Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,922)

Search Parameters:
Keywords = protein mixture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1298 KiB  
Article
Evaluation of the Quality and Nutritional Value of Modified Corn Wet Distillers’ Grains Plus Solubles (mcWDGS) Preserved in Aerobic and Anaerobic Conditions
by Mateusz Roguski, Marlena Zielińska-Górska, Andrzej Radomski, Janusz Zawadzki, Marlena Gzowska, Anna Rygało-Galewska and Andrzej Łozicki
Sustainability 2025, 17(15), 7097; https://doi.org/10.3390/su17157097 (registering DOI) - 5 Aug 2025
Abstract
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included [...] Read more.
To enhance the effectiveness of sustainable preservation of modified corn wet distillers’ grains plus solubles (mcWDGS), various additives were tested under aerobic and anaerobic conditions. In Experiment I, the mcWDGS was stored under aerobic conditions for 5 days at 25 °C. Treatments included different organic acids applied at 0.3% or 0.6% of fresh matter (FM). In Experiment II, the mcWDGS was ensiled anaerobically for 8 weeks at 25 °C using organic acids, a commercial acid mixture, or a microbial inoculant at 0.2% FM. In aerobic conditions, the best preservability was achieved with propionic and formic acids at 0.6% FM, as indicated by the lowest temperature, pH, and microbial counts on days 3 and 5 (p ≤ 0.01). Under anaerobic storage, the highest lactic acid concentrations were recorded in the control, citric acid, and commercial acid mixture variants (p ≤ 0.01). Acetic acid levels were highest in the control (p ≤ 0.01). The highest NH3-N content was found in the formic acid variant and the lowest in the inoculant variant (p ≤ 0.01). Aerobic stability after ensiling was greatest in the control and propionic acid groups (p ≤ 0.01). Nutritional analysis showed that the citric acid group had the highest dry matter content (p ≤ 0.01), while the control group contained the most crude protein (p ≤ 0.01) and saturated fatty acids (p ≤ 0.05). The propionic acid and commercial acid mixture variants had the highest unsaturated fatty acids (p ≤ 0.05). Antioxidant capacity was also greatest in the control (p ≤ 0.01). In conclusion, mcWDGS can be effectively preserved aerobically with 0.6% FM of propionic or formic acid, and anaerobically via ensiling, even without additives. These findings support its potential as a stable and nutritious feed ingredient. Full article
Show Figures

Figure 1

14 pages, 3099 KiB  
Article
Moxifloxacin and BH3 Mimetic-MIM1 Demonstrate a Potential Synergistic Anti-Melanoma Mode of Action by Cytotoxic and Proapoptotic Activity Enhancement in A375 and G361 Melanoma Cells
by Artur Beberok, Zuzanna Rzepka, Marta Karkoszka-Stanowska and Dorota Wrześniok
Molecules 2025, 30(15), 3272; https://doi.org/10.3390/molecules30153272 - 5 Aug 2025
Abstract
The MIM1-BH3 mimetic, which inhibits the Mcl-1 antiapoptotic protein, may be an efficacious molecule able to induce apoptosis. Previously, we found that moxifloxacin (MXFL) is able to modulate Mcl-1 protein expression. Therefore, in the current study, we assessed the impact of the MXFL, [...] Read more.
The MIM1-BH3 mimetic, which inhibits the Mcl-1 antiapoptotic protein, may be an efficacious molecule able to induce apoptosis. Previously, we found that moxifloxacin (MXFL) is able to modulate Mcl-1 protein expression. Therefore, in the current study, we assessed the impact of the MXFL, MIM1, and MXFL/MIM1 mixtures on viability and apoptosis in amelanotic A375 and melanotic G361 melanoma cells. The obtained results showed that MXFL and MIM1 exerted high cytotoxic and proapoptotic potential. In the case of two-component models, we have demonstrated that the use of the MIM1 and MXFL mixtures resulted in a significant intensification of both cytotoxic and proapoptotic activity, shown as a modulatory effect on the early and late phases of apoptosis toward the analyzed melanoma cells when compared with MIM1 or MXFL alone. We report, for the first time, the high proapoptotic activity of MIM1 and MXFL applied in a two-component model toward melanoma cells, pointing to the Mcl-1 protein as an important molecular target. The observed potential synergistic mode of action—expressed as cytotoxic and proapoptotic activity enhancement, detected for MIM1 and MXFL—may represent a new direction for further in vitro and in vivo experiments concerning the role of the Mcl-1 protein in the treatment of melanoma. Moreover, the presented results certainly contribute to expanding the knowledge of the pharmacology of both fluoroquinolones and BH3 mimetics, and also enable a better understanding of melanoma cell biology. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

12 pages, 249 KiB  
Article
Optimization of Grist Composition for Mash Production from Unmalted Wheat and Wheat Malt of Red Winter Wheat with Hybrid Endosperm Type
by Kristina Habschied, Iztok Jože Košir, Miha Ocvirk, Krešimir Mastanjević and Vinko Krstanović
Beverages 2025, 11(4), 110; https://doi.org/10.3390/beverages11040110 - 4 Aug 2025
Abstract
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and [...] Read more.
Since wheats used for use in brewing mainly belong to the winter red hard hybrid endosperm type, this paper examined the influence of different proportions of wheat of this type (seven varieties) in the ratio of 0–100% in the grist, both unmalted and as wheat malt. The quality of the starting wheats, the resulting malts and mashs with different added wheat proportions (100, 80, 60, 40, 20 and 0%) were examined. The obtained results show that the maximum shares of wheat/wheat malt in the infusion are significantly different between varieties of similar initial quality. However, they can differ considerably for the same variety when it is used as unmalted raw material and when it is used as wheat malt. Wheat malt can be added to the mixture in a significantly larger proportion compared to unmalted wheat. Furthermore, when an extended number of criteria (parameters) are applied, some varieties may be acceptable that otherwise would not be if the basic number of parameters were applied (total protein—TP, total soluble protein—TSP and viscosity—VIS) and vice versa. The inclusion of other parameters—filtration speed (FIL), saccharification time (SAC), color (COL), proportion of fine extract (EXT) and fermentability of pomace (FAL) (some of which have the character of so-called “cumulative parameters”)—complicates a clear classification into the aforementioned qualitative groups but also increases the number of varieties acceptable or conditionally acceptable for brewing. Full article
Show Figures

Graphical abstract

21 pages, 4228 KiB  
Article
The Combined Effect of Caseinates, Native or Heat-Treated Whey Proteins, and Cryogel Formation on the Characteristics of Kefiran Films
by Nikoletta Pouliou, Eirini Chrysovalantou Paraskevaidou, Athanasios Goulas, Stylianos Exarhopoulos and Georgia Dimitreli
Molecules 2025, 30(15), 3230; https://doi.org/10.3390/molecules30153230 - 1 Aug 2025
Viewed by 193
Abstract
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and [...] Read more.
Kefiran, the extracellular polysaccharide produced from the Generally Recognized as Safe (GRAS) bacteria in kefir grains, with its well-documented functional and health-promoting properties, constitutes a promising biopolymer with a variety of possible uses. Its compatibility with other biopolymers, such as milk proteins, and its ability to form standalone cryogels allow it to be utilized for the fabrication of films with improved properties for applications in the food and biomedical–pharmaceutical industries. In the present work, the properties of kefiran films were investigated in the presence of milk proteins (sodium caseinate, native and heat-treated whey proteins, and their mixtures), alongside glycerol (as a plasticizer) and cryo-treatment of the film-forming solution prior to drying. A total of 24 kefiran films were fabricated and studied for their physical (thickness, moisture content, water solubility, color parameters and vapor adsorption), mechanical (tensile strength and elongation at break), and optical properties. Milk proteins increased film thickness, solubility and tensile strength and reduced water vapor adsorption. The hygroscopic effect of glycerol was mitigated in the presence of milk proteins and/or the application of cryo-treatment. Glycerol was the most effective at reducing the films’ opacity. Heat treatment of whey proteins proved to be the most effective in increasing film tensile strength, reducing, at the same time, the elongation at break, while sodium caseinates in combination with cryo-treatment resulted in films with high tensile strength and the highest elongation at break. Cryo-treatment, carried out in the present study through freezing followed by gradual thawing of the film-forming solution, proved to be the most effective factor in decreasing film roughness. Based on our results, proper selection of the film-forming solution composition and its treatment prior to drying can result in kefiran–glycerol films with favorable properties for particular applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials)
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
Transforming Tomato Industry By-Products into Antifungal Peptides Through Enzymatic Hydrolysis
by Davide Emide, Lorenzo Periccioli, Matias Pasquali, Barbara Scaglia, Stefano De Benedetti, Alessio Scarafoni and Chiara Magni
Int. J. Mol. Sci. 2025, 26(15), 7438; https://doi.org/10.3390/ijms26157438 (registering DOI) - 1 Aug 2025
Viewed by 103
Abstract
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, [...] Read more.
In the context of the valorization of agri-food by-products, tomato (Solanum lycopersicum L.) seeds represent a protein-rich matrix containing potential bioactives. The aim of the present work is to develop a biochemical pipeline for (i) achieving high protein recovery from tomato seed, (ii) optimizing the hydrolysis with different proteases, and (iii) characterizing the resulting peptides. This approach was instrumental for obtaining and selecting the most promising peptide mixture to test for antifungal activity. To this purpose, proteins from an alkaline extraction were treated with bromelain, papain, and pancreatin, and the resulting hydrolysates were assessed for their protein/peptide profiles via SDS-PAGE, SEC-HPLC, and RP-HPLC. Bromelain hydrolysate was selected for antifungal tests due to its greater quantity of peptides, in a broader spectrum of molecular weights and polarity/hydrophobicity profiles, and higher DPPH radical scavenging activity, although all hydrolysates exhibited antioxidant properties. In vitro assays demonstrated that the bromelain-digested proteins inhibited the growth of Fusarium graminearum and F. oxysporum f.sp. lycopersici in a dose-dependent manner, with a greater effect at a concentration of 0.1 mg/mL. The findings highlight that the enzymatic hydrolysis of tomato seed protein represents a promising strategy for converting food by-products into bioactive agents with agronomic applications, supporting sustainable biotechnology and circular economy strategies. Full article
Show Figures

Figure 1

15 pages, 1487 KiB  
Article
Protective Effects of a Bifidobacterium-Based Probiotic Mixture on Gut Inflammation and Barrier Function
by Yeji You, Tae-Rahk Kim, Minn Sohn, Dongmin Yoo and Jeseong Park
Microbiol. Res. 2025, 16(8), 168; https://doi.org/10.3390/microbiolres16080168 - 1 Aug 2025
Viewed by 265
Abstract
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide [...] Read more.
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide (LPS)-challenged RAW 264.7 macrophages and a Caco-2/THP-1 transwell co-culture model. Pretreatment with the probiotic blend reduced nitric oxide (NO) release in a dose-dependent manner by 25.9–48.3% and significantly down-regulated the pro-inflammatory markers in macrophages. In the co-culture system, the formulation decreased these markers, increased transepithelial electrical resistance (TEER) by up to 31% at 105 colony-forming unit (CFU)/mL after 48 h, and preserved the membrane localization of tight junction (TJ) proteins. Adhesion to Caco-2 cells (≈ 6%) matched that of the benchmark probiotic Lacticaseibacillus rhamnosus GG, suggesting direct epithelial engagement. These in vitro findings demonstrate that this probiotic mixture can attenuate LPS-driven inflammation and reinforce epithelial architecture, providing a mechanistic basis for its further evaluation in animal models and clinical studies of intestinal inflammatory disorders. Full article
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 - 31 Jul 2025
Viewed by 199
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

13 pages, 2414 KiB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 272
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

22 pages, 1513 KiB  
Article
Forage Yield, Quality, and Weed Suppression in Narbon Vetch (Vicia narbonensis L.) and Italian Ryegrass (Lolium multiflorum L.) Mixtures Under Organic Management
by Melek Demircan, Emine Serap Kizil Aydemir and Koray Kaçan
Agronomy 2025, 15(8), 1796; https://doi.org/10.3390/agronomy15081796 - 25 Jul 2025
Viewed by 186
Abstract
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the [...] Read more.
This study aimed to evaluate the forage yield, quality, and weed suppression potential of narbon vetch (Vicia narbonensis L.) and Italian ryegrass (Lolium multiflorum L.) grown as sole crops and in mixtures under organic farming conditions in Bilecik, Turkey, during the 2020–2021 growing season. The experiment included 15 treatments comprising monocultures and mixed sowing at different ratios. Measurements included morphological traits, forage yield components (green herbage, hay, and crude protein), fiber content, botanical composition, and weed biomass. The results reveal significant differences among treatments in terms of growth parameters and forage performance. Monocultures of IFVN 567 and Bartigra showed the highest green and hay yields, while mixtures such as IFVN 567 + Trinova and IFVN 567 + Bartigra outperformed in terms of land equivalent ratio (LER) and protein yield, demonstrating a clear advantage in land use efficiency. Furthermore, these mixtures showed superior weed suppression compared to monocultures. Overall, the findings suggest that carefully selected vetch–ryegrass combinations can enhance forage productivity, nutritional quality, and weed management under organic systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

12 pages, 2171 KiB  
Article
Use of Foliar Biostimulants in Durum Wheat: Understanding Its Potential in Improving Agronomic and Quality Responses Under Mediterranean Field Conditions
by Angelo Rossini, Roberto Ruggeri and Francesco Rossini
Plants 2025, 14(15), 2276; https://doi.org/10.3390/plants14152276 - 24 Jul 2025
Viewed by 281
Abstract
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the [...] Read more.
Foliar application of biostimulants can be a valid option to reach the goal of sustainable intensification in agriculture, especially in extensive crops such as durum wheat. However, due to the wide range of active ingredients and their mixtures available in the market, the need to select the most efficient product in a specific growing environment is of dramatic importance to achieve remarkable results in yield and grain quality. To analyze the potential of different active ingredients, a field trial was performed in two consecutive growing seasons (2023 and 2024) under Mediterranean climatic conditions. A randomized block design with three replicates was used. Durum wheat cultivar “Iride” was treated with the following five foliar biostimulants in comparison with the untreated control (T0): seaweed and plant extracts (T1); micronized vaterite (T2); culture broth of Pseudomonas protegens (T3); humic and fulvic acids (T4); organic nitrogen fertilizer (N 5%) containing glycine betaine (T5). Biostimulant treatment was applied at the end of tillering and at heading. Root length, chlorophyll content, grain yield, yield components and grain quality were measured and subjected to a one-way analysis of variance. As compared to the control, seaweed and plant extracts as well as micronized vaterite showed the best results in terms of grain yield (29% and 24% increase, respectively), root length (120% and 77% increase, respectively) and grain protein content (one percentage point increase, from approx. 12% to 13%). The results from this study can help Mediterranean farmers and researchers to develop new fertilization protocols to reach the goals of the “Farm to Fork” European strategy. Full article
Show Figures

Figure 1

19 pages, 2238 KiB  
Article
Productivity, Biodiversity and Forage Value of Meadow Sward Depending on Management Intensity and Silicon Application
by Barbara Borawska-Jarmułowicz and Grażyna Mastalerczuk
Sustainability 2025, 17(15), 6717; https://doi.org/10.3390/su17156717 - 24 Jul 2025
Viewed by 213
Abstract
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and [...] Read more.
The efficiency and quality of meadows is affected by, among others, the botanical composition of the sward and the frequency of cutting. The research was conducted in 2023–2024 on the experiment established in 2014 on arable land, where 3-species mixtures of grasses and legumes were sown. During the next three years, the sward was fertilized and cut 3-times per year, and then, for five years, was mown twice a year, without fertilization. On the sward formed at that time, in 2023, an experiment was established to evaluate how management intensity (2- or 3-cuts and rate of fertilizer) and silicon application (Si or 0Si) affect botanical composition, yield, and nutrient content in perennial meadow swards under variable precipitation over two years. Species richness rose in the sward in the second year, especially under 3-cut management (from 15 to 21 species). The share of species sown earlier in the mixtures Dactylis glomerata, Festulolium braunii, and Medicago x varia was very high at both management intensities (66–87% DM). Yield and the content of crude protein and nutrients were higher in the 3-cut system in the second and third regrowths. Silicon supplementation increased plant diversity and yield resilience during drought, with more intensive management supporting sustainable forage production. Moreover, the sward contained more nutrients with 3-cuttings in the second and third regrowths. These findings indicate that intensive meadow management and silicon application enhance productivity, forage value, and biodiversity, providing valuable insights for sustainable meadow management strategies. Full article
Show Figures

Figure 1

20 pages, 6490 KiB  
Article
Impact of Chitooligosaccharide Conjugated Epigallocatechin Gallate and Non-Thermal High-Voltage Atmospheric Cold Plasma on Vibrio parahaemolyticus: An In Vitro Study and the Use in Blood Clam Meat
by Mruganxi Harshad Sharma, Avtar Singh, Ankita Singh, Soottawat Benjakul, Suriya Palamae, Ajay Mittal and Jirayu Buatong
Foods 2025, 14(15), 2577; https://doi.org/10.3390/foods14152577 - 23 Jul 2025
Viewed by 271
Abstract
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study [...] Read more.
Vibrio parahaemolyticus is the leading cause of bacterial diarrhea in humans from shellfish consumption. In Thailand, blood clam is a popular shellfish, but homemade cooking often results in insufficient heating. Therefore, consumers may suffer from food poisoning due to Vibrio infection. This study aimed to determine the effect of chitooligosaccharide conjugated with epigallocatechin gallate (COS-EGCG) at different concentrations (200 and 400 ppm) combined with high-voltage atmospheric cold plasma (HVACP) on inhibiting V. parahaemolyticus in vitro and in challenged blood clam meat. Firstly, HVACP conditions were optimized for gas composition and treatment time (20 and 60 s); a 70% Ar and 30% O2 gas mixture resulted in the highest ozone formation and a treatment time of 60 s was used for further study. COS-EGCG conjugate at 400 ppm with HVACP (ACP-CE400) completely killed V. parahaemolyticus after incubation at 37 °C for 6 h. Furthermore, an antibacterial ability of ACP-CE400 treatment against bacterial cells was advocated due to the increased cell membrane damage, permeability, and leakage of proteins and nucleic acids. Scanning electron microscopy (SEM) showed cell elongation and pore formation, while confocal microscopy revealed disrupted biofilm formation. Additionally, the shelf life of challenged blood clam meat treated with ACP-CE400 was extended to nine days. SEM analysis revealed damaged bacterial cells on the meat surface after ACP-CE400 treatment, indicating the antibacterial activity of the combined treatment. Thus, HVACP combined with COS-EGCG conjugate, especially at a highest concentration (400 ppm), effectively inhibited microbial growth and extended the shelf life of contaminated blood clam meat. Full article
(This article belongs to the Special Issue Research on Aquatic Product Processing and Quality Control)
Show Figures

Graphical abstract

17 pages, 8756 KiB  
Article
A Diet Rich in Essential Amino Acids Inhibits the Growth of HCT116 Human Colon Cancer Cell In Vitro and In Vivo
by Giovanni Corsetti, Claudia Romano, Silvia Codenotti, Evasio Pasini, Alessandro Fanzani, Tiziano Scarabelli and Francesco S. Dioguardi
Int. J. Mol. Sci. 2025, 26(14), 7014; https://doi.org/10.3390/ijms26147014 - 21 Jul 2025
Viewed by 320
Abstract
The metabolic hyperactivity of tumor cells demands a substantial amount of energy and molecules to build new cells and expand the tumor, diverting these resources from healthy cells. Amino acids (AAs) are the only totipotent and essential molecules for protein construction. Previous in [...] Read more.
The metabolic hyperactivity of tumor cells demands a substantial amount of energy and molecules to build new cells and expand the tumor, diverting these resources from healthy cells. Amino acids (AAs) are the only totipotent and essential molecules for protein construction. Previous in vitro studies in human and murine cancer cells, along with in vivo studies in mice, have shown that an excess of essential amino acids (EAAs) exerts an inhibitory effect on tumor proliferation by promoting apoptosis and autophagy. In this study, both in vitro and in vivo, we evaluated whether a mixture based on EAA can influence the development of human colon cancer (HCT116). To this end, in vitro, we assessed the proliferation of HCT116 cells treated with a special mix of EAA. In vivo, immunosuppressed athymic nude mice, injected with HCT116 cells subcutaneously (s.c.) or intraperitoneally (i.p.), were given a modified EAAs-rich diet (EAARD) compared to the standard laboratory diet (StD). In vitro data showed that the EAA mix impairs cancer growth by inducing apoptosis and autophagy. In vivo, the results demonstrated that EAARD-fed mice developed s.c. tumors significantly smaller than those of StD-fed mice (total mass 3.24 vs. 6.09 g, respectively). Mice injected i.p. and fed with EAARD showed a smaller and more limited number of intra-peritoneal tumors than StD-fed mice (total mass 0.79 vs. 4.77 g, respectively). EAAs prevents the growth of HCT116 cells by inducing autophagy and apoptosis, increasing endoplasmic reticulum stress, and inhibiting inflammation and neo-vascularization. In addition, the EAARD-fed mice, maintained muscle mass and white and brown adipose tissues. A diet with an excess of EAAs affects the survival and proliferative capacity of human colon cancer cells, maintaining anabolic stimuli in muscular cells. Full article
(This article belongs to the Special Issue Innovative Research on Nutrition and Epigenetics in Cancer)
Show Figures

Graphical abstract

19 pages, 12002 KiB  
Article
Innovative Gluten-Free Fusilli Noodle Formulation: Leveraging Extruded Japanese Rice and Chickpea Flours
by Simone de Souza Fernandes, Jhony Willian Vargas-Solórzano, Carlos Wanderlei Piler Carvalho and José Luis Ramírez Ascheri
Foods 2025, 14(14), 2524; https://doi.org/10.3390/foods14142524 - 18 Jul 2025
Viewed by 363
Abstract
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed [...] Read more.
Background: The growing demand for nutritionally balanced, gluten-free products has encouraged the development of innovative formulations that deliver both sensory quality and functional benefits. Combining rice and legume flours offers promising alternatives to mimic gluten-like properties while improving nutritional value. This study aimed to develop a gluten-free fusilli noodle using extruded flours based on mixtures of Japanese rice (JR) and chickpea (CP) particles. Methods: A 23 factorial design with augmented central points was applied to evaluate the effects of flour ratio (X1, CP/JR, 20–40%), feed moisture (X2, 24–30%), and extrusion temperature (X3, 80–120 °C) on responses from process properties (PPs), extruded flours (EFs), and noodle properties (NPs). Results: Interaction effects of X3 with X1 or X2 were observed on responses. On PP, X1 at 120 °C reduced the mechanical energy input (181.0 to 136.2 kJ/kg) and increased moisture retention (12.0 to 19.8%). On EF, X1 increased water-soluble solids (2.3 to 4.2 g/100 g, db) and decreased water absorption (8.6 to 5.7 g/g insoluble solids). On NP, X1 also affected their cooking properties. The mass increase was greater at 80°C (140 to 174%), and the soluble-solids loss was greater at 120 °C (9.3 to 4.5%). The optimal formulation (X1X2X3: 40–30%–80 °C) yielded noodles with improved elasticity, augmented protein, and enhanced textural integrity. Conclusions: Extruded flours derived from 40% chickpea flour addition and processed under mild conditions proved to be an effective strategy for enhancing both the nutritional and technological properties of rice-based noodles and supporting clean-label alternative products for gluten-intolerant and health-conscious consumers. Full article
Show Figures

Figure 1

20 pages, 1220 KiB  
Article
Color and Attractant Preferences of the Black Fig Fly, Silba adipata: Implications for Monitoring and Mass Trapping of This Invasive Pest
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(7), 732; https://doi.org/10.3390/insects16070732 - 17 Jul 2025
Viewed by 476
Abstract
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata [...] Read more.
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata adults to visual (color) and olfactory (attractant) cues under laboratory and field conditions in fig orchards. No significant color preferences were observed in laboratory choice tests using nine colors or in field trials using traps of four different colors. In the laboratory, traps containing 2% ammonium sulfate solution, torula yeast + borax, or Captor + borax, captured similar numbers of flies, whereas CeraTrap® was less attractive. Traps containing 2% ammonium sulfate were more effective than 2% ammonium acetate, though attraction was comparable when ammonium acetate was diluted to 0.2% or 0.02%. In the field, torula yeast + borax and 2% ammonium sulfate mixed with fig latex outperformed the 2% ammonium sulfate solution alone, although seasonal variation influenced trap performance. A high proportion of field-captured females were sexually immature. Torula yeast + borax attracted high numbers of non-target insects and other lonchaeid species, which reduced its specificity. In contrast, traps containing fig latex mixtures showed higher selectivity, although some S. adipata adults could not be sexed due to specimen degradation. These findings highlight the value of torula yeast pellets and 2% ammonium sulfate plus fig latex for monitoring this pest, but merit validation in field studies performed over the entire crop cycle across both wet and dry seasons. Future studies should evaluate other proteins, ammonium salt combinations and fig latex volatiles in order to develop effective and selective monitoring or mass trapping tools targeted at this invasive pest. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

Back to TopTop