Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = prospective LCA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1456 KB  
Article
Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming
by Ana C. Cavallo, Michael Parkes, Ricardo F. M. Teixeira and Serena Righi
Appl. Sci. 2025, 15(15), 8429; https://doi.org/10.3390/app15158429 - 29 Jul 2025
Viewed by 1305
Abstract
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. [...] Read more.
Urban agriculture (UA) is emerging as a promising strategy for sustainable food production in response to growing environmental pressures. Indoor vertical farming (IVF), combining Controlled Environment Agriculture (CEA) with Building-Integrated Agriculture (BIA), enables efficient resource use and year-round crop cultivation in urban settings. This study assesses the environmental performance of a prospective IVF system located on a university campus in Portugal, focusing on the integration of photovoltaic (PV) energy as an alternative to the conventional electricity grid (GM). A Life Cycle Assessment (LCA) was conducted using the Environmental Footprint (EF) method and the LANCA model to account for land use and soil-related impacts. The PV-powered system demonstrated lower overall environmental impacts, with notable reductions across most impact categories, but important trade-offs with decreased soil quality. The LANCA results highlighted cultivation and packaging as key contributors to land occupation and transformation, while also revealing trade-offs associated with upstream material demands. By combining EF and LANCA, the study shows that IVF systems that are not soil-based can still impact soil quality indirectly. These findings contribute to a broader understanding of sustainability in urban farming and underscore the importance of multi-dimensional assessment approaches when evaluating emerging agricultural technologies. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
Show Figures

Figure 1

21 pages, 3174 KB  
Article
Prospective LCA for 3D-Printed Foamed Geopolymer Composites Using Construction Waste as Additives
by Karina Balina, Rihards Gailitis, Maris Sinka, Pauls Pavils Argalis, Liga Radina and Andina Sprince
Sustainability 2025, 17(14), 6459; https://doi.org/10.3390/su17146459 - 15 Jul 2025
Viewed by 708
Abstract
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and [...] Read more.
Additive manufacturing has recently become popular and more cost-effective for building construction. This study presents a prospective life cycle assessment (LCA) of 3D-printed foamed geopolymer composites (3D-FOAM materials) incorporating construction and demolition waste. The materials were developed using fly ash, slag, sand, and a foaming agent, with recycled clay brick waste (CBW) and autoclaved aerated concrete waste (AACW) added as alternative raw materials. The material formulations were evaluated for their compressive strength and thermal conductivity to define two functional units that reflect structural and thermal performance. A prospective life cycle assessment (LCA) was conducted under laboratory-scale conditions using the ReCiPe 2016 method. Results show that adding CBW and AACW reduces environmental impacts across several categories, including global warming potential and ecotoxicity, without compromising material performance. Compared to conventional wall systems, the 3D-FOAM materials offer a viable low-impact alternative when assessed on a functional basis. These findings highlight the potential of integrating recycled materials into additive manufacturing to support circular economy goals in the construction sector. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Graphical abstract

17 pages, 2087 KB  
Article
Intertemporal Allocation of Recycling for Long-Lived Materials from Energy Infrastructure
by Mario Schmidt and Pia Heidak
Energies 2025, 18(13), 3393; https://doi.org/10.3390/en18133393 - 27 Jun 2025
Viewed by 722
Abstract
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced [...] Read more.
Energy conversion and infrastructure facilities consist of large amounts of metal and have lifetimes of several decades. When recycling metals, the methods of allocation play a decisive role in evaluating how primary and secondary materials, as well as the products that are produced with them, are to be evaluated ecologically. So-called credits for recycling are the subject of a particularly controversial discussion. This article shows that the current practice of giving credits for long-lasting products leads to a significant distortion of the actual emissions. Using the examples of steel, aluminum, and copper, prospective LCA data is used to show how the carbon footprint actually behaves. When credits are applied, the time dependency of emissions must be taken into account; otherwise, burden shifting into the future occurs, which can hardly be considered sustainable. The increase compared to the conventional time-independent practice lies, depending on the metal, at 70 to 300%. It is recommended that the cutoff approach be used conservatively when allocating recycling cascades in order to optimize environmental impact and avoid greenwashing. Full article
Show Figures

Figure 1

35 pages, 6541 KB  
Review
Biodiesel Production and Life Cycle Assessment: Status and Prospects
by Sergio Nogales-Delgado
Energies 2025, 18(13), 3338; https://doi.org/10.3390/en18133338 - 25 Jun 2025
Cited by 1 | Viewed by 2291
Abstract
Biodiesel synthesis, particularly through transesterification, is a mature technology in constant evolution and update. These innovative changes should be validated from different points of view: economic, social, and, especially, environmental perspectives. In this sense, life cycle assessment (LCA) is the perfect procedure to [...] Read more.
Biodiesel synthesis, particularly through transesterification, is a mature technology in constant evolution and update. These innovative changes should be validated from different points of view: economic, social, and, especially, environmental perspectives. In this sense, life cycle assessment (LCA) is the perfect procedure to verify the sustainability of these advances. This brief review covered the present status and future prospects of life cycle assessment (LCA) applied to biodiesel production. For this purpose, the current energy scenario, along with the foundations of biodiesel production and LCA, has been explained, including current research about the specific application of LCA to biodiesel from various perspectives. As a result, LCA was proven to be a versatile tool that can be easily adapted to biodiesel production, which includes continuous innovative works that should be validated from an environmental perspective. However, the counterpart is the heterogeneity found in LCA studies in general, especially concerning functional units (from 1 MJ to 1 t of biodiesel, for instance) and boundary system selection, mainly due to the wide range of possibilities in biodiesel processing. This fact makes the comparison between works (and general recommendations) difficult, requiring additional research. Nevertheless, further studies will cover the existing gaps in LCA, contributing to completing the outlook on its application to biodiesel. Nevertheless, biodiesel production, compared to diesel, normally presents better environmental impacts in categories like global warming and ozone depletion potential. Full article
Show Figures

Figure 1

31 pages, 14297 KB  
Article
The Road to 2030: Combining Life Cycle Assessment and Multi-Criteria Decision Analysis to Evaluate Commuting Alternatives in a University Context
by Denner Deda, Jônatas Augusto Manzolli, Margarida J. Quina and Helena Gervasio
Sustainability 2025, 17(13), 5839; https://doi.org/10.3390/su17135839 - 25 Jun 2025
Viewed by 732
Abstract
Institutions are increasingly being challenged to reduce the environmental impacts of daily commuting, while balancing complex and often conflicting sustainability goals. This study addressed the limitations of carbon-centric assessments by proposing a framework that integrated life cycle assessment (LCA) with multi-criteria decision analysis [...] Read more.
Institutions are increasingly being challenged to reduce the environmental impacts of daily commuting, while balancing complex and often conflicting sustainability goals. This study addressed the limitations of carbon-centric assessments by proposing a framework that integrated life cycle assessment (LCA) with multi-criteria decision analysis (MCDA) to evaluate seven prospective commuting alternatives for 2030, using a Portuguese university as a case study. Utilizing the PROMETHEE method across 16 environmental criteria, the analysis revealed that active mobility offered the most balanced and sustainable outcomes, consistently performing the best across all impact categories. In contrast, the electrification of private vehicles, although it reduced greenhouse gas emissions, was identified as the least favorable option, due to significant trade-offs in areas such as resource depletion and water use, as well as other environmental burdens. Public transport scenarios, particularly those involving electric bus systems, showed intermediate performance. In this context, the proposed LCA–MCDA framework provides policymakers and institutions with a comprehensive decision-support tool to navigate environmental trade-offs, promote low-impact mobility strategies, and meet evolving sustainability reporting requirements. Full article
(This article belongs to the Collection Advances in Transportation Planning and Management)
Show Figures

Figure 1

22 pages, 4651 KB  
Article
Assessing the Deployment of Electric Aircraft from Energy, Environmental, and Economic Perspectives
by Ye Liang, Wei Zhang and Chengjiang Li
Sustainability 2025, 17(12), 5453; https://doi.org/10.3390/su17125453 - 13 Jun 2025
Viewed by 992
Abstract
Electric aircraft represent a promising pathway for decarbonizing the aviation sector, offering significant potential for sustainable transformation in air transportation. This study develops a life cycle assessment–multi-criteria decision-making analytical framework to evaluate the developmental prospects of electric aircraft. This study employs life cycle [...] Read more.
Electric aircraft represent a promising pathway for decarbonizing the aviation sector, offering significant potential for sustainable transformation in air transportation. This study develops a life cycle assessment–multi-criteria decision-making analytical framework to evaluate the developmental prospects of electric aircraft. This study employs life cycle assessment (LCA) to evaluate electric aircraft development and integrates multi-criteria decision making (MCDM) to assess their potential. First, LCA and life cycle cost (LCC) are applied to compare the energy consumption, environmental impact, and economic costs of electric versus conventional aircraft. These results then inform MCDM, with the system boundary guiding indicator selection. The results show that electric aircraft consume slightly more energy than conventional aircraft, and the pollutant emissions are only 50% of that of conventional aircraft, thereby significantly reducing life cycle pollutant emissions and exhibiting high development potential. The cost of conventional aircraft significantly exceeds that of electric aircraft. Total energy consumption, global warming potential, and fuel usage cost are essential for electric aircraft development. This study provides valuable insights for stakeholders seeking to advance sustainable aviation solutions while addressing complex technical and economic considerations. Full article
(This article belongs to the Special Issue Energy Saving and Emission Reduction from Green Transportation)
Show Figures

Figure 1

24 pages, 3266 KB  
Review
State of the Art Review on Hempcrete as a Sustainable Substitute for Traditional Construction Materials for Home Building
by Wei Tong and Ali M. Memari
Buildings 2025, 15(12), 1988; https://doi.org/10.3390/buildings15121988 - 9 Jun 2025
Cited by 2 | Viewed by 4696
Abstract
Currently, the construction industry relies mainly on non-environmentally sustainable materials such as fired clay brick, concrete, and steel, which significantly contribute to global carbon dioxide generation, leading to environmental degradation. In response to mounting environmental concerns, there is a growing emphasis on developing [...] Read more.
Currently, the construction industry relies mainly on non-environmentally sustainable materials such as fired clay brick, concrete, and steel, which significantly contribute to global carbon dioxide generation, leading to environmental degradation. In response to mounting environmental concerns, there is a growing emphasis on developing and utilizing low-impact materials that mitigate the ecological footprint of construction activities. This review offers a detailed overview of current formulations and applications of hempcrete and compares the performance of different types of hempcrete as construction materials. Additionally, this paper seeks to evaluate the potential of hempcrete as a sustainable substitute for traditional construction materials with high energy demands and significant CO2 emissions based on life cycle assessment (LCA). Furthermore, this study summarizes current challenges and prospects for composite innovations in hempcrete, emphasizing the need for standardized product control and broader industrial acceptance, thus providing useful insights for practitioners and researchers in the field. Full article
Show Figures

Figure 1

29 pages, 2472 KB  
Article
Prospective Assessment of Life Cycle, Quality, and Cost for Electric Product Improvement: Supporting Prototyping and Conceptualization by Employing CQ-LCA
by Dominika Siwiec and Andrzej Pacana
Energies 2025, 18(12), 3038; https://doi.org/10.3390/en18123038 - 8 Jun 2025
Cited by 2 | Viewed by 733
Abstract
The process of conceptualisation and prototyping of electric energy products is demanding due to the need for a multifaceted approach to product design. This task becomes even more complex during sustainable development, within which supporting techniques are sought. Energy conversion products such as [...] Read more.
The process of conceptualisation and prototyping of electric energy products is demanding due to the need for a multifaceted approach to product design. This task becomes even more complex during sustainable development, within which supporting techniques are sought. Energy conversion products such as electric motorcycles require special attention due to their impact on energy efficiency, environmental emissions, and operating and production costs. The research gap refers to the lack of a model to aggregate these aspects simultaneously. The objective of the research was to develop a CQ-LCA model (Cost–Quality–Life Cycle Assessment) supporting the creation of alternative product solutions and their evaluation in terms of the following: (i) environmental impact in the life cycle (LCA), (ii) quality, and (iii) production and/or purchase costs. The model was developed in seven main stages and tested for electric motorcycles and their ten prototypes, which are examples of modern products that convert electrical energy into mechanical energy. Using the EDAS method, the quality of electric motorcycle prototypes was calculated. Then, by the LCA method according to ISO 14040, the CO2 emissions were estimated and modelled adequately to quality change. Next, by the parametric model based on the static method and the cost value function, including the nominal least squares method, the cost was estimated adequately to quality and environmental change. The model provided a qualitative and quantitative interpretation of electric motorcycle prototypes (CQ-LCA), allowing for the consideration of product characteristics, such as engine power, charging time, and battery capacity, but also environmental impacts and costs. The originality is the provision of a multi-aspect morphological analysis, after which different scenarios of product solutions. The model can be useful for various commonly used energy-converting products. Full article
Show Figures

Figure 1

21 pages, 2397 KB  
Article
Integration of Recent Prospective LCA Developments into Dynamic LCA of Circular Economy Strategies for Wind Turbines
by Pia Heidak, Anne-Marie Isbert, Sofia Haas and Mario Schmidt
Energies 2025, 18(10), 2509; https://doi.org/10.3390/en18102509 - 13 May 2025
Cited by 1 | Viewed by 1057
Abstract
This study builds a bridge between the advancements from prospective life cycle assessments (pLCAs) and dynamic life cycle assessments (dLCAs) to improve the evaluation of circular economy (CE) strategies for long-lived products such as energy technologies. Based on a literature review of recent [...] Read more.
This study builds a bridge between the advancements from prospective life cycle assessments (pLCAs) and dynamic life cycle assessments (dLCAs) to improve the evaluation of circular economy (CE) strategies for long-lived products such as energy technologies. Based on a literature review of recent developments from pLCA and dLCA, an extended LCA methodology is proposed that provides guidance in the consideration and integration of technological and market dynamics across all major LCA steps of a dLCA, whose flows and impacts extend over a long period of time. This ensures a more accurate assessment of the impacts on global warming over time by explicitly incorporating temporal differentiation into goals and scopes, life cycle inventories, and interpretations. The methodology was applied to compare two CE measures for wind turbines: full repowering, including material recycling, and partial repowering. The analysis revealed that full repowering is the environmentally preferable option from the perspective of global warming potential, as the higher electricity output offsets the emissions associated with decommissioning and new construction. The findings were robust under various assumptions on future technological advancements, the underlying decarbonization scenario aligned with the Paris Agreement, and the application of discounting of future emissions. Ultimately, this work provides a practical yet adaptable approach for integrating future-oriented LCA methods into decision-making for more sustainable infrastructure and machinery. Full article
Show Figures

Figure 1

13 pages, 583 KB  
Article
Environmental Impact of Minimally Invasive Radical and Partial Nephrectomy: A Multicenter Prospective Comparative Study Comparing Robot-Assisted and Laparoscopic Surgical Approaches
by Andrea Fuschi, Yazan Al Salhi, Antonio Luigi Pastore, Manfredi Bruno Sequi, Cosimo De Nunzio, Riccardo Lombardo, Onofrio Antonio Rera, Flavia Carbone, Anastasios D. Asimakopoulos, Fabio Maria Valenzi, Paolo Pietro Suraci, Alice Antonioni, Stefano Nardecchia, Giorgio Bozzini, Alessandro Corsini, Damiano Graziani, Giuseppe Candita, Filippo Gianfrancesco, Giorgio Martino, Alessandro Zucchi, Matteo Pacini, Alessandro Sciarra and Antonio Carboneadd Show full author list remove Hide full author list
Appl. Sci. 2025, 15(9), 5079; https://doi.org/10.3390/app15095079 - 2 May 2025
Viewed by 1232
Abstract
Background: Minimally invasive surgery has improved patient outcomes but raises environmental concerns due to carbon emissions from disposable instruments, energy consumption, and hospital resource use. This study evaluates the carbon footprint of robot-assisted and laparoscopic nephrectomies. Methods: A multicenter prospective study analyzed 162 [...] Read more.
Background: Minimally invasive surgery has improved patient outcomes but raises environmental concerns due to carbon emissions from disposable instruments, energy consumption, and hospital resource use. This study evaluates the carbon footprint of robot-assisted and laparoscopic nephrectomies. Methods: A multicenter prospective study analyzed 162 patients undergoing robot-assisted or laparoscopic partial (RAPN, LPN) and radical nephrectomy (RARN, LRN). Life cycle assessment (LCA) quantified CO2 emissions from instrument use, sterilization, and energy consumption. Results: Robot-assisted procedures had lower CO2 emissions than laparoscopic approaches. Emissions from instrument disposal were 9.04 kg in RAPN vs. 12.14 kg in LPN (p = 0.02) and 8.74 kg in RARN vs. 11.45 kg in LRN (p = 0.03). Despite higher intraoperative energy use, robot-assisted surgery produced 3–4 kg less CO2 per procedure due to reusable instruments and shorter hospitalization. Conclusions: Robot-assisted nephrectomy reduces environmental impact by minimizing waste and hospital stays. Efforts should focus on reusable instruments, energy efficiency, and sustainability initiatives to mitigate surgical carbon footprints while ensuring high-quality care. Full article
Show Figures

Figure 1

26 pages, 2198 KB  
Article
Life Cycle-Based Product Sustainability Assessment Employing Quality and Cost
by Dominika Siwiec and Andrzej Pacana
Sustainability 2025, 17(8), 3430; https://doi.org/10.3390/su17083430 - 11 Apr 2025
Cited by 1 | Viewed by 1424
Abstract
Current issues in sustainable development concern research on comprehensiveness, coherence and practicality. Therefore, the objective was to develop and test a novelty approach to product sustainability assessment based on life cycle, quality, and costs. This approach extends the iterative design thinking process (DT), [...] Read more.
Current issues in sustainable development concern research on comprehensiveness, coherence and practicality. Therefore, the objective was to develop and test a novelty approach to product sustainability assessment based on life cycle, quality, and costs. This approach extends the iterative design thinking process (DT), including overcoming the limitations of existing LCSA methods. We present a systematic process for obtaining and processing customer requirements with a survey and Pareto–Lorenz analysis. Then, using an algorithm developed in Matlab R2021a program, we generated product prototypes considering the key criteria presented in various dimensions of current and modified states. Next, we propose the modeling of prospective LCA for all prototypes in the OpenLCA program with Ecoinvent database. Finally, we aggregated the results considering the cost of prototypes in environmental–cost analysis to determine the direction of product sustainability. We tested this approach in detail with the example of vacuum cleaners for domestic and commercial use. After a literature review and survey research in customers, we developed 54 prototypes, where the modified key quality criteria were as follows: vacuum in the suction pipe, engine power, operating range, and length of the power cable. Using this approach, it was possible to select six prototypes that best meet customer requirements, are environmentally friendly, and cost-effective. Finally, we discuss contributions to DT and LCSA methodologies, and propose future directions for development within the application of artificial intelligence (AI). This approach can be a practical application in SMEs already in the early stages of product development (conceptualization), where access to detailed data is limited. Full article
Show Figures

Figure 1

20 pages, 3099 KB  
Article
Comparison of Battery Electrical Vehicles and Internal Combustion Engine Vehicles–Greenhouse Gas Emission Life Cycle Assessment
by Vasco Vieira, Andresa Baptista, Adélio Cavadas, Gustavo F. Pinto, Joaquim Monteiro and Leonardo Ribeiro
Appl. Sci. 2025, 15(6), 3122; https://doi.org/10.3390/app15063122 - 13 Mar 2025
Viewed by 7639
Abstract
Battery electrical vehicle (BEV) ownership has increased in recent years. There is a general concern over the life cycle of the batteries used in such vehicles. This study provides a comprehensive overview of electric vehicles, encompassing their technical evolution, autonomy, and ownership. The [...] Read more.
Battery electrical vehicle (BEV) ownership has increased in recent years. There is a general concern over the life cycle of the batteries used in such vehicles. This study provides a comprehensive overview of electric vehicles, encompassing their technical evolution, autonomy, and ownership. The analysis delved into the various types of batteries utilized in these vehicles, examining the composition of their constituent materials and the mechanisms underlying their operation. Additionally, it assessed their performance in terms of energy density storage, recharge capabilities, autonomy, and prospects. A critical evaluation of electric vehicles and their internal combustion engine vehicle (ICEV) counterparts, considering the Life Cycle Assessment (LCA) criterion, was conducted. The LCA criterion encompasses emissions during the entire lifecycle, from the “cradle” to the “tank” (WTT) and the “tank” until the end of its cycle (TTW). The findings of this study indicate that BEVs consistently outperformed ICEVs in terms of greenhouse gas (GHG) emissions in all the sizes of vehicles studied. Full article
(This article belongs to the Special Issue Recent Developments in Electric Vehicles)
Show Figures

Figure 1

24 pages, 4674 KB  
Article
Valorisation of Red Mud: Disclosing the Potential of an Abundant Residue
by Carlos A. Vielma, Adela Svobodova-Sedlackova, Josep Maria Chimenos, Ana Inés Fernández, Carlos Berlanga, Rafael Rodriguez and Camila Barreneche
Sustainability 2025, 17(5), 1849; https://doi.org/10.3390/su17051849 - 21 Feb 2025
Viewed by 2608
Abstract
Red mud (RM), the primary waste product of the aluminium industry, is notable for its high concentrations of metals and rare earth elements (REE). Efforts have been made to develop extraction methods for REE recovery from RM, aiming to enhance its valorisation and [...] Read more.
Red mud (RM), the primary waste product of the aluminium industry, is notable for its high concentrations of metals and rare earth elements (REE). Efforts have been made to develop extraction methods for REE recovery from RM, aiming to enhance its valorisation and reduce the European reliance on external REE sources—particularly crucial for technological advancements and the transition to renewable energy. However, these methods have only been limited to low technology readiness levels (TRLs), with no economically or technically viable processing routes yet defined to enable large-scale industrialisation within a circular economy model. This study characterised RM samples from the Seydişehir region in Türkiye using different techniques and explored the experimental process for recovering metals and REE. Moreover, the study assessed the global prospective potential of RM based on technical and economic data, as well as the sustainability of the implemented process through the life cycle assessment (LCA) tool. Results showed a total REE concentration of up to 1600 ppm, with Ce, being the most abundant (426 ± 27 ppm), followed by La, Nd, and Sc. Concentration efficiencies for La and Nd ranged between 240–300%. Sc, Y, Ce, La, and Nd have significant usage in European markets and represent prime RM targets for further prospecting. The LCA revealed that the highest global warming potential of the sequential extraction process was attributed to hydroxylamine hydrochloride and hydrogen peroxide. The findings highlight the need to explore alternative, more eco-friendly reagents to improve RM valorisation. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

16 pages, 4571 KB  
Article
Mapping Scientific and Topic Evolution Around Lithium-Based Clean Energy Technologies: A Bibliometric Analysis
by Xochitl Virginia Bello-Yañez, María-Concepción Martínez-Rodríguez, Lorena Elizabeth Campos-Villegas, Ana Laura Cervantes-Nájera and Alejandro Padilla-Rivera
Sustainability 2025, 17(1), 255; https://doi.org/10.3390/su17010255 - 2 Jan 2025
Cited by 3 | Viewed by 1960
Abstract
Climate change effects have a significant global negative impact, prompting global leaders to promote clean energy use to reduce carbon emissions. Electric vehicles powered by lithium-ion batteries are crucial to achieving this goal. Lithium is an essential material for the efficient operation of [...] Read more.
Climate change effects have a significant global negative impact, prompting global leaders to promote clean energy use to reduce carbon emissions. Electric vehicles powered by lithium-ion batteries are crucial to achieving this goal. Lithium is an essential material for the efficient operation of electric batteries, so in recent years, its demand has increased, and it is considered a strategic mineral. This paper aims to describe and analyze the scientific development of lithium-based clean energy technologies and reveal future areas of scientific production priority. This research is conducted through a bibliometric analysis in the Scopus database from 1929 to April 2024. Using the software Bibliometrix 4.1 and Biblioshiny the exported literature data are analyzed. The number of papers on lithium topics has significantly increased since 2018, with China leading in publications and collaborating with many countries. The trending topics are geological prospection, lithium ore characterization, chemical engineering, and lithium energy technologies. Lithium research is a growing field, but its development is uneven. Only a few countries lead in scientific production and lithium energy technologies, and sustainability lithium topics related to Life-Cycle Analysis (LCA) require further attention. Lithium research development is influenced by global economic trends. Full article
(This article belongs to the Special Issue Energy Economics and Energy Policy towards Sustainability)
Show Figures

Figure 1

20 pages, 2007 KB  
Article
Environmental Impact of Poultry Manure Gasification Technology for Energy and Ash Valorization
by Kofi Armah Boakye-Yiadom, Alessio Ilari, Valentina Bisinella and Daniele Duca
Sustainability 2024, 16(22), 9941; https://doi.org/10.3390/su16229941 - 14 Nov 2024
Cited by 2 | Viewed by 2207
Abstract
Thermochemical technologies offer potential solutions for energy recovery and mitigating the environmental impacts of biomass waste. Poultry manure (PM), a nutrient-rich biomass but also a potentially problematic biomass waste, presents an opportunity for recovery and recycling. This study compares the environmental performance of [...] Read more.
Thermochemical technologies offer potential solutions for energy recovery and mitigating the environmental impacts of biomass waste. Poultry manure (PM), a nutrient-rich biomass but also a potentially problematic biomass waste, presents an opportunity for recovery and recycling. This study compares the environmental performance of a real-scale novel gasification technology called Chimera (designed and developed through an EU LIFE program) in locally treating PM with anaerobic digestion (AD) and incineration. Using life cycle assessment (LCA), the potential environmental impacts of the technologies were assessed using the Environmental Footprint (EF) 3.0 midpoint life cycle impact assessment method. We performed an attributional LCA with substitution. The selected functional unit (FU) is the treatment of one tonne (1000 kg) PM at 40% dry matter in the Netherlands in 2021 for 20 years. The LCA results of the three technologies compared showed that no single technology outperformed the other across all the impact categories. Climate change scores for the various technologies were −383 (incineration), −206 (Chimera), and −161 (anaerobic digestion) kg CO2 eq./FU. The results were influenced mainly by the potential utilization of the substituted heat and electricity. This study expands the existing literature on environmental sustainability assessments of PM treatment technologies. It underscores the prospects for these technologies to promote circularity while also indicating the bottlenecks for the potential environmental impacts and highlighting the most sensitive aspects that can influence the environmental performance of these technologies. Full article
Show Figures

Figure 1

Back to TopTop