer, Y. Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol. Res. 2012, 54, 204–213. [Google Scholar] [CrossRef]
- Simmonds, M.J. GWAS in autoimmune thyroid disease: Redefining our understanding of pathogenesis. Nat. Rev. Endocrinol. 2013, 9, 277–287. [Google Scholar] [CrossRef]
- Bufalo, N.E.; dos Santos, R.B.; Rocha, A.G.; Teodoro, L.; Romaldini, J.H.; Ward, L.S. Polymorphisms of the genes CTLA4, PTPN22, CD40, and PPARG and their roles in Graves’ disease: Susceptibility and clinical features. Endocrine 2021, 71, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Faustino, L.C.; Kahaly, G.J.; Frommer, L.; Concepcion, E.; Stefan-Lifshitz, M.; Tomer, Y. Precision Medicine in Graves’ Disease: CD40 Gene Variants Predict Clinical Response to an Anti-CD40 Monoclonal Antibody. Front. Endocrinol. 2021, 12, 691781. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.D.; Wang, Y.-H.; Fang, W.-F.; Hsiao, C.-J.; Chagnaadorj, A.; Lin, Y.-F.; Tang, K.-T.; Cheng, C.-W. Serum BAFF and thyroid autoantibodies in autoimmune thyroid disease. Clin. Chim. Acta 2016, 462, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Campi, I.; Tosi, D.; Rossi, S.; Vannucchi, G.; Covelli, D.; Colombo, F.; Trombetta, E.; Porretti, L.; Vicentini, L.; Cantoni, G.; et al. B Cell Activating Factor (BAFF) and BAFF Receptor Expression in Autoimmune and Nonautoimmune Thyroid Diseases. Thyroid 2015, 25, 1043–1049. [Google Scholar] [CrossRef]
- Lane, L.C.; Allinson, K.R.; Campbell, K.; Bhatnagar, I.; Ingoe, L.; Razvi, S.; Cheetham, T.; Cordell, H.J.; Pearce, S.H.; Mitchell, A.L. Analysis of BAFF gene polymorphisms in UK Graves’ disease patients. Clin. Endocrinol. 2019, 90, 170–174. [Google Scholar] [CrossRef]
- Lin, J.D.; Yang, S.-F.; Wang, Y.-H.; Fang, W.-F.; Lin, Y.-C.; Lin, Y.-F.; Tang, K.-T.; Wu, M.-Y.; Cheng, C.-W. Analysis of Associations of Human BAFF Gene Polymorphisms with Autoimmune Thyroid Diseases. PLoS ONE 2016, 11, e0154436. [Google Scholar] [CrossRef]
- Limbach, M.; Saare, M.; Tserel, L.; Kisand, K.; Eglit, T.; Sauer, S.; Axelsson, T.; Syvänen, A.-C.; Metspalu, A.; Milani, L.; et al. Epigenetic profiling in CD4+ and CD8+ T cells from Graves’ disease patients reveals changes in genes associated with T cell receptor signaling. J. Autoimmun. 2016, 67, 46–56. [Google Scholar] [CrossRef]
- Mehta, A.; Baltimore, D. MicroRNAs as regulatory elements in immune system logic. Nat. Rev. Immunol. 2016, 16, 279–294. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Wang, L.; Sun, X.; Tan, G.; Wei, W.; Zheng, G.; Ma, X.; Tian, D.; Yu, H. Genetics, Epigenetics, Cellular Immunology, and Gut Microbiota: Emerging Links with Graves’ Disease. Front. Cell Dev. Biol. 2021, 9, 794912. [Google Scholar] [CrossRef]
- Yamada, H.; Itoh, M.; Hiratsuka, I.; Hashimoto, S. Circulating microRNAs in autoimmune thyroid diseases. Clin. Endocrinol. 2014, 81, 276–281. [Google Scholar] [CrossRef]
- Qin, Q.; Wang, X.; Yan, N.; Song, R.-H.; Cai, T.-T.; Zhang, W.; Guan, L.-J.; Muhali, F.-S.; Zhang, J.-A. Aberrant expression of miRNA and mRNAs in lesioned tissues of Graves’ disease. Cell Physiol. Biochem. 2015, 35, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, R.; Sampedro-Núñez, M.; Serrano-Somavilla, A.; Ramos-Leví, A.M.; de la Fuente, H.; Triviño, J.C.; Sanz-García, A.; Sánchez-Madrid, F.; Marazuela, M. A MicroRNA Signature for Evaluation of Risk and Severity of Autoimmune Thyroid Diseases. J Clin. Endocrinol. Metab. 2018, 103, 1139–1150. [Google Scholar] [CrossRef] [PubMed]
- Mateu-Salat, M.; Urgell, E.; Chico, A. SARS-CoV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Investig. 2020, 43, 1527–1528. [Google Scholar] [CrossRef] [PubMed]
- Lanzolla, G.; Marcocci, C.; Marino, M. Graves’ disease and Graves’ orbitopathy following COVID-19. J. Endocrinol. Investig. 2021, 44, 2011–2012. [Google Scholar] [CrossRef]
- Hansen, J.F.; Magyari, M.; Rasmussen, Å.K.; Sellebjerg, F.; Feldt-Rasmussen, U. Alemtuzumab-induced thyroid disease: A Danish cohort study. Mult. Scler. Relat. Disord. 2024, 91, 105880. [Google Scholar] [CrossRef]
- Ishaq, H.M.; Mohammad, I.S.; Shahzad, M.; Ma, C.; Raza, M.A.; Wu, X.; Guo, H.; Shi, P.; Xu, J. Molecular Alteration Analysis of Human Gut Microbial Composition in Graves’ disease Patients. Int. J. Biol. Sci. 2018, 14, 1558–1570. [Google Scholar] [CrossRef]
- Chang, S.C.; Lin, S.-F.; Chen, S.-T.; Chang, P.-Y.; Yeh, Y.-M.; Lo, F.-S.; Lu, J.-J. Alterations of Gut Microbiota in Patients with Graves’ Disease. Front. Cell Infect. Microbiol. 2021, 11, 663131. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Bartalena, L.; Hegedüs, L.; Leenhardt, L.; Poppe, K.; Pearce, S.H. 2018 European Thyroid Association Guideline for the Management of Graves’ Hyperthyroidism. Eur. Thyroid J. 2018, 7, 167–186. [Google Scholar] [CrossRef]
- Ross, D.S. Radioiodine therapy for hyperthyroidism. N. Engl. J. Med. 2011, 364, 542–550. [Google Scholar] [CrossRef]
- De Leo, S.; Lee, S.Y.; Braverman, L.E. Hyperthyroidism. Lancet 2016, 388, 906–918. [Google Scholar] [CrossRef]
- Jansson, R.; Dahlberg, P.A.; Lindstrom, B. Comparative bioavailability of carbimazole and methimazole. Int. J. Clin. Pharmacol. Ther. Toxicol. 1983, 21, 505–510. [Google Scholar] [PubMed]
- Visser, T.J.; van Overmeeren-Kaptein, E. Study on the enzymatic 5’-deiodination of 3’,5’-diiodothyronine using a radioimmunoassay for 3’-iodothyronine. Biochim. Biophys. Acta 1980, 631, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J. Management of Graves Thyroidal and Extrathyroidal Disease: An Update. J. Clin. Endocrinol. Metab. 2020, 105, 3704–3720. [Google Scholar] [CrossRef]
- Azizi, F.; Mehran, L.; Abdi, H.; Amouzegar, A. Approach to the Patient Considering Long-term Antithyroid Drug Therapy for Graves’ Disease. J. Clin. Endocrinol. Metab. 2024, 109, e1881–e1888. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.S. Antithyroid drugs. N. Engl. J. Med. 2005, 352, 905–917. [Google Scholar] [CrossRef]
- Okamoto, Y.; Tanigawa, S.; Ishikawa, K.; Hamada, N. TSH receptor antibody measurements and prediction of remission in Graves’ disease patients treated with minimum maintenance doses of antithyroid drugs. Endocr. J. 2006, 53, 467–472. [Google Scholar] [CrossRef]
- Bartalena, L.; Burch, H.B.; Burman, K.D.; Kahaly, G.J. A 2013 European survey of clinical practice patterns in the management of Graves’ disease. Clin. Endocrinol. 2016, 84, 115–120. [Google Scholar] [CrossRef]
- Bartalena, L. Diagnosis and management of Graves disease: A global overview. Nat. Rev. Endocrinol. 2013, 9, 724–734. [Google Scholar] [CrossRef]
- Kandil, E.; Noureldine, S.I.; Abbas, A.; Tufano, R.P. The impact of surgical volume on patient outcomes following thyroid surgery. Surgery 2013, 154, 1346–1352, discussion 1352–1353. [Google Scholar] [CrossRef]
- Hauch, A.; Al-Qurayshi, Z.; Randolph, G.; Kandil, E. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann. Surg. Oncol. 2014, 21, 3844–3852. [Google Scholar] [CrossRef]
- Pavanello, F.; Zucca, E.; Ghielmini, M. Rituximab: 13 open questions after 20years of clinical use. Cancer Treat. Rev. 2017, 53, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef] [PubMed]
- Heemstra, K.A.; Toes, R.E.; Sepers, J.; Pereira, A.M.; Corssmit, E.P.; Huizinga, T.W.J.; Romijn, J.A.; Smit, J.W. Rituximab in relapsing Graves’ disease, a phase II study. Eur. J. Endocrinol. 2008, 159, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Cheetham, T.D.; Cole, M.; Abinun, M.; Allahabadia, A.; Barratt, T.; Davies, J.H.; Dimitri, P.; Drake, A.; Mohamed, Z.; Murray, R.D. Adjuvant Rituximab-Exploratory Trial in Young People with Graves Disease. J. Clin. Endocrinol. Metab. 2022, 107, 743–754. [Google Scholar] [CrossRef]
- El Fassi, D.; Nielsen, C.H.; Bonnema, S.J.; Hasselbalch, H.C.; Hegedüs, L. B lymphocyte depletion with the monoclonal antibody rituximab in Graves’ disease: A controlled pilot study. J. Clin. Endocrinol. Metab. 2007, 92, 1769–1772. [Google Scholar] [CrossRef]
- El Fassi, D.; Nielsen, C.H.; Hasselbalch, H.C.; Hegedüs, L. The rationale for B lymphocyte depletion in Graves’ disease. Monoclonal anti-CD20 antibody therapy as a novel treatment option. Eur. J. Endocrinol. 2006, 154, 623–632. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Gan, E.H.; Morris, M.; Johnson, K.; Neoh, C.; Dickinson, A.J.; Perros, P.; Pearce, S.H.S. The effect of B cell depletion therapy on anti-TSH receptor antibodies and clinical outcome in glucocorticoid-refractory Graves’ orbitopathy. Clin. Endocrinol. 2013, 79, 437–442. [Google Scholar] [CrossRef]
- Shen, W.C.; Lee, C.; Loh, E.; Hsieh, A.; Chen, L.; Tam, K. Efficacy and Safety of Rituximab for the Treatment of Graves’ Orbitopathy: A Meta-analysis of Randomized Controlled Trials. Pharmacotherapy 2018, 38, 503–510. [Google Scholar] [CrossRef]
- El Fassi, D.; Nielsen, C.H.; Junker, P.; Hasselbalch, H.C.; Hegedüs, L. Systemic adverse events following rituximab therapy in patients with Graves’ disease. J. Endocrinol. Investig. 2011, 34, e163–e167. [Google Scholar]
- Stan, M.N.; Garrity, J.A.; Carranza Leon, B.G.; Prabin, T.; Bradley, E.A.; Bahn, R.S. Randomized controlled trial of rituximab in patients with Graves’ orbitopathy. J. Clin. Endocrinol. Metab. 2015, 100, 432–441. [Google Scholar] [CrossRef]
- Munroe, M.E. Functional roles for T cell CD40 in infection and autoimmune disease: The role of CD40 in lymphocyte homeostasis. Semin. Immunol. 2009, 21, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Carayanniotis, G.; Masters, S.R.; Noelle, R.J. Suppression of murine thyroiditis via blockade of the CD40-CD40L interaction. Immunology 1997, 90, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.K.; Finkelman, F.D.; Li, C.W.; Concepcion, E.; Smith, E.; Jacobson, E.; Latif, R.; Keddache, M.; Zhang, W.; Tomer, Y. Genetically driven target tissue overexpression of CD40: A novel mechanism in autoimmune disease. J. Immunol. 2012, 189, 3043–3053. [Google Scholar] [CrossRef]
- Ristov, J.; Espie, P.; Ulrich, P.; Sickert, D.; Flandre, T.; Dimitrova, M.; Müller-Ristig, D.; Weider, D.; Robert, G.; Schmutz, P.; et al. Characterization of the in vitro and in vivo properties of CFZ533, a blocking and non-depleting anti-CD40 monoclonal antibody. Am. J. Transplant. 2018, 18, 2895–2904. [Google Scholar] [CrossRef]
- Kahaly, G.J.; Stan, M.N.; Frommer, L.; Gergely, P.; Colin, L.; Amer, A.; Schuhmann, I.; Espie, P.; Rush, J.S.; Basson, C. A Novel Anti-CD40 Monoclonal Antibody, Iscalimab, for Control of Graves Hyperthyroidism-A Proof-of-Concept Trial. J. Clin. Endocrinol. Metab. 2020, 105, dgz013. [Google Scholar] [CrossRef]
- Lee, A.C.H.; Kahaly, G.J. Novel Approaches for Immunosuppression in Graves’ Hyperthyroidism and Associated Orbitopathy. Eur. Thyroid J. 2020, 9 (Suppl. S1), 17–30. [Google Scholar] [CrossRef]
- Levy, R.A.; Gonzalez-Rivera, T.; Khamashta, M.; Fox, N.L.; Jones-Leone, A.; Rubin, B.; Burriss, S.W.; Gairy, K.; Maurik, A.V.; Roth, D.A. 10 Years of belimumab experience: What have we learnt? Lupus 2021, 30, 1705–1721. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Kalled, S.L.; Moorhead, J.; Hess, D.M.; Rennert, P.; Li, Z.; Khan, M.Z.; Banga, J.P. Treatment of autoimmune hyperthyroidism in a murine model of Graves’ disease with tumor necrosis factor-family ligand inhibitors suggests a key role for B cell activating factor in disease pathology. Endocrinology 2006, 147, 4561–4568. [Google Scholar] [CrossRef]
- Menon, D.; Bril, V. Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals. Drugs 2022, 82, 865–887. [Google Scholar] [CrossRef]
- Audia, S.; Bonnotte, B. Emerging Therapies in Immune Thrombocytopenia. J. Clin. Med. 2021, 10, 1004. [Google Scholar] [CrossRef]
- Benatar, M.; Wiendl, H.; Nowak, R.; Zheng, Y.; Macias, W. Batoclimab as induction and maintenance therapy in patients with myasthenia gravis: Rationale and study design of a phase 3 clinical trial. BMJ Neurol. Open 2024, 6, e000536. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, X.; Wang, H.; Peng, Y.; Shi, F.; Jia, D.; Yang, H.; Zeng, Q.; Quan, C.; ZhangBao, J. Batoclimab as an add-on therapy in neuromyelitis optica spectrum disorder patients with acute attacks. Eur. J. Neurol. 2023, 30, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Kahaly, G.J.; Dolman, P.J.; Wolf, J.; Giers, B.C.; Elflein, H.M.; Jain, A.P.; Srinivasan, A.; Hadjiiski, L.; Jordan, D.; Bradley, E.A. Proof-of-Concept and Randomized, Placebo-Controlled Trials of an Fcrn Inhibitor, Batoclimab, for Thyroid Eye Disease. J. Clin. Endocrinol. Metab. 2023, 108, 3122–3134. [Google Scholar] [CrossRef]
- Evans, M.; Sanders, J.; Tagami, T.; Sanders, P.; Young, S.; Roberts, E.; Wilmot, J.; Hu, X.; Kabelis, K.; Clark, J. Monoclonal autoantibodies to the TSH receptor, one with stimulating activity and one with blocking activity, obtained from the same blood sample. Clin. Endocrinol. 2010, 73, 404–412. [Google Scholar] [CrossRef]
- Furmaniak, J.; Sanders, J.; Rees Smith, B. Blocking type TSH receptor antibodies. Auto Immun. Highlights 2013, 4, 11–26. [Google Scholar] [CrossRef]
- Furmaniak, J.; Sanders, J.; Sanders, P.; Li, Y.; Rees Smith, B. TSH receptor specific monoclonal autoantibody K1-70(TM) targeting of the TSH receptor in subjects with Graves’ disease and Graves’ orbitopathy-Results from a phase I clinical trial. Clin. Endocrinol. 2022, 96, 878–887. [Google Scholar] [CrossRef]
- Neumann, S.; Eliseeva, E.; McCoy, J.G.; Napolitano, G.; Giuliani, C.; Monaco, F.; Huang, W.; Gershengorn, M.C. A new small-molecule antagonist inhibits Graves’ disease antibody activation of the TSH receptor. J. Clin. Endocrinol. Metab. 2011, 96, 548–554. [Google Scholar] [CrossRef]
- Neumann, S.; Nir, E.A.; Eliseeva, E.; Huang, W.; Marugan, J.; Xiao, J.; Dulcey, A.E.; Gershengorn, M.C. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 2014, 155, 310–314. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Hoyer, I.; Specker, E.; Furkert, J.; Rutz, C.; Neuenschwander, M.; Sobottka, S.; Sun, H.; Nazare, M.; Berchner-Pfannschmidt, U. A New Highly Thyrotropin Receptor-Selective Small-Molecule Antagonist with Potential for the Treatment of Graves’ Orbitopathy. Thyroid 2019, 29, 111–123. [Google Scholar] [CrossRef]
- Neumann, S.; Huang, W.; Eliseeva, E.; Titus, S.; Thomas, C.J.; Gershengorn, M.C. A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. Endocrinology 2010, 151, 3454–3459. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Danks, R. Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol. Rep. 2011, 63, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Uto, T.; Nishi, Y.; Toyama, M.; Yoshinaga, K.; Baba, M. Inhibitory effect of cepharanthine on dendritic cell activation and function. Int. Immunopharmacol. 2011, 11, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Menconi, F.; Osman, R.; Mezei, M.; Jacobson, E.M.; Concepcion, E.; David, C.S.; Kastrinsky, D.B.; Ohlmeyer, M.; Tomer, Y. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis. J. Biol. Chem. 2016, 291, 4079–4090. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Osman, R.; Menconi, F.; Concepcion, E.; Tomer, Y. Cepharanthine blocks TSH receptor peptide presentation by HLA-DR3: Therapeutic implications to Graves’ disease. J. Autoimmun. 2020, 108, 102402. [Google Scholar] [CrossRef]
- Rapoport, B.; Banuelos, B.; Aliesky, H.A.; Hartwig Trier, N.; McLachlan, S.M. Critical Differences between Induced and Spontaneous Mouse Models of Graves’ Disease with Implications for Antigen-Specific Immunotherapy in Humans. J. Immunol. 2016, 197, 4560–4568. [Google Scholar] [CrossRef]
- Kenison, J.E.; Stevens, N.A.; Quintana, F.J. Therapeutic indtion of antigen-specific immune tolerance. Nat. Rev. Immunol. 2024, 24, 338–357. [Google Scholar] [CrossRef]
- Jansson, L.; Vrolix, K.; Jahraus, A.; Martin, K.F.; Wraith, D.C. Immunotherapy with Apitopes Blocks the Immune Response to TSH Receptor in HLA-DR Transgenic Mice. Endocrinology 2018, 159, 3446–3457. [Google Scholar] [CrossRef]
- Pearce, S.H.S.; Dayan, C.; Wraith, D.C.; Barrell, K.; Olive, N.; Jansson, L.; Walker-Smith, T.; Carnegie, C.; Martin, K.F.; Boelaert, K. Antigen-Specific Immunotherapy with Thyrotropin Receptor Peptides in Graves’ Hyperthyroidism: A Phase I Study. Thyroid 2019, 29, 1003–1011. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, J.; Liu, H.; Yin, G.; Xie, Q. Immunotherapy Deriving from CAR-T Cell Treatment in Autoimmune Diseases. J. Immunol. Res. 2019, 2019, 5727516. [Google Scholar] [CrossRef]
- Jhaveri, K.S.; Schlam, I.; Holtzman, N.G.; Peravali, M.; Richardson, P.K.; Dahiya, S.; Malkovska, V.; Rapoport, A.P. Safety and efficacy of CAR T cells in a patient with lymphoma and a coexisting autoimmune neuropathy. Blood Adv. 2020, 4, 6019–6022. [Google Scholar] [CrossRef]
- Flemming, A. Autoimmune diseases: CAR-T cells take aim at autoimmunity. Nat. Rev. Drug Discov. 2016, 15, 603. [Google Scholar] [CrossRef] [PubMed]
- McGovern, J.L.; Wright, G.P.; Stauss, H.J. Engineering Specificity and Function of Therapeutic Regulatory T Cells. Front. Immunol. 2017, 8, 1517. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Jiang, Z.; Chen, L.; Bai, X.; Cai, H.; Yang, X.; Huang, H. TSHR-based chimeric antigen receptor T cell specifically deplete auto-reactive B lymphocytes for treatment of autoimmune thyroid disease. Int. Immunopharmacol. 2023, 124, 110873. [Google Scholar] [CrossRef] [PubMed]
Gene | Protein Localization | Target | Main Function | Genetic and Functional Changes in GD |
---|---|---|---|---|
CTLA-4 [33] | T-cell membrane | Co-stimulatory molecule (e.g., CD80, CD86) on APCs. | Negative regulation of the immune response, acting as a ‘brake’ for activated T cells. | Polymorphisms associated with reduced inhibitory function, leading to increased T-cell activation and heightened GD risk. |
PTPN22 [33] | T-cell cytoplasm | Tyrosine kinases (e.g., Lck, ZAP-70) involved in T-cell receptor (TCR) signaling. | Dephosphorylation of tyrosine kinases involved in the regulation of immune response. | Polymorphisms that affect enzyme activity, resulting in increased T-cell activation and higher risk of GD. |
FCRL3 [2,8,30] | B-cell membrane | Several ligands, including FcγRIIb. | Negative regulation of B-cell proliferation and differentiation. | Functional alterations leading to enhanced B-cell activation and increased production of TRAbs. |
CD40 [33,34] | APC and B-cell membrane | CD40L (also called CD154) on activated T cells. | Stimulation of T-cell activation and B-cell maturation. | Overexpression and/or hyperactivation contributing to excessive immune responses and TRAbs’ production. |
FOXP3 [2,4,27] | T-cell cytoplasm and nucleus | Regulatory pathways in T cells. | Critical for maintaining immune tolerance by regulating Treg activity. | Polymorphisms and abnormal acetylation associated with reduced Treg activity, resulting in an exaggerated immune response and increased GD susceptibility. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viola, N.; Colleo, A.; Casula, M.; Mura, C.; Boi, F.; Lanzolla, G. Graves’ Disease: Is It Time for Targeted Therapy? A Narrative Review. Medicina 2025, 61, 500. https://doi.org/10.3390/medicina61030500
Viola N, Colleo A, Casula M, Mura C, Boi F, Lanzolla G. Graves’ Disease: Is It Time for Targeted Therapy? A Narrative Review. Medicina. 2025; 61(3):500. https://doi.org/10.3390/medicina61030500
Chicago/Turabian StyleViola, Nicola, Alessandro Colleo, Mauro Casula, Chiara Mura, Francesco Boi, and Giulia Lanzolla. 2025. "Graves’ Disease: Is It Time for Targeted Therapy? A Narrative Review" Medicina 61, no. 3: 500. https://doi.org/10.3390/medicina61030500
APA StyleViola, N., Colleo, A., Casula, M., Mura, C., Boi, F., & Lanzolla, G. (2025). Graves’ Disease: Is It Time for Targeted Therapy? A Narrative Review. Medicina, 61(3), 500. https://doi.org/10.3390/medicina61030500