Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges
Abstract
1. Introduction
2. Antimycobacterial Compounds from Marine-Derived Fungi
2.1. Marine-Derived Fungi and Their Marine Sources
2.2. Novel Antimycobacterials from Marine-Derived Fungi
2.3. Antimycobacterial Assay
2.4. Antimycobacterials Against Dormant Phenotypes
2.5. Antimycobacterials from Marine-Derived Fungi
2.5.1. Polyketides
No. | Metabolites [Novelties at the Time of Isolation] | Producing Strains | Marine Sources | Fermentation Media and Method | Tested Against Mycobacterium Strain/Mycobacterial Enzyme | Potency | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|---|
1 | alterporriol S [N] a | Alternaria sp. SK1 | Root of mangrove Excoecaria agallocha | Potato glucose liquid medium, static condition, 26 °C, 4 weeks | Mycobacterial Enzyme MptpB | IC50 = 64.7 µM | Inhibit virulence factor MptpB | [21] |
2 | (+)-aS-alterporriol C [K] b | IC50 = 8.7 µM | ||||||
3 | ascolactone A [N] | Ascochyta salicorniae | Marine alga Ulva sp. | Solid medium (biomalt extract 2%, agar 1.5%, ASW * 80%), static condition, room temp., 52 days | Mycobacterial Enzyme MptpB | NA ** | - | [24] |
4 | ascolactone B [N] | IC50 = 95 µM | Inhibit virulence factor MptpB | |||||
5 | hyalopyrone [K] | IC50 = 87.8 µM | ||||||
6 | ascochitine [K] | IC50 = 11.5 µM | ||||||
7 | ascochital [K] | IC50 = 61.2 µM | ||||||
8 | 8′-O-demethylnigerone [N] | Aspergillus carbonarius WZ-4-11 | Marine sediment | Liquid medium (glucose 2%, peptone 0.5%, malt extract 0.3%, yeast extract 0.3%, sea water pH 7.0), static condition, 24 °C, 30 days | M. tuberculosis H37Rv | IC50 = 43 µM | NR *** | [26] |
9 | 8′-O-demethylisonigerone [N] | IC50 = 21.5 µM | ||||||
10 | rubrofusarin B [K] | IC50 = 43 µM | ||||||
11 | fiscpropionate A [N] | Aspergillus fisheri FS452 | Marine sediment | Solid medium (rice 250 g, 400 mL H2O, natural sea salt 0.3%), static condition, room temp., 30 days | Mycobacterial Enzyme MptpB | IC50 = 5.1 µM | Inhibit virulence factor MptpB | [27] |
12 | fiscpropionate B [N] | IC50 = 12 µM | ||||||
13 | fiscpropionate C [N] | IC50 = 4 µM | ||||||
14 | fiscpropionate D [N] | IC50 = 11 µM | ||||||
15 | fiscpropionate E [N] | NA | - | |||||
16 | fiscpropionate F [N] | NA | - | |||||
17 | emodin [K] | Aspergillus fumigatus MF029 | Marine sponge H. perleve | Solid medium (160 g rice, 200 mL H2O), static condition, 28 °C, 30 days | M. bovis BCG | IC50 = 1.25 µg/mL (4.6 µM) | Bind and thermally stabilize G4 DNA motifs in the mosR (redox-stress regulator) and ndhA (NADH dehydrogenase) genes of M. tuberculosis | [28,29] |
18 | trypacidin [K] | IC50 = 1.25 µg/mL (3.63 µM) | NR | |||||
19 | 5-epi-asperdichrome [N] | Aspergillus versicolor HDN1009 | Soil around mangrove | Liquid medium (maltose 2%, mannitol 2%, glucose 1%, monosodium glutamate 1%, MgSO4.7H2O 0.03%, KH2PO4 0.05%, yeast extract 0.3%, corn steep liquor 0.1%, ASW), static condition, 28 °C, 14 days | M. phlei | MIC = 200 µM | NR | [30] |
20 | nipyrone A [N] | Aspergillus niger LS24 | Marine sponge Haliclona sp. | Solid medium (100 g rice, 160 mL H2O), static condition, 28 °C, 30 days | M. tuberculosis H37Rv | MIC = 128 µg/mL (570.66 µM) | NR | [31] |
21 | nipyrone B [N] | MIC = 128 µg/mL (537.093 µM) | ||||||
22 | nipyrone C [N] | MIC = 64 µg/mL (251.652 µM) | ||||||
23 | germicidin C [K] | MIC = 128 µg/mL (702.486 µM) | ||||||
24 | prenylterphenyllin J [K] | Aspergillus candidus LDJ-5 | Root of mangrove Rhizophora apiculata Blume | Liquid medium (mannitol 2%, monosodium glutamate 1%, maltose 3%, yeast extract 0.3%, glucose 1%, corn steep liquor 0.1%, magnesium sulfate heptahydrate 0.03%, monopotassium phosphate 0.05%, H2O), static condition, 28 °C, 30 days | M. phlei | MIC = 45 µg/mL (99.88 µM) | NR | [32] |
25 | (±)-asperlone A [K] | Aspergillus sp. 16-5c | Leaves of mangrove Sonneratia apetala | Liquid medium (glucose 1.5%, sea salt 0.3% in potato infusion), static condition, 28 °C, 30 days | Mycobacterial Enzyme MptpB | IC50 = 4.24 µM | Inhibit virulence factor MptpB | [33] |
26 | (±)-asperlone B [K] | IC50 = 4.32 µM | ||||||
27 | (–)-mitorubrin [K] | IC50 = 3.99 µM | ||||||
28 | viomellein [K] | Aspergillus sp. 02E28_2-2 | Unidentified marine sponge | Solid medium (250 g unpolished rice, 500 ASW), static condition, 30 °C, 14 days | M. smegmatis mc2155 | MIC aerobic = 25 µg/mL (44.6 µM); hypoxic = 50 µg/mL (89.20 µM) | NR | [36] |
M. bovis BCG | MIC aerobic = 6.25 µg/mL (11.15 µM); hypoxic = 1.56 µg/mL (2.78 µM) | |||||||
29 | xanthomegnin [K] | M. smegmatis mc2155 | MIC aerobic = 12.5 µg/mL (21.76 µM); hypoxic = 12.5 µg/mL (21.76 µM) | |||||
M. bovis BCG | MIC aerobic = 25 µg/mL (43.52 µM); hypoxic = 50 µg/mL (87.03 µM) | |||||||
30 | sydowiol A [N] | Aspergillus sydowii MF357 | Marine sediment | Solid medium (130 g rice, 80 mL ASW), static condition, 25 °C, 20 days | Mycobacterial Enzyme MptpA | IC50 = 14 µg/mL (36.42 µM) | Inhibit virulence factor MptpA | [39] |
M. bovis BCG | NA | - | ||||||
M. tuberculosis H37Rv | NA | - | ||||||
31 | sydowiol C [N] | Mycobacterial Enzyme MptpA | IC50 = 24 µg/mL (62.44 µM) | Inhibit virulence factor MptpA | ||||
M. bovis BCG | MIC = 100 µg/mL (260.16 µM) | NR | ||||||
M. tuberculosis H37Rv | NA | - | ||||||
32 | violaceol I [K] | Mycobacterial Enzyme MptpA | NA | - | ||||
M. bovis BCG | NA | - | ||||||
M. tuberculosis H37Rv | MIC = 25 µg/mL (95.33 µM) | NR | ||||||
33 | butyrolactone I [K] | Aspergillus terreus SCSIO 41008 | Marine sponge Callyspongia sp. | Liquid medium (potato 20%, peptone 0.5%, mannitol 2%, maltose 2%, glucose 2%, monosodium glutamate 0.5%, yeast extract 0.3%, sea salt 2%) in fermenter (28 °C, 135 rpm, 12 L/min aseptic air, 3 Mpa for 7 days) | Mycobacterial Enzyme MptpB | IC50 = 5.11 µM | Inhibit virulence factor MptpB | [41] |
34 | secalonic acid D [K] | Aspergillus sp. SCSIO XWS03F03 | Unidentified marine sponge | Solid medium (200 g rice, 2 g sea salt, 200 mL H2O, supplemented with NaCl 1%), static condition, 25 °C, 45 days | M. tuberculosis | IC50 = 1.26 µM | NR | [42] |
35 | (Z)-coniosclerodinol [N] | Coniothyrium cereale | Marine alga Enteromorpha sp. | Solid BMS medium, static condition, room temp., 40 days | M. phlei | ZI = 16 mm | NR | [43,44] |
36 | (15S, 17S)-(–)-sclerodinol [N] | ZI = 20 mm | ||||||
37 | conioscleroderolide [N] | ZI = 10 mm | ||||||
38 | coniosclerodione [N] | ZI = 12 mm | ||||||
39 | coniolactone [N] | ZI = 22 mm | ||||||
40 | (–)-7,8-dihydro-3,6-dihydroxy-1,7,7,8-tetramethyl-5H-furo-[2’,3’:5,6]naphtho[1,8-bc]furan-5-one [K] | ZI = 12 mm | ||||||
41 | (–)-scleroderolide [K] | ZI = 14 mm | ||||||
42 | (–)-sclerodione [K] | ZI = 10 mm | ||||||
43 | (–)-trypethelone [K] | ZI = 18 mm | ||||||
44 | fusarielin M [N] | Mycobacterial Enzyme MptpB | IC50 = 1.05 µM | Inhibit virulence factor MptpB | [46] | |||
Mycobacterial Enzyme MptpA | IC50 = 23.78 µM | Inhibit virulence factor MptpA | ||||||
45 | fusarielin N [N] | Mycobacterial Enzyme MptpB | NA | - | ||||
Mycobacterial Enzyme MptpA | NA | - | ||||||
46 | fusarielin G [K] | Mycobacterial Enzyme MptpB | IC50 = 23.75 µM | Inhibit virulence factor MptpB | ||||
Mycobacterial Enzyme MptpA | NA | - | ||||||
47 | 9α-hydroxyhalorosellinia [K] | Fusarium spp. PSU-F15 | Marine gorgonian sea fan Annella sp. | Liquid medium (potato dextrose broth), static condition, room temp., 28 days | M. tuberculosis H37Ra | MIC = 39 µM | NR | [47,49] |
M. bovis BCG | NA | |||||||
M. tuberculosis H37Rv | NA | |||||||
Clinical MDR M. tuberculosis strain (K2903531, resistant to SM, INH, RFP, and EMB) | NA | |||||||
Clinical MDR M. tuberculosis strain (0907961, resistant to SM and EMB) | NA | |||||||
Clinical drug-resistant M. tuberculosis strain (K0903557, resistant to INH) | NA | |||||||
48 | nigrosporin B [K] | M. tuberculosis H37Ra | MIC = 41 µM | |||||
M. bovis BCG | MIC = 15 µg/mL (49.30 µM) | |||||||
M. tuberculosis H37Rv | MIC = 20 (65.73 µM) µg/mL | |||||||
Clinical MDR M. tuberculosis strain (K2903531, resistant to SM, INH, RFP, and EMB) | MIC = 30 (98.59 µM) µg/mL | |||||||
Clinical MDR M. tuberculosis strain (0907961, resistant to SM and EMB) | MIC = 20 (65.73 µM) µg/mL | |||||||
Clinical drug-resistant M. tuberculosis strain (K0903557, resistant to INH) | MIC = 30 (98.59 µM) µg/mL | |||||||
49 | anhydrofusarubin [K] | M. tuberculosis H37Ra | MIC = 87 µM | |||||
M. bovis BCG | NA | |||||||
M. tuberculosis H37Rv | NA | |||||||
Clinical MDR M. tuberculosis strain (K2903531, resistant to SM, INH, RFP, and EMB) | NA | |||||||
Clinical MDR M. tuberculosis strain (0907961, resistant to SM and EMB) | NA | |||||||
Clinical drug-resistant M. tuberculosis strain (K0903557, resistant to INH) | NA | |||||||
50 | isochaetochromin B2 [K] | Metarhizium anisopliae mxh-99 | Unidentified marine sponge | Liquid medium (mannitol 2%, maltose 2%, glucose 1%, monosodium glutamate 1%, KH2PO4 0.05%, MgSO4.7H2O 0.03%, yeast extract 0.3%, corn steep liquor 0.1%, ASW pH 6.5), agitated condition (165 rpm), 28 °C, 8 days | M. phlei | MIC = 50 µg/mL (91.15 µM) | NR | [48] |
51 | ustilaginoidin D [K] | MIC = 50 µg/mL (91.49 µM) | ||||||
52 | 4-deoxybostrycin [K] | Nigrospora sp. | Unidentified sea anemone | Fermentation from Nigrospora sp. was not explained in detail | M. bovis BCG | MIC = 39 µg/mL (121.76 µM) | NR | [49] |
M. tuberculosis H37Rv | MIC = 15 µg/mL (46.83 µM) | |||||||
Clinical MDR M. tuberculosis strain K2903531 (resistant to SM, INH, RF, and ETH) | MIC = < 5 µg/mL (< 15.61 µM) | |||||||
Clinical MDR M. tuberculosis strain 0907961 (resistant to SM and ETH) | MIC = 10 µg/mL (31.22 µM) | |||||||
Clinical drug-resistant M. tuberculosis strain K0903557 (resistant to INH) | MIC = 30 µg/mL (93.67 µM) | |||||||
Clinical drug-sensitive M. tuberculosis | MIC = 10 µg/mL (31.22 µM) | |||||||
53 | penicitrinone A [K] | Penicillium citrinum WK-P9 | Marine sponge Suberea sp. | Liquid medium (malt extract broth), static condition, 24 °C, 12 days | M. smegmatis ATCC 607 | MIC = 32 µg/mL (84.11 µM) | NR | [50] |
54 | penicitrinol J [K] | MIC = 32 µg/mL (75.04 µM) | ||||||
55 | peniphenone B [N] | Penicillium dipodomyicola HN4-3A | Stem of mangrove Acanthus ilicifolius | Liquid medium (20 g glucose, 2 g sea salt in 1 L of potato infusion), static condition, 25–30 °C, 30 days | Mycobacterial Enzyme MptpB | IC50 = 0.16 µM | Inhibit virulence factor MptpB | [51] |
56 | peniphenone C [N] | IC50 = 1.37 µM | ||||||
57 | ketidocillinone A [N] | Penicillium sp. HDN151272 | Unidentified marine sponge | Liquid medium ((glucose 1%, maltose 2%, mannitol 2%, monosodium glutamate 1%, KH2PO4 0.05%, MgSO4.7H2O 0.03%, corn steep liquor 0.1%, yeast extract 0.3% in addition to natural sea water pH 6.5), agitated condition, 28 °C, 9 days | M. phlei | NA | NR | [52] |
58 | ketidocillinone B [N] | MIC = 3.13 µg/mL (11.84 µM) | ||||||
59 | ketidocillinone C [N] | MIC = 6.25 µg/mL (26.23 µM) | ||||||
60 | Sch725680 [K] | Penicillium pinophilum SCAU037 | Roots of mangrove Rhizophora stylosa | Liquid medium (yeast extract 0.3%, malt extract 0.3%, peptone 0.5%, glucose 2%, sorbitol 2%, sea salt 3%), static condition, 28 °C, 30 days | M. smegmatis ATCC 607 | 23.5 µM | NR | [53] |
61 | neobulgarone D [K] | Penicillium roseopurpureum KP1-13 | Brown alga Petalonia fascia | Liquid medium (malt extract broth 2%), agitated condition at 150 rpm, room temp., 14 days | M. tuberculosis H37Ra ATCC 25177 | IC50 = 46.1 µM | NR | [54] |
62 | neobulgarone E [K] | NA | ||||||
63 | neobulgarone F [K] | IC50 = 31.1 µM | ||||||
64 | peniciphenalenin G [N] | Pleosporales sp. HDN1811400 | Marine sediment | Liquid medium (yeast extract 0.3%, malt extract 0.3%, peptone 0.5%, glucose 2% dissolved in naturally collected seawater), static condition, 28 °C, 35 days | M. phlei | MIC = 50 µM | NR | [55] |
65 | auxarthrol D [N] | Sporendonema casei HDN16-802 | Marine sediment | Solid medium (53 g oatmeal, 125 mL natural seawater), static condition, room temp., 30 days | M. phlei | MIC = 25 µM | NR | [56] |
M. tuberculosis | NA | |||||||
66 | auxarthrol F [N] | M. phlei | MIC = 200 µM | |||||
M. tuberculosis | NA | |||||||
67 | auxarthrol G [N] | M. phlei | MIC = 50 µM | |||||
M. tuberculosis | NA | |||||||
68 | 4-dehydroxyaltersolanol A [K] | M. phlei | MIC = 25 µM | |||||
M. tuberculosis | NA | |||||||
69 | altersolanol B [K] | M. phlei | MIC = 25 µM | |||||
M. tuberculosis | MIC = 20 µM | |||||||
70 | 2-hydroxy-6-((1E,3E)-7-hydroxyundeca-1,3dienyl)benzaldehyde [N] | Zopfiella marina | Marine sediment | Liquid medium (glucose 4%, yeast extract 0.5%, MgSO4.7H2O 0.1%, KH2PO4 0.1% in distilled water), static condition, 25 °C, 35 days | M. tuberculosis H37Ra | MIC = 25 µg/mL (86.69 µM) | NR | [57] |
71 | palmarumycin P1 [N] | Unidentified marine-derived fungus BCC 250093 | Unidentified mangrove wood | Liquid medium (potato dextrose broth), agitated condition at 200 rpm, 25 °C, 20 days | M. tuberculosis H37Ra | MIC = 1.56 µg/mL (4.23 µM) | NR | [58] |
72 | palmarumycin P3 [N] | MIC = 12.5 µg/mL (35.28 µM) | ||||||
73 | palmarumycin CP3 [K] | MIC = 1.56 µg/mL (4.64 µM) | ||||||
74 | palmarumycin CR1 [K] | MIC = 3.13 µg/mL (9.36 µM) | ||||||
75 | decaspirone A [K] | MIC = 3.13 µg/mL (9.25 µM) | ||||||
76 | decaspirone C [K] | MIC = 12.5 µg/mL (36.51 µM) | ||||||
77 | oxazinin A [N] | Xylaria sp. HDN13-249 | Root of mangrove Sonneratia caseolaris | Solid medium (soluble starch 4%, yeast extract 0.1%, MgSO4 0.3%, monosodium glutamate 0.2%, sucrose 4%, KH2PO4 0.05%, maltose 3%, bean flour 0.05%, peptone 0.2%, agar powder 2.5%, seawater), 28 °C, 30 days | M. phlei | MIC = 6.25 µM | NR | [59] |
78 | penixylarin C [N] | Xylaria sp. HDN13-249 | Root of mangrove Sonneratia caseolaris | Solid medium (soluble starch 4%, yeast extract 0.1%, MgSO4 0.3%, monosodium glutamate 0.2%, sucrose 4%, KH2PO4 0.05%, maltose 3%, bean flour 0.05%, peptone 0.2%, agar powder 2.5%, seawater), 28 °C, 30 days | M. phlei | MIC = 6.25 µM | NR | [60] |
2.5.2. Peptides and Alkaloids
No. | Metabolites [Novelties at the Time of Isolation] | Producing Strains | Marine Sources | Fermentation Media and Method | Tested Against Mycobacterium Strain/Mycobacterial Enzyme | Potency | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|---|
79 | arthpyrone F [N] a | Arthrinium sp. UJNMF008 | Marine sediment | Solid medium (80 g commercial rice, 0.4 g yeast extract, 0.4 g glucose, 120 mL water with 3% sea salt), static condition, 28 °C, 30 days | M. smegmatis | IC50 = 11.4 µM | NR *** | [61] |
80 | arthpyrone G [N] | NA ** | ||||||
81 | arthpyrone H [N] | IC50 = 19.4 µM | ||||||
82 | arthpyrone I [N] | IC50 = 35.3 µM | ||||||
83 | apiosporamide [K] b | IC50 = 2.20 µM | ||||||
84 | chaetoglobosin A [N] | Aspergillus fumigatus AF3-093A | Marine alga Fucus vesiculosus | Liquid medium (malt extract broth 2%), agitated condition at 150 rpm, room temp., 14 days | M. tuberculosis H37Ra | MIC = 47 µM | NR | [62] |
85 | chaetoglobosin B [N] | MIC = 95 µM | ||||||
86 | sclerotiotide M [N] | Aspergillus insulicola HDN151418 | Unidentified marine sponge | Liquid medium (potato dextrose broth), static condition, 28 °C, 30 days | M. phlei | MIC = 3.13 µM | NR | [69] |
87 | sclerotiotide N [N] | MIC = 12.5 µM | ||||||
88 | gliotoxin [K] | Aspergillus sp. SCSIO Ind09F01 | Marine sediment | Liquid medium (mannitol 2%, maltose 2%, glucose 1%, corn steep liquor 0.1%, monosodium glutamate 1%, KH2PO4 0.05%, MgSO4.7H2O 0.03%, yeast extract 0.3%, sea salt 1.5%, pH 7.4), agitated condition at 172 rpm, 27 °C, 15 days | M. tuberculosis H37Ra | MIC = <0.03 µM | NR | [70] |
89 | 12,13-dihydroxy-fumitremorgin C [K] | MIC = 2.41 µM | ||||||
90 | asperversiamide A [N] | Aspergillus versicolor CHNSCLM-0063 | Marine gorgonian coral Rumphella aggregate | Solid medium (50 g rice, 50 mL sea water), static condition, room temp., 50 days | M. marinum | MIC = 23.4 µM | NR | [71] |
M. tuberculosis | NA | |||||||
91 | asperversiamide B [N] | M. marinum | MIC = 81.2 µM | |||||
M. tuberculosis | MIC = 100 µM | |||||||
92 | asperversiamide C [N] | M. marinum | MIC = 87.5 µM | |||||
M. tuberculosis | NA | |||||||
93 | brevianamide S [N] | Aspergillus versicolor MF030 | Marine sediment | Solid medium (100 g rice, 3.25 g soya bean powder, 30 mL ASW * 3.5%), static condition, 28 °C, 19 days | M. bovis BCG | MIC = 6.25 µg/mL (9.02 µM) | NR | [72] |
94 | brevianamide T [N] | MIC = 50 µg/mL (144.76 µM) | ||||||
95 | brevianamide U [N] | MIC = 25 µg/mL (65.54 µM) | ||||||
96 | brevianamide V [N] | MIC = 100 µg/mL (286.18 µM) | ||||||
97 | brevianamide K [K] | MIC = 50 µg/mL (143.92 µM) | ||||||
98 | deoxybrevianamide E [K] | MIC = 100 µg/mL (284.54 µM) | ||||||
99 | fumitremorgin B [K] | Aspergillus fumigatus MF071 | Marine sediment | Solid medium (160 g rice, 240 mL distilled water), static condition, 28 °C, 30 days | M. smegmatis | MIC = 100 µg/mL (208.52 µM) | NR | [73] |
100 | fumiquinazoline J [K] | MIC = 100 µg/mL (280.60µM) | ||||||
101 | 9-deacetylfumigaclavine C [K] | MIC = 100 µg/mL (308.20 µM) | ||||||
102 | diaporisoindole A [N] | Diaporthe sp. SYSU-HQ3 | Branches of mangrove Excoecaria agallocha | Solid medium (50 g rice, 50 mL saline water 0.3%), static condition, room temp., 28 days | Mycobacterial Enzyme MptpB | IC50 = 4.2 µM | Inhibit virulence factor MptpB | [74] |
103 | diaporisoindole B [N] | NA | - | |||||
104 | fusaric acid [K] | Fusarium sp. DZ-27 | Bark of Kandelia cande (L.) | Liquid medium (glucose 1%, pepton 0.2 %, yeast extract 0.1%, NaCl 0.3%), static condition, 28 °C, 30 days | M. bovis BCG | MIC = 1.8 µg/mL (10.04 µM) | NR | [75] |
M. tuberculosis H37Rv | MIC = 1.8 µg/mL (10.04 µM) | |||||||
Clinical multidrug-resistant M. tuberculosis (strain 18019, resistant to SM, INH, RF, and ETH) | MIC = 30 µg/mL (167.40 µM) | |||||||
Clinical multidrug-resistant M. tuberculosis (strain 17016, resistant to SM, INH, and ETH) | MIC = 30 µg/mL (167.40 µM) | |||||||
105 | talaramide A [N] | Talaromyces sp. HZ-YX1 | Leaves of mangrove Kandelia obovata | Solid medium (50 g rice, 1.5 g artificial sea salts, 50 mL distilled H2O), static condition, room temp., 28 days | Mycobacterial Enzyme PknG | IC50 = 55 µM | Inhibit virulence factor PknG | [77] |
106 | tolypocaibol A [N] | Tolypocladium sp. | Marine alga Spongomorpha arcta | Liquid medium (potato dextrose broth 1.2%), agitated condition at 150 rpm, room temp., 14 days | M. smegmatis ATCC 70084 | MIC = 80 µM | NR | [78] |
M. tuberculosis H37Ra | MIC = 20µM | |||||||
107 | tolypocaibol B [N] | M. smegmatis ATCC 70084 | MIC = 80 µM | |||||
M. tuberculosis H37Ra | MIC = 40 µM | |||||||
108 | maximiscin [K] | M. smegmatis ATCC 70084 | NA | |||||
M. tuberculosis H37Ra | MIC = 250 µM | |||||||
109 | trichoderin A [N] | Trichoderma sp. | Unidentified marine sponge | Solid medium (2.3 kg rice, 4.5 L ASW), static condition, 30 °C, 14 days | M. smegmatis | MIC = 0.1 µg/mL (85.95 nM) | Inhibit the mycobacterial F1F0-ATP–synthase | [79] |
M. bovis BCG | MIC = 0.02 µg/mL (17.19 nM) | |||||||
M. tuberculosis | MIC = 0.12 µg/mL (103.14 nM) | |||||||
110 | trichoderin A1 [N] | M. smegmatis | MIC = 1.56 µg/mL (1.36 µM) | |||||
M. bovis BCG | MIC = 0.16 µg/mL (139.68 nM) | |||||||
M. tuberculosis | MIC = 2 µg/mL (1.75 µM) | |||||||
111 | trichoderin B [N] | M. smegmatis | MIC = 0.63 µg/mL (548.06 nM) | |||||
M. bovis BCG | MIC = 0.02 µg/mL (17.40 nM) | |||||||
M. tuberculosis | MIC = 0.13 µg/mL (113.09 nM) | |||||||
112 | zopfiellamide A [N] | Zopfiella latipes | Marine sediment | Liquid medium (glucose 0.5%, yeast extract 0.1%, peptone from soybean 0.1%, pH 7) in fermentor with aeration rate 3 L/min, 120 rpm, 22 °C, 11 days | M. phlei | MIC = 2–10 µg/mL (4.35–22.44 µM) | NR | [81] |
113 | zopfiellamide B [N] | MIC = 2–10 µg/mL (4.35–22.44 µM) |
2.5.3. Terpenoids and Steroids
No. | Metabolites [Novelties at the Time of Isolation] | Producing Strains | Marine Sources | Fermentation Media and Method | Tested Against Mycobacterium Strain/Mycobacterial Enzyme | Potency | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|---|
114 | asperterpenoid A [N] a | Aspergillus sp. 16-5c | Mangrove Sonneratia apetala | Solid medium (100 g rice, 20 mL 3% sea salt liquid), static condition, 25 °C, 28 days | Mycobacterial Enzyme MptpB | IC50 = 3.34 µM Ki = 2.12 µM | Inhibit virulence factor MptpB | [82,83] |
115 | asperterpenoid B [N] | IC50 = 5.67 µM Ki = 2.20 µM | ||||||
116 | helvolic acid [K] b | Aspergillus sp. SCSIO Ind09F01 | Marine sediment | Liquid medium (mannitol 2%, maltose 2%, glucose 1%, corn steep liquor 0.1%, monosodium glutamate 1%, KH2PO4 0.05%, MgSO4.7H2O 0.03%, yeast extract 0.3%, sea salt 1.5%, pH 7.4), agitated condition at 172 rpm, 27 °C, 15 days | M. tuberculosis H37Ra | MIC50 = 0.894 µM | NR * | [70] |
117 | ergosterdiacid A [N] | Aspergillus sp. DM2 | Mangrove Aegiceras corniculatum | Solid medium (50 g corn niblet, 0.86 g yeast extract, 2.37 g ammonium tartrate, 0.17 g MgSO4, 0.25 g KH2PO4, 0.4 g sea salt, 20 mL distilled water), static condition, 28 °C, 20 days | Mycobacterial Enzyme MptpB | IC50 = 15.1 µM Ki = 267.3 nM | Inhibit virulence factor MptpB | [16] |
118 | ergosterdiacid B [N] | IC50 = 30.1 µM Ki = 34.05 nM | ||||||
119 | asperophiobolin B [N] | Aspergillus sp. ZJ-68 | Leaves of mangrove Kandelia candel | Solid medium (50 g rice, 50 mL 0.3% saline water), static condition, 25 °C, 28 days | Mycobacterial Enzyme MptpB | IC50 = 39 µM | Inhibit virulence factor MptpB | [84] |
120 | asperophiobolin D [N] | IC50 = 42 µM | ||||||
121 | asperophiobolin E [N] | IC50 = 28 µM | ||||||
122 | asperophiobolin H [N] | IC50 = 19 µM | ||||||
123 | asperophiobolin I [N] | IC50 = 35 µM | ||||||
124 | ophiobolin G [K] | IC50 = 24 µM | ||||||
125 | 21-deoxo-21-hydroxy-6-epi-ophiobolin G [K] | IC50 = 37 µM | ||||||
126 | ophiobolin P [K] | IC50 = 36 µM | ||||||
127 | sartopyrone A [K] | Aspergillus sp. WHUF03110 | Marine sediment | Solid medium (200 g rice, 200 mL distilled water), static condition, 26 °C, 30 days | M. smegmatis ATCC 607 | MIC = 8 µg/mL (17.52 µM) | NR | [85] |
128 | tenellone C [K] | Diaporthe sp. SYSU-HQ3 | Branches of mangrove Excoecaria agallocha | Solid medium (50 g rice, 50 mL saline water 0.3%), static condition, room temp., 28 days | Mycobacterial Enzyme MptpB | IC50 = 5.2 µM | Inhibit virulence factor MptpB | [74] |
129 | macrophorin A [K] | Gliomastix sp. | Marine sponge Phakellia fusca | Solid medium (200 g rice, 2.5 g sea salt, 200 mL distilled water), static condition, 26 °C, 40 days | M. tuberculosis | IC50 = 22.1 µM | NR | [86] |
130 | 4′-oxomacrophorin [K] | IC50 = 2.44 µM | ||||||
131 | 7-deacetoxyyanuthone A [K] | IC50 = 17.5 µM |
2.5.4. Other Compounds
No. | Metabolites [Novelties at the Time of Isolation] | Producing Strains | Marine Sources | Fermentation Media and Method | Tested Against Mycobacterium Strain/Mycobacterial Enzyme | Potency | Mechanism of Action | Ref. |
---|---|---|---|---|---|---|---|---|
132 | gliomastin C [N] a | Gliomastix sp. | Marine coral Stylophora sp. | Solid medium (100 g rice, 110 mL water), static condition, 25 °C, 30 days | M. tuberculosis H37Rv | MIC = 12.5 µM | NR * | [87] |
133 | methylhydroquinone [K] b | MIC = 12.5 µM | ||||||
134 | acremonin A [K] | MIC = 25 µM | ||||||
135 | prenylhydroquinone [K] | MIC = 12.5 µM | ||||||
136 | F-11334A1 [K] | MIC = 25 µM | ||||||
137 | cryptophomic acid [N] | Phoma sp. 135 | Marine sponge Ectyplasia perox | Solid medium (biomalt agar medium 1.5%), static condition, room temp. | M. phlei | MIC = 16 µM | NR | [88] |
138 | 1,3-dihydroxy-5-(12-hydroxyheptadecyl)benzene [K] | Xylaria sp. HDN13-249 | Root of mangrove Sonneratia caseolaris | Solid medium (soluble starch 4%, yeast extract 0.1%, MgSO4 0.3%, monosodium glutamate 0.2%, sucrose 4%, KH2PO4 0.05%, maltose 3%, bean flour 0.05%, peptone 0.2%, agar powder 2.5%, seawater), 28 °C, 30 days | M. phlei | MIC = 25 µM | NR | [60] |
139 | 1,3-dihydroxy-5-(12-sulfoxyheptadecyl)benzene [K] | MIC = 12.5 µM |
3. Perspectives and Outlooks
3.1. The Opportunity of Exploring Antimycobacterials from Marine-Derived Fungi
3.2. Mechanisms of Action of Antimycobacterials
3.3. Challenges Posed by Mycotoxins
3.4. Anticipating and Mitigating Toxicity in Marine-Derived Fungal Antimycobacterial Discovery
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barberis, I.; Bragazzi, N.L.; Galluzzo, L.; Martini, M. The History of Tuberculosis: From the First Historical Records to the Isolation of Koch’s Bacillus. J. Prev. Med. Hyg. 2017, 58, E9. [Google Scholar]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis; WHO: Geneva, Switzerland, 2022.
- Lai, P.-C.; Low, C.-T.; Tse, W.-S.C.; Tsui, C.-K.; Lee, H.; Hui, P.-K. Risk of Tuberculosis in High-Rise and High Density Dwellings: An Exploratory Spatial Analysis. Environ. Pollut. 2013, 183, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.L. The Pathogenesis of Tuberculosis: The Early Infiltrate of Post-Primary (Adult Pulmonary) Tuberculosis: A Distinct Disease Entity. Front. Immunol. 2018, 9, 2108. [Google Scholar] [CrossRef]
- Rahlwes, K.C.; Dias, B.R.S.; Campos, P.C.; Alvarez-Arguedas, S.; Shiloh, M.U. Pathogenicity and Virulence of Mycobacterium tuberculosis. Virulence 2023, 14, 2150449. [Google Scholar] [CrossRef] [PubMed]
- Smith, I. Mycobacterium Tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clin. Microbiol. Rev. 2003, 16, 463–496. [Google Scholar] [CrossRef]
- Sigwart, J.D.; Blasiak, R.; Jaspars, M.; Jouffray, J.-B.; Tasdemir, D. Unlocking the Potential of Marine Biodiscovery. Nat. Prod. Rep. 2021, 38, 1235–1242. [Google Scholar] [CrossRef]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2021, 38, 362–413. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.J.; Skellam, E.; Williams, K. Biosynthesis of Fungal Polyketides. In Physiology and Genetics; Springer International Publishing: Cham, Switzerland, 2018; pp. 385–412. [Google Scholar]
- Harwani, D.; Barupal, S.; Begani, J.; Lakhani, J. Genetic Diversity of Polyketide Synthases and Nonribosomal Peptide Synthetases in Fungi. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 11–21. [Google Scholar]
- Rodrigues, A.G. Secondary Metabolism and Antimicrobial Metabolites of Aspergillus. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–93. [Google Scholar]
- Connolly, L.E.; Edelstein, P.H.; Ramakrishnan, L. Why Is Long-Term Therapy Required to Cure Tuberculosis? PLoS Med. 2007, 4, e120. [Google Scholar] [CrossRef]
- Sholeye, A.R.; Williams, A.A.; Loots, D.T.; Tutu van Furth, A.M.; van der Kuip, M.; Mason, S. Tuberculous Granuloma: Emerging Insights From Proteomics and Metabolomics. Front. Neurol. 2022, 13, 804838. [Google Scholar] [CrossRef]
- Arai, M.; Kamiya, K.; Pruksakorn, P.; Sumii, Y.; Kotoku, N.; Joubert, J.-P.; Moodley, P.; Han, C.; Shin, D.; Kobayashi, M. Anti-Dormant Mycobacterial Activity and Target Analysis of Nybomycin Produced by a Marine-Derived Streptomyces Sp. Bioorg. Med. Chem. 2015, 23, 3534–3541. [Google Scholar] [CrossRef]
- Vilchèze, C. Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. Appl. Sci. 2020, 10, 2278. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, Z.; Qiu, P.; Wang, Q.; Yan, J.; Lu, Y.; Wasu, P.; Hong, K.; She, Z. Two New Bioactive Steroids from a Mangrove-Derived Fungus Aspergillus Sp. Steroids 2018, 140, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, W.; Perera, R.H.; Lim, Y.W. Long-Term Investigation of Marine-Derived Aspergillus Diversity in the Republic of Korea. Mycobiology 2023, 51, 436–444. [Google Scholar] [CrossRef]
- Gonçalves, M.F.M.; Esteves, A.C.; Alves, A. Marine Fungi: Opportunities and Challenges. Encyclopedia 2022, 2, 559–577. [Google Scholar] [CrossRef]
- Imhoff, J. Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs 2016, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-Infective Potential of Natural Products: How to Develop a Stronger In Vitro ‘Proof-of-Concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef]
- Xia, G.; Li, J.; Li, H.; Long, Y.; Lin, S.; Lu, Y.; He, L.; Lin, Y.; Liu, L.; She, Z. Alterporriol-Type Dimers from the Mangrove Endophytic Fungus, Alternaria Sp. (SK11), and Their MptpB Inhibitions. Mar. Drugs 2014, 12, 2953–2969. [Google Scholar] [CrossRef]
- Fan, L.; Wu, X.; Jin, C.; Li, F.; Xiong, S.; Dong, Y. MptpB Promotes Mycobacteria Survival by Inhibiting the Expression of Inflammatory Mediators and Cell Apoptosis in Macrophages. Front. Cell Infect. Microbiol. 2018, 8, 171. [Google Scholar] [CrossRef]
- Vickers, C.F.; Silva, A.P.G.; Chakraborty, A.; Fernandez, P.; Kurepina, N.; Saville, C.; Naranjo, Y.; Pons, M.; Schnettger, L.S.; Gutierrez, M.G.; et al. Structure-Based Design of MptpB Inhibitors That Reduce Multidrug-Resistant Mycobacterium Tuberculosis Survival and Infection Burden in Vivo. J. Med. Chem. 2018, 61, 8337–8352. [Google Scholar] [CrossRef]
- Seibert, S.F.; Eguereva, E.; Krick, A.; Kehraus, S.; Voloshina, E.; Raabe, G.; Fleischhauer, J.; Leistner, E.; Wiese, M.; Prinz, H.; et al. Polyketides from the Marine-Derived Fungus Ascochyta Salicorniae and Their Potential to Inhibit Protein Phosphatases. Org. Biomol. Chem. 2006, 4, 2233–2240. [Google Scholar] [CrossRef]
- Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; et al. Targeting Mycobacterium Protein Tyrosine Phosphatase B for Antituberculosis Agents. Proc. Natl. Acad. Sci. USA 2010, 107, 4573–4578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ling, S.; Fang, Y.; Zhu, T.; Gu, Q.; Zhu, W. Isolation, Structure Elucidation, and Antimycobacterial Properties of Dimeric Naphtho-γ-pyrones from the Marine-Derived Fungus Aspergillus carbonarius. Chem. Biodivers. 2008, 5, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Q.; Li, S.; Cui, H.; Sun, Z.; Chen, D.; Lu, Y.; Liu, H.; Zhang, W. Polypropionate Derivatives with Mycobacterium Tuberculosis Protein Tyrosine Phosphatase B Inhibitory Activities from the Deep-Sea-Derived Fungus Aspergillus Fischeri FS452. J. Nat. Prod. 2019, 82, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liu, Y.; Gao, J.; Hu, J.; He, H.; Dai, S.; Wang, L.; Dai, H.; Zhang, L.; Song, F. Antitubercular Metabolites from the Marine-Derived Fungus Strain Aspergillus Fumigatus MF029. Nat. Prod. Res. 2021, 35, 2647–2654. [Google Scholar] [CrossRef]
- Dey, A.; Anand, K.; Singh, A.; Prasad, R.; Barthwal, R. Binding-Induced Thermal Stabilization of MosR and NdhA G-Quadruplex Comprising Genes by Emodin Leads to Downregulation and Growth Inhibition in Mtb: Potential as Anti-Tuberculosis Drug. Results Chem. 2023, 6, 101114. [Google Scholar] [CrossRef]
- Yu, G.; Wu, G.; Sun, Z.; Zhang, X.; Che, Q.; Gu, Q.; Zhu, T.; Li, D.; Zhang, G. Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus Versicolor HDN1009. Mar. Drugs 2018, 16, 335. [Google Scholar] [CrossRef]
- Ding, L.; Ren, L.; Li, S.; Song, J.; Han, Z.; He, S.; Xu, S. Production of New Antibacterial 4-Hydroxy-α-Pyrones by a Marine Fungus Aspergillus Niger. Cultivated in Solid Medium. Mar. Drugs 2019, 17, 344. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, X.; Zhang, X.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Prenylated p -Terphenyls from a Mangrove Endophytic Fungus, Aspergillus Candidus LDJ-5. J. Nat. Prod. 2020, 83, 8–13. [Google Scholar] [CrossRef]
- Xiao, Z.; Lin, S.; Tan, C.; Lu, Y.; He, L.; Huang, X.; She, Z. Asperlones A and B, Dinaphthalenone Derivatives from a Mangrove Endophytic Fungus Aspergillus Sp. 16-5C. Mar. Drugs 2015, 13, 366–378. [Google Scholar] [CrossRef]
- Beresford, N.; Patel, S.; Armstrong, J.; Szöor, B.; Fordham-Skelton, A.P.; Tabernero, L. MptpB, a Virulence Factor from Mycobacterium Tuberculosis, Exhibits Triple-Specificity Phosphatase Activity. Biochem. J. 2007, 406, 13–18. [Google Scholar] [CrossRef]
- Mascarello, A.; Mori, M.; Chiaradia-Delatorre, L.D.; Menegatti, A.C.O.; Monache, F.D.; Ferrari, F.; Yunes, R.A.; Nunes, R.J.; Terenzi, H.; Botta, B.; et al. Discovery of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase B (PtpB) Inhibitors from Natural Products. PLoS ONE 2013, 8, e77081. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, K.; Arai, M.; Setiawan, A.; Kobayashi, M. Anti-Dormant Mycobacterial Activity of Viomellein and Xanthomegnin, Naphthoquinone Dimers Produced by Marine-Derived Aspergillus Sp. Nat. Prod. Commun. 2017, 12, 1934578X1701200. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, M.M.; Singh, D.; Bisht, D.; Sharma, S. Drug Targets in Dormant Mycobacterium Tuberculosis: Can the Conquest Against Tuberculosis Become a Reality? Infect. Dis. 2018, 50, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Kovermann, M.; Stefan, A.; Palazzetti, C.; Immler, F.; Dal Piaz, F.; Bernardi, L.; Cimone, V.; Bellone, M.L.; Hochkoeppler, A. The Mycobacterium Tuberculosis Protein Tyrosine Phosphatase MptpA Features a PH Dependent Activity Overlapping the Bacterium Sensitivity to Acidic Conditions. Biochimie 2023, 213, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, F.; Ma, L.; Chen, C.; Xiao, X.; Ren, B.; Liu, X.; Dai, H.; Piggott, A.M.; Av-Gay, Y.; et al. Sydowiols A–C: Mycobacterium Tuberculosis Protein Tyrosine Phosphatase Inhibitors from an East China Sea Marine-Derived Fungus, Aspergillus sydowii. Tetrahedron Lett. 2013, 54, 6081–6083. [Google Scholar] [CrossRef]
- Stehle, T.; Sreeramulu, S.; Löhr, F.; Richter, C.; Saxena, K.; Jonker, H.R.A.; Schwalbe, H. The Apo-Structure of the Low Molecular Weight Protein-Tyrosine Phosphatase A (MptpA) from Mycobacterium Tuberculosis Allows for Better Target-Specific Drug Development. J. Biol. Chem. 2012, 287, 34569–34582. [Google Scholar] [CrossRef]
- Luo, X.-W.; Lin, Y.; Lu, Y.-J.; Zhou, X.-F.; Liu, Y.-H. Peptides and Polyketides Isolated from the Marine Sponge-Derived Fungus Aspergillus Terreus SCSIO 41008. Chin. J. Nat. Med. 2019, 17, 149–154. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.-P.; Ju, Z.-R.; Liao, X.-J.; Huang, X.-J.; Zhang, C.; Zhao, B.-X.; Xu, S.-H. Aspergchromones A and B, Two New Polyketides from the Marine Sponge-Associated Fungus Aspergillus Sp. SCSIO XWS03F03. J. Asian Nat. Prod. Res. 2017, 19, 684–690. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Kehraus, S.; Lindequist, U.; Sasse, F.; Shaaban, S.; Gütschow, M.; Josten, M.; Sahl, H.-G.; König, G.M. Antimicrobial Phenalenone Derivatives from the Marine-Derived Fungus Coniothyrium cereale. Org. Biomol. Chem. 2011, 9, 802–808. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Natesan, L.; Kehraus, S.; Mohamed, I.E.; Schnakenburg, G.; Sasse, F.; Shaaban, S.; Gütschow, M.; König, G.M. HLE-Inhibitory Alkaloids with a Polyketide Skeleton from the Marine-Derived Fungus Coniothyrium cereale. J. Nat. Prod. 2011, 74, 2282–2285. [Google Scholar] [CrossRef]
- Grundner, C.; Perrin, D.; Hooft van Huijsduijnen, R.; Swinnen, D.; Gonzalez, J.; Gee, C.L.; Wells, T.N.; Alber, T. Structural Basis for Selective Inhibition of Mycobacterium tuberculosis Protein Tyrosine Phosphatase PtpB. Structure 2007, 15, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, L.; Lu, Y.; Chen, S. Identification of Fusarielin M as a Novel Inhibitor of Mycobacterium Tuberculosis Protein Tyrosine Phosphatase B (MptpB). Bioorg Chem. 2021, 106, 104495. [Google Scholar] [CrossRef] [PubMed]
- Trisuwan, K.; Khamthong, N.; Rukachaisirikul, V.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Anthraquinone, Cyclopentanone, and Naphthoquinone Derivatives from the Sea Fan-Derived Fungi Fusarium Spp. PSU-F14 and PSU-F135. J. Nat. Prod. 2010, 73, 1507–1511. [Google Scholar] [CrossRef]
- Kong, X.; Ma, X.; Xie, Y.; Cai, S.; Zhu, T.; Gu, Q.; Li, D. Aromatic Polyketides from a Sponge-Derived Fungus Metarhizium Anisopliae Mxh-99 and Their Antitubercular Activities. Arch. Pharm. Res. 2013, 36, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, J.; Huang, Y.; Chen, H.; Li, Y.; Zhong, L.; Chen, Y.; Chen, S.; Wang, J.; Kang, J.; et al. Anti-Mycobacterial Activity of Marine Fungus-Derived 4-Deoxybostrycin and Nigrosporin. Molecules 2013, 18, 1728–1740. [Google Scholar] [CrossRef]
- Sabdaningsih, A.; Liu, Y.; Mettal, U.; Heep, J.; Riyanti; Wang, L.; Cristianawati, O.; Nuryadi, H.; Triandala Sibero, M.; Marner, M.; et al. A New Citrinin Derivative from the Indonesian Marine Sponge-Associated Fungus Penicillium Citrinum. Mar. Drugs 2020, 18, 227. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.; Liu, Z.; Lin, S.; Xia, G.; Xia, X.; Ding, B.; He, L.; Lu, Y.; She, Z. Peniphenones A–D from the Mangrove Fungus Penicillium Dipodomyicola HN4-3A as Inhibitors of Mycobacterium tuberculosis Phosphatase MptpB. J. Nat. Prod. 2014, 77, 800–806. [Google Scholar] [CrossRef]
- Shah, M.; Sun, C.; Sun, Z.; Zhang, G.; Che, Q.; Gu, Q.; Zhu, T.; Li, D. Antibacterial Polyketides from Antarctica Sponge-Derived Fungus Penicillium Sp. HDN151272. Mar. Drugs 2020, 18, 71. [Google Scholar] [CrossRef]
- He, F.; Li, X.; Yu, J.-H.; Zhang, X.; Nong, X.; Chen, G.; Zhu, K.; Wang, Y.-Y.; Bao, J.; Zhang, H. Secondary Metabolites from the Mangrove Sediment-Derived Fungus Penicillium Pinophilum SCAU037. Fitoterapia 2019, 136, 104177. [Google Scholar] [CrossRef]
- Morehouse, N.J.; Flewelling, A.J.; Johnson, J.A.; Gray, C.A. Halogenated Bianthrones from Penicillium Roseopurpureum: A Fungal Endophyte of the Marine Alga Petalonia fascia. Nat. Prod. Commun. 2020, 15, 1934578X2090140. [Google Scholar] [CrossRef]
- Han, Y.; Sun, C.; Li, C.; Zhang, G.; Zhu, T.; Li, D.; Che, Q. Antibacterial Phenalenone Derivatives from Marine-Derived Fungus Pleosporales Sp. HDN1811400. Tetrahedron Lett. 2021, 68, 152938. [Google Scholar] [CrossRef]
- Ge, X.; Sun, C.; Feng, Y.; Wang, L.; Peng, J.; Che, Q.; Gu, Q.; Zhu, T.; Li, D.; Zhang, G. Anthraquinone Derivatives from a Marine-Derived Fungus Sporendonema Casei HDN16-802. Mar. Drugs 2019, 17, 334. [Google Scholar] [CrossRef] [PubMed]
- Chokpaiboon, S.; Unagul, P.; Nithithanasilp, S.; Komwijit, S.; Somyong, W.; Ratiarpakul, T.; Isaka, M.; Bunyapaiboonsri, T. Salicylaldehyde and Dihydroisobenzofuran Derivatives from the Marine Fungus Zopfiella marina. Nat. Prod. Res. 2018, 32, 149–153. [Google Scholar] [CrossRef]
- Bunyapaiboonsri, T.; Yoiprommarat, S.; Nopgason, R.; Intereya, K.; Suvannakad, R.; Sakayaroj, J. Palmarumycins from the Mangrove Fungus BCC 25093. Tetrahedron 2015, 71, 5572–5578. [Google Scholar] [CrossRef]
- Lin, Z.; Koch, M.; Abdel Aziz, M.H.; Galindo-Murillo, R.; Tianero, M.D.; Cheatham, T.E.; Barrows, L.R.; Reilly, C.A.; Schmidt, E.W. Oxazinin A, a Pseudodimeric Natural Product of Mixed Biosynthetic Origin from a Filamentous Fungus. Org. Lett. 2014, 16, 4774–4777. [Google Scholar] [CrossRef]
- Yu, G.; Sun, Z.; Peng, J.; Zhu, M.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Secondary Metabolites Produced by Combined Culture of Penicillium crustosum and a Xylaria Sp. J. Nat. Prod. 2019, 82, 2013–2017. [Google Scholar] [CrossRef]
- Bao, J.; Zhai, H.; Zhu, K.; Yu, J.-H.; Zhang, Y.; Wang, Y.; Jiang, C.-S.; Zhang, X.; Zhang, Y.; Zhang, H. Bioactive Pyridone Alkaloids from a Deep-Sea-Derived Fungus Arthrinium Sp. UJNMF0008. Mar. Drugs 2018, 16, 174. [Google Scholar] [CrossRef]
- Flewelling, A.J.; Bishop, A.L.; Johnson, J.A.; Gray, C.A. Polyketides from an Endophytic Aspergillus Fumigatus Isolate Inhibit the Growth of Mycobacterium Tuberculosis and MRSA. Nat. Prod. Commun. 2015, 10, 1934578X1501001. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, Z.; Wang, Y.; Hong, K.; Liu, P.; Zhu, W. Cyclic Tripeptides from the Halotolerant Fungus Aspergillus Sclerotiorum PT06-1. J. Nat. Prod. 2010, 73, 1133–1137. [Google Scholar] [CrossRef]
- Vellé, A.; Cebollada, A.; Macías, R.; Iglesias, M.; Gil-Moles, M.; Sanz Miguel, P.J. From Imidazole toward Imidazolium Salts and N-Heterocyclic Carbene Ligands: Electronic and Geometrical Redistribution. ACS Omega 2017, 2, 1392–1399. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, H.; Liu, L.-Y.; Sun, F.; Chen, H.-F.; Jiao, W.-H.; Zhu, H.-R.; Yang, F.; Huang, G.; Zeng, D.-Q.; et al. Phakefustatins A–C: Kynurenine-Bearing Cycloheptapeptides as RXRα Modulators from the Marine Sponge Phakellia fusca. Org. Lett. 2020, 22, 6703–6708. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-J.; Liao, X.-J.; Xu, S.-H.; Diao, J.-Z.; Du, B.; Zhou, X.-L.; Pan, S.-S. Isolation, Structure Determination, and Synthesis of Galaxamide, A Rare Cytotoxic Cyclic Pentapeptide from a Marine Algae Galaxaura filamentosa. Org. Lett. 2008, 10, 4569–4572. [Google Scholar] [CrossRef] [PubMed]
- Teta, R.; Marteinsson, V.T.; Longeon, A.; Klonowski, A.M.; Groben, R.; Bourguet-Kondracki, M.-L.; Costantino, V.; Mangoni, A. Thermoactinoamide A, an Antibiotic Lipophilic Cyclopeptide from the Icelandic Thermophilic Bacterium Thermoactinomyces vulgaris. J. Nat. Prod. 2017, 80, 2530–2535. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. JNCI J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; Ren, Z.; Yu, L.; Zhou, H.; Han, Y.; Shah, M.; Che, Q.; Zhang, G.; Li, D.; et al. Antibacterial Cyclic Tripeptides from Antarctica-Sponge-Derived Fungus Aspergillus Insulicola HDN151418. Mar. Drugs 2020, 18, 532. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, X.; Lin, X.; Qin, X.; Zhang, T.; Wang, J.; Tu, Z.; Yang, B.; Liao, S.; Tian, Y.; et al. Antituberculosis Compounds from a Deep-Sea-Derived Fungus Aspergillus Sp. SCSIO Ind09F01. Nat. Prod. Res. 2017, 31, 1958–1962. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-M.; Liang, T.-M.; Guo, Z.-Y.; Wang, C.-Y.; Shao, C.-L. Discovery, Absolute Assignments, and Total Synthesis of Asperversiamides A–C and Their Potent Activity Against Mycobacterium marinum. Chem. Commun. 2019, 55, 1104–1107. [Google Scholar] [CrossRef]
- Song, F.; Liu, X.; Guo, H.; Ren, B.; Chen, C.; Piggott, A.M.; Yu, K.; Gao, H.; Wang, Q.; Liu, M.; et al. Brevianamides with Antitubercular Potential from a Marine-Derived Isolate of Aspergillus versicolor. Org. Lett. 2012, 14, 4770–4773. [Google Scholar] [CrossRef]
- Han, J.; Liu, M.; Jenkins, I.D.; Liu, X.; Zhang, L.; Quinn, R.J.; Feng, Y. Genome-Inspired Chemical Exploration of Marine Fungus Aspergillus Fumigatus MF071. Mar. Drugs 2020, 18, 352. [Google Scholar] [CrossRef]
- Cui, H.; Lin, Y.; Luo, M.; Lu, Y.; Huang, X.; She, Z. Diaporisoindoles A–C: Three Isoprenylisoindole Alkaloid Derivatives from the Mangrove Endophytic Fungus Diaporthe Sp. SYSU-HQ3. Org. Lett. 2017, 19, 5621–5624. [Google Scholar] [CrossRef]
- Pan, J.-H.; Chen, Y.; Huang, Y.-H.; Tao, Y.-W.; Wang, J.; Li, Y.; Peng, Y.; Dong, T.; Lai, X.-M.; Lin, Y.-C. Antimycobacterial Activity of Fusaric Acid From a Mangrove Endophyte and Its Metal Complexes. Arch. Pharm. Res. 2011, 34, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.; Bhaskar, A.; Upadhyay, S.; Kumari, P.; Rajmani, R.S.; Jain, P.; Singh, A.; Kumar, D.; Bhavesh, N.S.; Nandicoori, V.K. Protein Kinase G Confers Survival Advantage to Mycobacterium Tuberculosis during Latency-Like Conditions. J. Biol. Chem. 2017, 292, 16093–16108. [Google Scholar] [CrossRef]
- Chen, S.; He, L.; Chen, D.; Cai, R.; Long, Y.; Lu, Y.; She, Z. Talaramide A, an Unusual Alkaloid From The Mangrove Endophytic Fungus Talaromyces Sp. (HZ-YX1) as an Inhibitor of Mycobacterial PknG. New J. Chem. 2017, 41, 4273–4276. [Google Scholar] [CrossRef]
- Morehouse, N.J.; Flewelling, A.J.; Liu, D.Y.; Cavanagh, H.; Linington, R.G.; Johnson, J.A.; Gray, C.A. Tolypocaibols: Antibacterial Lipopeptaibols from a Tolypocladium Sp. Endophyte of the Marine Macroalga Spongomorpha arcta. J. Nat. Prod. 2023, 86, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A.D.; Moodley, P.; Jacobs, W.R.; Kobayashi, M. Trichoderins, Novel Aminolipopeptides from a Marine Sponge-Derived Trichoderma Sp., Are Active Against Dormant Mycobacteria. Bioorg. Med. Chem. Lett. 2010, 20, 3658–3663. [Google Scholar] [CrossRef]
- Pruksakorn, P.; Arai, M.; Liu, L.; Moodley, P.; Jacobs, W.R., Jr.; Kobayashi, M. Action-Mechanism of Trichoderin A, an Anti-Dormant Mycobacterial Aminolipopeptide from Marine Sponge-Derived Trichoderma Sp. Biol. Pharm. Bull. 2011, 34, 1287–1290. [Google Scholar] [CrossRef]
- Daferner, M.; Anke, T.; Sterner, O. Zopfiellamides A and B, Antimicrobial Pyrrolidinone Derivatives from the Marine Fungus Zopfiella latipes. Tetrahedron 2002, 58, 7781–7784. [Google Scholar] [CrossRef]
- Huang, X.; Huang, H.; Li, H.; Sun, X.; Huang, H.; Lu, Y.; Lin, Y.; Long, Y.; She, Z. Asperterpenoid A, a New Sesterterpenoid as an Inhibitor of Mycobacterium Tuberculosi s Protein Tyrosine Phosphatase B from the Culture of Aspergillus Sp. 16-5c. Org. Lett. 2013, 15, 721–723. [Google Scholar] [CrossRef]
- Huang, J.-H.; Lv, J.-M.; Wang, Q.-Z.; Zou, J.; Lu, Y.-J.; Wang, Q.-L.; Chen, D.-N.; Yao, X.-S.; Gao, H.; Hu, D. Biosynthesis of an Anti-Tuberculosis Sesterterpenoid Asperterpenoid A. Org. Biomol. Chem. 2019, 17, 248–251. [Google Scholar] [CrossRef]
- Cai, R.; Jiang, H.; Mo, Y.; Guo, H.; Li, C.; Long, Y.; Zang, Z.; She, Z. Ophiobolin-Type Sesterterpenoids from the Mangrove Endophytic Fungus Aspergillus Sp. ZJ-68. J. Nat. Prod. 2019, 82, 2268–2278. [Google Scholar] [CrossRef]
- Lv, H.; Wang, K.; Xue, Y.; Chen, J.; Su, H.; Zhang, J.; Wu, Y.; Jia, J.; Bi, H.; Wang, H.; et al. Three New Metabolites From the Marine-Derived Fungus Aspergillus Sp. WHUF03110. Nat. Prod. Commun. 2021, 16, 1934578X2110550. [Google Scholar] [CrossRef]
- He, W.-J.; Zhou, X.-J.; Qin, X.-C.; Mai, Y.-X.; Lin, X.-P.; Liao, S.-R.; Yang, B.; Zhang, T.; Tu, Z.-C.; Wang, J.-F.; et al. Quinone/Hydroquinone Meroterpenoids with Antitubercular and Cytotoxic Activities Produced by the Sponge-Derived Fungus Gliomastix Sp. ZSDS1-F7. Nat. Prod. Res. 2017, 31, 604–609. [Google Scholar] [CrossRef]
- Elnaggar, M.S.; Ebrahim, W.; Mándi, A.; Kurtán, T.; Müller, W.E.G.; Kalscheuer, R.; Singab, A.; Lin, W.; Liu, Z.; Proksch, P. Hydroquinone Derivatives from the Marine-Derived Fungus Gliomastix Sp. RSC Adv. 2017, 7, 30640–30649. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Ghabbour, H.A.; Legrave, N.; Fontaine-Vive, F.; Mehiri, M. New Bioactive Chlorinated Cyclopentene Derivatives from the Marine-Derived Fungus Phoma Sp. Med. Chem. Res. 2018, 27, 1885–1892. [Google Scholar] [CrossRef]
- Amend, A.; Burgaud, G.; Cunliffe, M.; Edgcomb, V.P.; Ettinger, C.L.; Gutiérrez, M.H.; Heitman, J.; Hom, E.F.Y.; Ianiri, G.; Jones, A.C.; et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019, 10, 01189-18. [Google Scholar] [CrossRef]
- Sen, K.; Sen, B.; Wang, G. Diversity, Abundance, and Ecological Roles of Planktonic Fungi in Marine Environments. J. Fungi 2022, 8, 491. [Google Scholar] [CrossRef]
- Akram, H.; Hussain, S.; Mazumdar, P.; Chua, K.O.; Butt, T.E.; Harikrishna, J.A. Mangrove Health: A Review of Functions, Threats, and Challenges Associated with Mangrove Management Practices. Forests 2023, 14, 1698. [Google Scholar] [CrossRef]
- Augusthy, S.; Nizam, A.; Kumar, A. The Diversity, Drivers, Consequences and Management of Plant Invasions in the Mangrove Ecosystems. Sci. Total Environ. 2024, 945, 173851. [Google Scholar] [CrossRef]
- Thatoi, H.; Behera, B.C.; Mishra, R.R. Ecological Role and Biotechnological Potential of Mangrove Fungi: A Review. Mycology 2013, 4, 54–71. [Google Scholar] [CrossRef]
- Kushveer, J.S.; Rashmi, M.; Sarma, V.V. Bioactive Compounds from Marine-Derived Fungi and Their Potential Applications. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 91–173. [Google Scholar]
- Lienhardt, C.; Raviglione, M.; Spigelman, M.; Hafner, R.; Jaramillo, E.; Hoelscher, M.; Zumla, A.; Gheuens, J. New Drugs for the Treatment of Tuberculosis: Needs, Challenges, Promise, and Prospects for the Future. J. Infect. Dis. 2012, 205, S241–S249. [Google Scholar] [CrossRef]
- Motta, I.; Boeree, M.; Chesov, D.; Dheda, K.; Günther, G.; Horsburgh, C.R.; Kherabi, Y.; Lange, C.; Lienhardt, C.; McIlleron, H.M.; et al. Recent Advances in the Treatment of Tuberculosis. Clin. Microbiol. Infect. 2024, 30, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Albarano, L.; Esposito, R.; Ruocco, N.; Costantini, M. Genome Mining as New Challenge in Natural Products Discovery. Mar. Drugs 2020, 18, 199. [Google Scholar] [CrossRef] [PubMed]
- Gaudêncio, S.P.; Pereira, F. Dereplication: Racing to Speed up the Natural Products Discovery Process. Nat. Prod. Rep. 2015, 32, 779–810. [Google Scholar] [CrossRef]
- Tawfike, A.F.; Viegelmann, C.; Edrada-Ebel, R. Metabolomics and Dereplication Strategies in Natural Products. In Metabolomics Tools for Natural Product Discovery: Methods and Protocols; Springer: New York, NY, USA, 2013; pp. 227–244. [Google Scholar]
- Qin, G.-F.; Zhang, X.; Zhu, F.; Huo, Z.-Q.; Yao, Q.-Q.; Feng, Q.; Liu, Z.; Zhang, G.-M.; Yao, J.-C.; Liang, H.-B. MS/MS-Based Molecular Networking: An Efficient Approach for Natural Products Dereplication. Molecules 2022, 28, 157. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Jiang, C.; Lv, G.; Tu, Y.; Cheng, X.; Duan, Y.; Zeng, B.; He, B. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Front. Microbiol. 2021, 12, 638096. [Google Scholar] [CrossRef]
- Skellam, E.; Rajendran, S.; Li, L. Combinatorial Biosynthesis for the Engineering of Novel Fungal Natural Products. Commun. Chem. 2024, 7, 89. [Google Scholar] [CrossRef]
- Naseema Rasheed, R.; Pourbakhtiar, A.; Mehdizadeh Allaf, M.; Baharlooeian, M.; Rafiei, N.; Alishah Aratboni, H.; Morones-Ramirez, J.R.; Winck, F.V. Microalgal Co-Cultivation-Recent Methods, Trends in Omic-Studies, Applications, and Future Challenges. Front. Bioeng. Biotechnol. 2023, 11, 1193424. [Google Scholar] [CrossRef]
- Oppong-Danquah, E.; Blümel, M.; Scarpato, S.; Mangoni, A.; Tasdemir, D. Induction of Isochromanones by Co-Cultivation of the Marine Fungus Cosmospora Sp. and the Phytopathogen Magnaporthe Oryzae. Int. J. Mol. Sci. 2022, 23, 782. [Google Scholar] [CrossRef]
- Mtafya, B.; Musisi, E.; Qwaray, P.; Sichone, E.; Walbaum, N.; Ntinginya, N.E.; Gillespie, S.H.; Sabiiti, W. Quantifying Viable M. Tuberculosis Safely Obviating the Need for High Containment Facilities. Methods Mol. Biol. 2024, 2833, 145–152. [Google Scholar]
- Gordon, S.V.; Parish, T. Microbe Profile: Mycobacterium Tuberculosis: Humanity’s Deadly Microbial Foe. Microbiology 2018, 164, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.J.; Johnson, B.K.; Abramovitch, R.B. Slow Growth of Mycobacterium tuberculosis at Acidic pH Is Regulated by PhoPR and Host-associated Carbon Sources. Mol. Microbiol. 2014, 94, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J.-M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; et al. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science 2005, 307, 223–227. [Google Scholar] [CrossRef]
- Dutta, N.K.; Karakousis, P.C. Latent Tuberculosis Infection: Myths, Models, and Molecular Mechanisms. Microbiol. Mol. Biol. Rev. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Magombedze, G.; Dowdy, D.; Mulder, N. Latent Tuberculosis: Models, Computational Efforts and the Pathogen’s Regulatory Mechanisms during Dormancy. Front. Bioeng. Biotechnol. 2013, 1, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S. Pathogenesis, Immunology, and Diagnosis of Latent Mycobacterium Tuberculosis Infection. Clin. Dev. Immunol. 2011, 2011, 814943. [Google Scholar] [CrossRef]
- Lin, P.L.; Flynn, J.L. Understanding Latent Tuberculosis: A Moving Target. J. Immunol. 2010, 185, 15–22. [Google Scholar] [CrossRef]
- Azhari, M.; Litanjuasari, A.P.; Singgih, M.; Arai, M.; Handayani, D.; Artasasta, M.A.; Julianti, E. Activity of Ethyl Acetate Extracts of Marine-Derived Fungi against Active and Hypoxia-Induced Dormant Mycobacterium. J. Pharm. Pharmacogn. Res. 2025, 13, 16–26. [Google Scholar] [CrossRef]
- Pahl, H.L.; Krauss, B.; Schulze-Osthoff, K.; Decker, T.; Traenckner, E.B.; Vogt, M.; Myers, C.; Parks, T.; Warring, P.; Mühlbacher, A.; et al. The Immunosuppressive Fungal Metabolite Gliotoxin Specifically Inhibits Transcription Factor NF-KappaB. J. Exp. Med. 1996, 183, 1829–1840. [Google Scholar] [CrossRef]
- Mayura, K.; Wallace Hayes, A.; Berndt, W.O. Teratogenicity of Secalonic Acid d in Rats. Toxicology 1982, 25, 311–322. [Google Scholar] [CrossRef]
- Xiao, J.-H.; Zhang, Y.; Liang, G.-Y.; Liu, R.-M.; Li, X.-G.; Zhang, L.-T.; Chen, D.-X.; Zhong, J.-J. Synergistic Antitumor Efficacy of Antibacterial Helvolic Acid from Cordyceps Taii and Cyclophosphamide in a Tumor Mouse Model. Exp. Biol. Med. 2017, 242, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Hald, B.; Christensen, D.H.; Krogh, P. Natural Occurrence of the Mycotoxin Viomellein in Barley and the Associated Quinone-Producing Penicillia. Appl. Env. Microbiol. 1983, 46, 1311–1317. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Ahmad, I.; Borst, I.; Summerbell, R.C. Detection of Xanthomegnin in Epidermal Materials Infected with Trichophyton Rubrum. J. Investig. Dermatol. 2000, 115, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Vilar, M.; Nijmeijer, S.; Fink-Gremmels, J. Genotoxicity Assessment of Five Tremorgenic Mycotoxins (Fumitremorgen B, Paxilline, Penitrem A, Verruculogen, and Verrucosidin) Produced by Molds Isolated from Fermented Meats. J. Food Prot. 2003, 66, 2123–2129. [Google Scholar] [CrossRef]
- Lambert, C.; Schmidt, K.; Karger, M.; Stadler, M.; Stradal, T.E.B.; Rottner, K. Cytochalasans and Their Impact on Actin Filament Remodeling. Biomolecules 2023, 13, 1247. [Google Scholar] [CrossRef]
- Gauthier, T.; Wang, X.; Sifuentes Dos Santos, J.; Fysikopoulos, A.; Tadrist, S.; Canlet, C.; Artigot, M.P.; Loiseau, N.; Oswald, I.P.; Puel, O. Trypacidin, a Spore-Borne Toxin from Aspergillus Fumigatus, Is Cytotoxic to Lung Cells. PLoS ONE 2012, 7, e29906. [Google Scholar] [CrossRef]
- Villanueva-Silva, R.; Velez, P.; Riquelme, M.; Fajardo-Hernández, C.A.; Martínez-Cárdenas, A.; Arista-Romero, A.; Wan, B.; Ma, R.; Qader, M.; Franzblau, S.G.; et al. Chemical Diversity and Antimicrobial Potential of Cultivable Fungi from Deep-Sea Sediments of the Gulf of Mexico. Molecules 2021, 26, 7328. [Google Scholar] [CrossRef]
- Chen, M.; Hao, B.-C.; Zhu, X.-H.; Zhang, L.-K.; Zheng, Y.-Y.; Zhou, X.-J.; Schäberle, T.F.; Shen, L.; Wang, C.-Y.; Liu, Y. Molecular Networking Reveals Indole Diterpenoids from the Marine-Derived Fungus Penicillium Sp. N4-3. Mar. Life Sci. Technol. 2025, 7, 302–312. [Google Scholar] [CrossRef]
- Nothias, L.-F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Paguigan, N.D.; El-Elimat, T.; Kao, D.; Raja, H.A.; Pearce, C.J.; Oberlies, N.H. Enhanced Dereplication of Fungal Cultures via Use of Mass Defect Filtering. J. Antibiot. 2017, 70, 553–561. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.; Chung, H.; Chen, K.; Shen, T.; Hsu, C. Molecular Networking as a Dereplication Strategy for Monitoring Metabolites of Natural Product Treated Cancer Cells. Rapid Commun. Mass Spectrom. 2020, 34, e8549. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Bingham, J.; McLaren, A.C.; McLemore, R. Liposomal Formulation Decreases Toxicity of Amphotericin B In Vitro and In Vivo. Clin. Orthop. Relat. Res. 2015, 473, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Faustino, C.; Pinheiro, L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Virmani, T.; Kumar, G.; Deshmukh, R.; Sharma, A.; Duarte, S.; Brandão, P.; Fonte, P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals 2023, 16, 1360. [Google Scholar] [CrossRef]
- Shao, L.; Shen, S.; Liu, H. Recent Advances in PLGA Micro/Nanoparticle Delivery Systems as Novel Therapeutic Approach for Drug-Resistant Tuberculosis. Front. Bioeng. Biotechnol. 2022, 10, 941077. [Google Scholar] [CrossRef]
- Comas, L.; Polo, E.; Domingo, M.; Hernández, Y.; Arias, M.; Esteban, P.; Martínez-Lostao, L.; Pardo, J.; Martínez de la Fuente, J.; Gálvez, E. Intracellular Delivery of Biologically-Active Fungal Metabolite Gliotoxin Using Magnetic Nanoparticles. Materials 2019, 12, 1092. [Google Scholar] [CrossRef]
- Ye, W.; Liu, T.; Zhang, W.; Zhang, W. The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int. J. Mol. Sci. 2021, 22, 13510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhari, M.; Merliani, N.; Singgih, M.; Arai, M.; Julianti, E. Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges. Mar. Drugs 2025, 23, 279. https://doi.org/10.3390/md23070279
Azhari M, Merliani N, Singgih M, Arai M, Julianti E. Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges. Marine Drugs. 2025; 23(7):279. https://doi.org/10.3390/md23070279
Chicago/Turabian StyleAzhari, Muhammad, Novi Merliani, Marlia Singgih, Masayoshi Arai, and Elin Julianti. 2025. "Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges" Marine Drugs 23, no. 7: 279. https://doi.org/10.3390/md23070279
APA StyleAzhari, M., Merliani, N., Singgih, M., Arai, M., & Julianti, E. (2025). Insights into Natural Products from Marine-Derived Fungi with Antimycobacterial Properties: Opportunities and Challenges. Marine Drugs, 23(7), 279. https://doi.org/10.3390/md23070279