Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,153)

Search Parameters:
Keywords = profile modification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 749 KiB  
Review
Hemp-Based Meat Analogs: An Updated Review on Extraction Technologies, Nutritional Excellence, Functional Innovation, and Sustainable Processing Technologies
by Hassan Barakat and Thamer Aljutaily
Foods 2025, 14(16), 2835; https://doi.org/10.3390/foods14162835 - 15 Aug 2025
Abstract
The global transition toward plant-based diets has intensified the search for sustainable protein alternatives, positioning hemp-based meat analogs (HBMAs) as a promising solution due to their exceptional nutritional profile and environmental benefits. This comprehensive review critically examines hemp protein research, focusing on extraction [...] Read more.
The global transition toward plant-based diets has intensified the search for sustainable protein alternatives, positioning hemp-based meat analogs (HBMAs) as a promising solution due to their exceptional nutritional profile and environmental benefits. This comprehensive review critically examines hemp protein research, focusing on extraction technologies, nutritional excellence, functional innovation, and sustainable processing approaches for meat analog development. Hemp seeds contain 25–30% protein, primarily consisting of highly digestible edestin and albumin proteins that provide a complete amino acid profile comparable to soy and animal proteins. The protein exhibits superior digestibility (>88%) and generates bioactive peptides with demonstrated antioxidant, antihypertensive, and anti-inflammatory properties, offering significant health benefits beyond basic nutrition. Comparative analysis reveals that while alkaline extraction-isoelectric precipitation remains the industrial standard due to cost-effectiveness ($2.50–3.20 kg−1), enzymatic extraction and ultrasound-assisted methods deliver superior functional properties despite higher costs. Hemp protein demonstrates moderate solubility and good emulsifying properties, though its gelation capacity requires optimization through enzymatic hydrolysis, high-pressure processing, or strategic blending with complementary proteins. Processing innovations, particularly high-moisture extrusion combined with protein blending strategies, enable fibrous structures closely mimicking conventional meat texture. Hemp protein can replace up to 60% of soy protein in high-moisture meat analogs, with formulations incorporating wheat gluten or chickpea protein showing superior textural attributes. Despite advantages in nutritional density, sustainability, and functional versatility, HBMAs face challenges including sensory limitations, regulatory barriers, and production scaling requirements. Hemp cultivation demonstrates 40–50% lower carbon footprint and water usage compared with conventional protein sources. Future research directions emphasize techniques and action processes, developing novel protein modification techniques, and addressing consumer acceptance through improved sensory properties for successful market adoption. Full article
Show Figures

Figure 1

23 pages, 852 KiB  
Review
Retinal Pigment Epithelium Transplantation in Retinal Disease: Clinical Trial Development, Challenges, and Future Directions
by Qin Chen, Ting Zhang, Zhi Chen, Jingwen Zeng, Aine O’Connor, Meidong Zhu, Mark C. Gillies, Fang Lu and Ling Zhu
Biomolecules 2025, 15(8), 1167; https://doi.org/10.3390/biom15081167 - 15 Aug 2025
Abstract
Replacement of the retinal pigment epithelium (RPE) is emerging as a promising approach to treat degenerative retinal diseases, including age-related macular degeneration and Stargardt disease, in which RPE function cannot otherwise be restored. Despite the limitations of existing treatments, advances in cell sourcing [...] Read more.
Replacement of the retinal pigment epithelium (RPE) is emerging as a promising approach to treat degenerative retinal diseases, including age-related macular degeneration and Stargardt disease, in which RPE function cannot otherwise be restored. Despite the limitations of existing treatments, advances in cell sourcing and surgical methods have enabled initial human trials of RPE transplantation, with early results indicating potential efficacy. This review comprehensively examines the evolution of RPE transplantation in recent decades, highlighting the advantages and limitations of different cell sources and delivery methods. Current clinical trial data are analyzed with a particular focus on immune rejection risks, surgical complications, and long-term safety. Despite encouraging safety profiles, achieving consistent and sustained visual improvement remains a challenge, as vision outcomes might be influenced by factors such as disease stage at intervention, transplantation site, number of cells transplanted, and duration of follow-up. Key challenges, such as cell or graft survival and integration with the host retina, are discussed in depth, as overcoming these obstacles is essential for achieving stable and effective RPE replacement. Future research directions, including innovations in biomaterials, molecular modification strategies, and personalized approaches, hold promise for enhancing the efficacy and durability of RPE transplantation for retinal disease. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Retinal Pigment Epithelium)
Show Figures

Figure 1

19 pages, 971 KiB  
Article
Impact of Dietary Patterns on the Lipidemic Profile and the Cardiovascular Risk in Stage 1 Hypertension: A Post Hoc Analysis of the HINTreat Trial
by Anastasios Vamvakis, Antonios Lazaridis, Maria G. Grammatikopoulou, Anastasia Malliora, Kyriaki Tsiroukidou, Christos Tzimos, Andrea Di Blasio, Pascal Izzicupo and Eugenia Gkaliagkousi
Nutrients 2025, 17(16), 2632; https://doi.org/10.3390/nu17162632 - 14 Aug 2025
Viewed by 31
Abstract
Background/Objectives: In hypertension (HTN), lifestyle modification is important for controlling blood pressure (BP) and lipidemic profile. The HINTreat trial showed that an anti-inflammatory diet was associated with improved endothelial function, after six months of intensive nutritional treatment. Methods: This post hoc [...] Read more.
Background/Objectives: In hypertension (HTN), lifestyle modification is important for controlling blood pressure (BP) and lipidemic profile. The HINTreat trial showed that an anti-inflammatory diet was associated with improved endothelial function, after six months of intensive nutritional treatment. Methods: This post hoc analysis of the HINTreat trial examined how adherence to various nutritional patterns like the Mediterranean Diet (MedDiet), the Dietary Approaches to Stop Hypertension (DASH) diet, and anti-inflammatory diet, had impact on the blood lipids profile and the CVD risk. Patients with stage 1 HTN, allocated either on intensive lifestyle treatment (ILT) or usual care (UC) standard treatment, participated in the analysis. From the original sample size of the HINTreat trial, all patients that were prescribed lipid lowering medication at any time of the study period were excluded from the total analysis; thus, the intervention and the control groups consisted of 33 and 28 patients, respectively. Nutritional intakes were assessed with repeated 24 h recalls from the previous day, and dietary indexes and scores were calculated as follows: MedDiet score, DASH index, and Dietary Inflammatory Index (DII). After six months of intervention, changes in the nutritional indexes and their effect on the lipidemic profile and CVD risk were analyzed. Results: In the ILT group, reductions were noted in Ambulatory Blood Pressure Monitoring (ABPM) for day systolic BP (SBP) (−12.7 mmHg) and diastolic BP (DBP) (−8.4 mmHg), total cholesterol (TC) (−35.4 mg/dL), triglycerides (TG) (−21.4 mg/dL), LDL cholesterol (LDL-C) (−27.5 mg/dL) concentrations, and CVD risk score (−1.5%), p < 0.001 for all. Multiple regression analysis showed that dietary quality indices independently influenced improvements in blood lipid profile and cardiovascular disease (CVD) risk among patients receiving ILT. Specifically, a higher Mediterranean Diet (MedDiet) score was significantly associated with reductions in TC (B = −7.238, p < 0.001), TG (B = −4.103, p = 0.035), and LDL-C (B = −6.431, p = 0.004). The DASH index was positively associated with TG levels (B = 9.913, p = 0.010), suggesting a more complex relationship that may require further investigation. In addition, DII was positively associated with increased CVD risk (B = 0.973, p < 0.001). Conclusions: The findings suggest that ILT can improve BP levels, target blood lipids concentrations, and reduce CVD risk in patients with stage 1 HTN. Full article
Show Figures

Figure 1

20 pages, 3193 KiB  
Article
Experimental Study on the Impact Compression Properties of Aluminum Honeycomb with Gradient-Thickness Cell Walls Using a Three-Factor Orthogonal Matrix Design
by Peng Sun, Xiaoqiong Zhang, Yinghou Jiao, Rongqiang Liu and Tao Wang
Materials 2025, 18(16), 3785; https://doi.org/10.3390/ma18163785 - 12 Aug 2025
Viewed by 240
Abstract
A novel honeycomb with gradient-thickness cell walls (HGTCWs) is fabricated through chemical etching to achieve progressive thickness reduction in the cell walls. This engineered honeycomb demonstrates superior energy absorption by effectively eliminating the peak load during the linear elastic stage of the load–displacement [...] Read more.
A novel honeycomb with gradient-thickness cell walls (HGTCWs) is fabricated through chemical etching to achieve progressive thickness reduction in the cell walls. This engineered honeycomb demonstrates superior energy absorption by effectively eliminating the peak load during the linear elastic stage of the load–displacement curve under impact loading, thereby preventing premature structural failure caused by excessive instantaneous loads. To systematically investigate the impact compression mechanics, energy absorption characteristics, and key influencing factors of aluminum HGTCWs, a three-factor orthogonal array of low-velocity impact experiments was designed. The design of experimental parameters for the impact test has taken into account the impact mass, impact velocity, and etching height. Comparative analysis assessed how these factors influence energy absorption performance. Results reveal that chemical etching-induced thickness gradient modification effectively suppresses peak load generation. Load–displacement curves exhibit distinct bilinear characteristics: an initial single linear phase when compression displacement is below the etching height, followed by a dual-linear phase with an inflection point at the gradient height. Time–velocity profiles during impact primarily consist of an initial nonlinear deceleration phase followed by a linear deceleration phase. Range analysis and analysis of variance identify impact velocity as the dominant factor influencing the energy absorption characteristics of HGTCWs. Full article
Show Figures

Figure 1

20 pages, 10522 KiB  
Article
Genome-Wide Association Study of Agricultural and Biochemical Traits in Radiation-Induced Colored Wheat
by Min Jeong Hong, Chan Seop Ko and Dae Yeon Kim
Agronomy 2025, 15(8), 1933; https://doi.org/10.3390/agronomy15081933 - 11 Aug 2025
Viewed by 121
Abstract
Colored wheat lines, which feature elevated anthocyanin content and associated traits, represent valuable genetic resources for enhancing the plant’s nutritional and aesthetic properties. This genome-wide association study (GWAS) utilized a set of radiation-induced mutant lines to identify genetic loci linked to agricultural and [...] Read more.
Colored wheat lines, which feature elevated anthocyanin content and associated traits, represent valuable genetic resources for enhancing the plant’s nutritional and aesthetic properties. This genome-wide association study (GWAS) utilized a set of radiation-induced mutant lines to identify genetic loci linked to agricultural and biochemical traits. The GWAS models Fixed and Random Model Circulating Probability Unification, and the Bayesian-information and Linkage-Disequilibrium Iteratively Nested Keyway were employed to increase the reliability of marker–trait associations (MTAs). In total, 35 significant MTAs were identified, and seven single-nucleotide polymorphisms (SNPs) were commonly detected by both models. To explore candidate genes, a ± 1.5-Mb window around each significant SNP was analyzed according to the estimated linkage disequilibrium decay, revealing 635 genes. Among these, several genes were annotated as transcription factors and enzymes associated with flavonoid biosynthesis and modification, including MYB, WD-repeat proteins, and UDP-glycosyltransferases. Expression profiling and RT-qPCR further supported the functional relevance of selected SNP–gene pairs, particularly for anthocyanin accumulation and seed color variation. In summary, the integration of GWAS, gene annotation, and expression data could provide valuable insights into the genetic basis of complex traits in wheat, providing data for future molecular studies and marker-assisted breeding of colored wheat mutant cultivars. Full article
Show Figures

Figure 1

14 pages, 1820 KiB  
Review
Approaches for Identifying LncRNA-Associated Proteins for Therapeutic Targets and Cancer Biomarker Discovery
by Mohammad Shabir Hussain, Puneet Vij, Sudhir Kotnala, Shadab Ahmad, Subhash C. Chauhan and Manish K. Tripathi
Targets 2025, 3(3), 27; https://doi.org/10.3390/targets3030027 - 11 Aug 2025
Viewed by 186
Abstract
Long non-coding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression and cellular signaling in cancer. Their functions are primarily mediated through interactions with specific protein partners that modulate chromatin structure, epigenetic remodeling, transcription, and signal transduction. In this review, we [...] Read more.
Long non-coding RNAs (lncRNAs) are increasingly recognized as key regulators of gene expression and cellular signaling in cancer. Their functions are primarily mediated through interactions with specific protein partners that modulate chromatin structure, epigenetic remodeling, transcription, and signal transduction. In this review, we explore reports and strategies for the proteomic characterization of lncRNA-associated proteins, particularly emphasizing high-throughput liquid chromatography–mass spectrometry (LC-MS)-based techniques. Affinity-based methods such as RNA pull-down, ChIRP MS, RAP-MS, BioID-MS, and SILAC-MS enable sensitive and specific mapping of lncRNA and protein complexes. These approaches reveal cancer-specific proteomic signatures, post-translational modifications, and mechanistic insights into tumor biology. The use of label-free quantification, bituminization, and crosslinking strategies further enhances the resolution of dynamic RNA–protein networks. Validation tools following bioinformatic analyses, such as Western blotting, immunohistochemistry, immunofluorescence, and ELISA, are used to prioritize and confirm findings. Candidate biomarkers from hepatocellular carcinoma to colorectal and prostate cancers, profiling lncRNA-associated proteins, hold promise for identifying clinically actionable biomarkers and therapeutic targets. This review highlights the translational relevance of lncRNA protein studies and advocates for their broader adoption in oncological research. In LC-MS workflows, proteins bound to lncRNAs are enzymatically digested into peptides, separated via nano-LC, and analyzed using high-resolution tandem MS. Label-free or isotope-labeled methods quantify differential enrichment, followed by bioinformatics-driven pathway annotation. Full article
Show Figures

Graphical abstract

23 pages, 2409 KiB  
Article
Multi-Omic Characterization of Epithelial–Mesenchymal Transition: Lipidomic and Metabolomic Profiles as Key Markers of TGF-β-Induced Transition in Huh7 Hepatocellular Carcinoma
by Agnese Bertoldi, Gaia Cusumano, Eleonora Calzoni, Husam B. R. Alabed, Roberto Maria Pellegrino, Sandra Buratta, Lorena Urbanelli and Carla Emiliani
Cells 2025, 14(16), 1233; https://doi.org/10.3390/cells14161233 - 10 Aug 2025
Viewed by 263
Abstract
Epithelial–mesenchymal transition (EMT) is a key process in cancer progression and fibrogenesis. In this study, EMT was induced in Huh7 hepatocellular carcinoma cells via TGF-β1 treatment, and the resulting lipidomic and metabolomic alterations were characterized. Morphological changes and protein marker analyses confirmed the [...] Read more.
Epithelial–mesenchymal transition (EMT) is a key process in cancer progression and fibrogenesis. In this study, EMT was induced in Huh7 hepatocellular carcinoma cells via TGF-β1 treatment, and the resulting lipidomic and metabolomic alterations were characterized. Morphological changes and protein marker analyses confirmed the transition to a mesenchymal phenotype, with reduced E-cadherin and increased vimentin and N-cadherin expression. Lipidomic profiling revealed a dose-dependent reorganization of membrane lipids, with a pronounced increase in the levels of ceramides, cholesteryl esters, and lysophospholipids, consistent with alterations in membrane structure, potential cellular stress, and modulation of inflammatory pathways. Changes in the content of phospholipid classes, including phosphatidylethanolamines and phosphatidylserines, indicate possible variations in membrane dynamics and potentially point to modifications in mitochondrial function, cellular stress responses, and redox balance. Metabolomic analysis further indicates an alteration of choline and phosphatidylcholine metabolism, consistent with a shift from de novo membrane synthesis toward lipid turnover. Reduced glycolytic capacity and modified acylcarnitine levels indicated impaired metabolic flexibility and mitochondrial efficiency. The integration of phenotypic, lipidomic, and metabolomic data suggests that TGF-β1 induces EMT and drives a coordinated metabolic reprogramming. These findings highlight the involvement of lipid and energy metabolism in sustaining EMT and suggest that specific metabolic reprogramming events characterize the mesenchymal shift in hepatocellular carcinoma. By exploring this process in a tumor-specific context, we aim to deepen our understanding of EMT complexity and its implications for tumor progression and therapeutic vulnerability. Full article
(This article belongs to the Special Issue Cell Migration and Invasion)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
PARP Inhibition Shifts Murine Myeloid Cells Toward a More Tolerogenic Profile In Vivo
by Jose R. Pittaluga-Villarreal, Casey M. Daniels, Tara Capece, Pauline R. Kaplan, Martin Meier-Schellersheim and Aleksandra Nita-Lazar
Biomolecules 2025, 15(8), 1149; https://doi.org/10.3390/biom15081149 - 9 Aug 2025
Viewed by 363
Abstract
The human Poly ADP-ribose Polymerase (PARP) family comprises 17 enzymes responsible for the transfer of ADP-ribose to proteins, forming poly- or mono-ADP-ribosylation. This post-translational modification regulates DNA repair and programmed cell death, processes affecting cancer biology. PARP inhibitors, including the FDA-approved olaparib, are [...] Read more.
The human Poly ADP-ribose Polymerase (PARP) family comprises 17 enzymes responsible for the transfer of ADP-ribose to proteins, forming poly- or mono-ADP-ribosylation. This post-translational modification regulates DNA repair and programmed cell death, processes affecting cancer biology. PARP inhibitors, including the FDA-approved olaparib, are used to treat BRCA-dependent breast and ovarian cancers. Although therapies with use of PARP inhibitors are showing clinical success, their effects on the immune system remain understudied. Prior work has shown that PARP inhibition can modulate inflammatory responses and alter innate immunity. In this study, we evaluated the immunomodulatory effects of olaparib on myeloid cells in vivo, focusing on bone marrow and spleen. Olaparib treatment altered the composition and activation state of dendritic cells, neutrophils, and macrophages. In the bone marrow, olaparib increased the proportion of cDC2 population, mature neutrophils and inflammatory macrophages expressing CD80. In contrast, splenic myeloid cells exhibited enhanced expression of markers associated with tolerogenic phenotypes, including CD206 and CD124 in neutrophils and macrophages. The spleen also showed an increase in immature monocyte-derived dendritic cells (CD206+) and a bias toward the cDC2 subset. These findings indicate that PARP inhibition can induce short-term phenotypic remodeling of myeloid cell populations, promoting a more immunoregulatory profile, especially in the spleen. These changes may contribute to an altered immune landscape with implications for anti-tumor immunity. Full article
(This article belongs to the Special Issue PARPs in Cell Death and PARP Inhibitors in Cancers: 2nd Edition)
Show Figures

Figure 1

35 pages, 3497 KiB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 648
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Figure 1

34 pages, 1670 KiB  
Review
Atomistic-Level Insights into the Role of Mutations in the Engineering of PET Hydrolases: A Systematic Review
by Athina Karaoli, Haralampos Tzoupis, Konstantinos D. Papavasileiou, Anastasios G. Papadiamantis, Dimitris G. Mintis, Chris T. Kiranoudis, Iseult Lynch, Georgia Melagraki and Antreas Afantitis
Int. J. Mol. Sci. 2025, 26(16), 7682; https://doi.org/10.3390/ijms26167682 - 8 Aug 2025
Viewed by 284
Abstract
Plastic pollution is a growing global challenge, and traditional plastic waste management methods are proving inadequate in tackling the issue. Enzymatic biodegradation has emerged as a promising alternative or addition to plastic waste management due to its environmentally friendly profile. Polyethylene terephthalate (PET) [...] Read more.
Plastic pollution is a growing global challenge, and traditional plastic waste management methods are proving inadequate in tackling the issue. Enzymatic biodegradation has emerged as a promising alternative or addition to plastic waste management due to its environmentally friendly profile. Polyethylene terephthalate (PET) is among the most widely used polymers in packaging, and recent research has identified several PET-degrading enzymes, such as TfCut2, IsPETase, and LCC, as promising candidates for biodegradation applications at the industrial level. This has led to extensive efforts to improve their catalytic efficiency, with targeted mutagenesis being the preferred method employed for their modification. To this end, molecular dynamics (MD) simulations coupled with experimental validation have provided critical atomistic-level insights into the effect of mutations on enzymatic function. The present systematic review examines the role of mutations in determining enzymatic activity and thermostability, analyzing their structural and mechanistic contributions across 20 studies. The integration of MD simulations and experimental findings allows elucidation of the mechanistic details governing polymer degradation, as well as identification of key residue and enzyme hotspots that enhance catalytic performance. The review further highlights the role of MD simulations as powerful tools in providing valuable insights to guide targeted mutations for enzyme efficiency optimization. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Informatics)
Show Figures

Figure 1

16 pages, 918 KiB  
Systematic Review
Experimental Evidence of Caffeic Acid’s Neuroprotective Activity in Alzheimer’s Disease: In Vitro, In Vivo, and Delivery-Based Insights
by Adam Kowalczyk, Carlo Ignazio Giovani Tuberoso and Igor Jerković
Medicina 2025, 61(8), 1428; https://doi.org/10.3390/medicina61081428 - 8 Aug 2025
Viewed by 241
Abstract
Background and Objectives: Alzheimer’s disease (AD) is a complex neurodegenerative disorder marked by cholinergic deficits, oxidative stress, amyloid-β (Aβ) aggregation, and tau hyperphosphorylation. Caffeic acid (CA), a naturally occurring hydroxycinnamic acid, has emerged as a promising neuroprotective candidate due to its antioxidant, [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) is a complex neurodegenerative disorder marked by cholinergic deficits, oxidative stress, amyloid-β (Aβ) aggregation, and tau hyperphosphorylation. Caffeic acid (CA), a naturally occurring hydroxycinnamic acid, has emerged as a promising neuroprotective candidate due to its antioxidant, anti-inflammatory, and enzyme-inhibitory properties. This review systematically evaluates recent in vitro and in vivo evidence regarding the therapeutic potential of CA in AD models and examines the impact of delivery systems and derivatives on its efficacy and bioavailability. Materials and Methods: A systematic literature search was conducted in the PubMed, Scopus, and Web of Science databases, adhering to the PRISMA 2020 guidelines. Studies published between January 2021 and April 2025 were included in this review. Eligible studies investigated the effects of CA or CA-enriched extracts on AD-relevant mechanisms using in vitro, in vivo, and in silico models. After screening 101 articles, 44 met the inclusion criteria and were included in the final qualitative synthesis of the study. Results: In vitro studies have confirmed that CA modulates cholinergic activity by inhibiting AChE and BChE and exerting antioxidant and anti-amyloidogenic effects. In vivo studies using pharmacological, genetic, and metabolic AD models have demonstrated improvements in cognitive function, reduction in oxidative stress, inflammation, and Aβ and tau pathologies following CA administration. Advanced delivery platforms, such as solid lipid nanoparticles, transferrin-functionalized liposomes, and carbon dot systems, have significantly enhanced CA’s brain bioavailability and therapeutic efficacy. CA derivatives, including caffeic acid phenethyl ester and nitro-substituted analogs, exhibit improved pharmacokinetic and neuroprotective profiles. Conclusions: This review provides evidence supporting the use of CA as a promising multitarget agent against AD pathology. Its therapeutic potential is further enhanced by nanotechnology-based delivery systems and chemical modifications that overcome the limitations of bioavailability. Continued preclinical evaluation and translational studies are warranted to support its clinical development as an AD intervention. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

31 pages, 721 KiB  
Review
The Epigenetics of Sepsis: How Gene Modulation Shapes Outcomes
by Giulia Pignataro, Cristina Triunfo, Andrea Piccioni, Simona Racco, Mariella Fuorlo, Evelina Forte, Francesco Franceschi and Marcello Candelli
Biomedicines 2025, 13(8), 1936; https://doi.org/10.3390/biomedicines13081936 - 8 Aug 2025
Viewed by 315
Abstract
Sepsis is a complex and heterogeneous condition, arising from a disrupted immune response to infection that can progress to organ failure and carries a high risk of death. In recent years, growing attention has been paid to the role of epigenetic mechanisms—including DNA [...] Read more.
Sepsis is a complex and heterogeneous condition, arising from a disrupted immune response to infection that can progress to organ failure and carries a high risk of death. In recent years, growing attention has been paid to the role of epigenetic mechanisms—including DNA methylation, histone modifications, non-coding RNAs, and RNA methylation—in shaping immune activity during sepsis. These processes affect immune functions such as macrophage polarization, cytokine release, and the exhaustion of immune cells, and they help explain the shift from an initial phase of overwhelming inflammation to a later state of immune suppression. Epigenetic alterations also contribute to tissue-specific damage, notably in the lungs, kidneys, and heart, and have been linked to disease severity and clinical prognosis. Advances in transcriptomic and epigenetic profiling have made it possible to distinguish molecular subtypes of septic patients, each with distinct immune features and varied responses to treatments such as corticosteroids and metabolic therapies. Emerging biomarkers—like AQP5 methylation, histone lactylation (H3K18la), and m6A RNA methylation—are opening new options for patient classification and more tailored therapeutic strategies. This review examines the current understanding of how epigenetic regulation contributes to the pathophysiology of sepsis and considers its implications for developing more individualized approaches to care. Full article
Show Figures

Figure 1

26 pages, 4168 KiB  
Review
Biocompatible Thermoplastics in Additive Manufacturing of Bone Defect Fillers: State-of-the-Art and Future Prospects
by Dagmara Słota, Karina Niziołek, Edyta Kosińska, Julia Sadlik and Agnieszka Sobczak-Kupiec
Materials 2025, 18(16), 3723; https://doi.org/10.3390/ma18163723 - 8 Aug 2025
Viewed by 467
Abstract
The development of materials engineering allows for the creation of new materials intended for 3D printing, which has become a key tool in tissue engineering, particularly in bone tissue engineering, enabling the production of implants, defect fillers, and scaffolds tailored to the individual [...] Read more.
The development of materials engineering allows for the creation of new materials intended for 3D printing, which has become a key tool in tissue engineering, particularly in bone tissue engineering, enabling the production of implants, defect fillers, and scaffolds tailored to the individual needs of patients. Among the wide range of available biomaterials, thermoplastic polymers such as polycaprolactone (PCL), polylactic acid (PLA), polyether ether ketone (PEEK), and polymethyl methacrylate (PMMA) are of significant interest due to their biocompatibility, processability, and variable degradation profiles. This review compiles the latest reports on the applications, advantages, limitations, and modifications in bone tissue engineering. It highlights that PCL and PLA are promising for temporary, resorbable scaffolds, while PEEK and PMMA are suitable for permanent or load-bearing implants. The inclusion of ceramic phases is frequently used to enhance bioactivity. A growing trend can be observed toward developing customized, multifunctional materials that support bone regeneration and biological integration. Despite ongoing progress, the biocompatibility and long-term safety of these materials still require further clinical validation. Full article
Show Figures

Figure 1

22 pages, 1682 KiB  
Review
Histone Modifications as Individual-Specific Epigenetic Regulators: Opportunities for Forensic Genetics and Postmortem Analysis
by Sheng Yang, Liqin Chen, Miaofang Lin, Chengwan Shen and Aikebaier Reheman
Genes 2025, 16(8), 940; https://doi.org/10.3390/genes16080940 - 7 Aug 2025
Viewed by 408
Abstract
Histone post-translational modifications (PTMs) have emerged as promising epigenetic biomarkers with increasing forensic relevance. Unlike conventional genetic markers such as short tandem repeats (STRs), histone modifications can offer additional layers of biological information, capturing individual-specific regulatory states and remaining detectable even in degraded [...] Read more.
Histone post-translational modifications (PTMs) have emerged as promising epigenetic biomarkers with increasing forensic relevance. Unlike conventional genetic markers such as short tandem repeats (STRs), histone modifications can offer additional layers of biological information, capturing individual-specific regulatory states and remaining detectable even in degraded forensic samples. This review highlights recent advances in understanding histone PTMs in forensic contexts, focusing on three key domains: analysis of degraded biological evidence, differentiation of monozygotic (MZ) twins, and postmortem interval (PMI) estimation. We summarize experimental findings from human cadavers, animal models, and typical forensic samples including bone, blood, and muscle, illustrating the stability and diagnostic potential of marks such as H3K4me3, H3K27me3, and γ-H2AX. Emerging technologies including CUT&Tag, MALDI imaging, and nanopore-based sequencing offer novel opportunities to profile histone modifications at high resolution and low input. Despite technical challenges, these findings support the feasibility of histone-based biomarkers as complementary tools for forensic identification and temporal analysis. Future work should prioritize methodological standardization, inter-laboratory validation, and integration into forensic workflows. However, the forensic applicability of these modifications remains largely unvalidated, and further studies are required to assess their reliability in casework contexts. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Viewed by 187
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

Back to TopTop