Approaches for Identifying LncRNA-Associated Proteins for Therapeutic Targets and Cancer Biomarker Discovery
Abstract
1. Introduction
2. Approaches for Identifying Protein Interactions with LncRNAs
2.1. Pathways Associated with LncRNAs
2.2. Proteomic Approaches for Characterization of LncRNA–Protein Interactions
3. Discussion
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Xue, Y.; He, R.; Huang, Q. Isolation of Protein Complexes Associated with Long Non-coding RNAs. Methods Mol. Biol. 2021, 2372, 27–33. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, T.; Pan, Y.; Hu, Z.; Yuan, J.; Hu, X.; Zhang, L.; Zhang, Y. Characterization of Long Non-coding RNA Associated Proteins by RNA-Immunoprecipitation. Methods Mol. Biol. 2021, 2372, 19–26. [Google Scholar] [CrossRef]
- Gumireddy, K.; Yan, J.; Huang, Q. Isolation of Protein Complexes Associated with Long Non-coding RNAs. In Long Non-Coding RNAs; Springer: New York, NY, USA, 2016. [Google Scholar]
- Talamantes, S.; Lisjak, M.; Gilglioni, E.H.; Llamoza-Torres, C.J.; Ramos-Molina, B.; Gurzov, E.N. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep. 2023, 5, 100811. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, J.; Bi, J.; Wu, Q.; Wang, X.; Lai, Q. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a tissue biomarker for detection of early hepatocellular carcinoma in patients with cirrhosis. J. Hematol. Oncol. 2012, 5, 37. [Google Scholar] [CrossRef]
- Dhillon, R.S.; Yao, L.; Matey, V.; Chen, B.J.; Zhang, A.J.; Cao, Z.D.; Fu, S.J.; Brauner, C.J.; Wang, Y.S.; Richards, J.G. Interspecific differences in hypoxia-induced gill remodeling in carp. Physiol. Biochem. Zool. 2013, 86, 727–739. [Google Scholar] [CrossRef]
- Compérat, E. Editorial for Cribriform architecture prostatic adenocarcinoma in needle biopsy is a strong independent predictor for lymph node metastases in radical prostatectomy (M. Downes et al.) and Ductal variant prostate carcinoma is associated with a significantly shorter metastasis-free survival (K. Chow et al.). Eur. J. Cancer 2021, 148, 430–431. [Google Scholar] [CrossRef]
- Lu, C.; Cai, R.; Grigg, J.C.; Ke, A. Using tRNA Scaffold to Assist RNA Crystallization. Methods Mol. Biol. 2021, 2323, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, L.; Zhong, Y.; Zhou, K.; Hou, Y.; Wang, Z.; Zhang, Z.; Xie, J.; Wang, C.; Chen, D.; et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 2021, 184, 404–421.e16. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Sun, R.; Zhu, Y.; Li, Z.; She, X.; Jian, X.; Yu, F.; Deng, X.; Sai, B.; Wang, L.; et al. Lung microbiome alterations in NSCLC patients. Sci. Rep. 2021, 11, 11736. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhou, L.; Shen, N.; Ning, X.; Wu, D.; Jiang, K.; Huang, X. M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 2022, 13, 183. [Google Scholar] [CrossRef]
- Rajagopal, T.; Talluri, S.; Akshaya, R.L.; Dunna, N.R. HOTAIR LncRNA: A novel oncogenic propellant in human cancer. Clin. Chim. Acta 2020, 503, 1–18. [Google Scholar] [CrossRef]
- Yang, M.; Li, S.; Huang, L.; Zhao, R.; Dai, E.; Jiang, X.; He, Y.; Lu, J.; Peng, L.; Liu, W.; et al. CTNND1 variants cause familial exudative vitreoretinopathy through the Wnt/cadherin axis. JCI Insight 2022, 7, e158428. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Chen, W.; Wang, X.; Zhao, Z.; Li, Y.; Zhang, L.; Jiao, J.; Yang, Q.; Ding, Q.; et al. Hepatocyte CD36 modulates UBQLN1-mediated proteasomal degradation of autophagic SNARE proteins contributing to septic liver injury. Autophagy 2023, 19, 2504–2519. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Sheng, W.; Meng, Y.; Cao, Y.; Li, R. LncRNA PTENP1 inhibits cervical cancer progression by suppressing miR-106b. Artif. Cells Nanomed. Biotechnol. 2020, 48, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Studzińska, S.; Zawadzka, E.; Bocian, S.; Szumski, M. Synthesis and application of stationary phase for DNA-affinity chromatographic analysis of unmodified and antisense oligonucleotide. Anal. Bioanal. Chem. 2021, 413, 5109–5119. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yu, H.; Alkhamis, O.; Liu, Y.; Canoura, J.; Fu, F.; Xiao, Y. In vitro isolation of class-specific oligonucleotide-based small-molecule receptors. Nucleic Acids Res. 2019, 47, e71. [Google Scholar] [CrossRef]
- Yin, Y.; Lu, J.Y.; Zhang, X.; Shao, W.; Xu, Y.; Li, P.; Hong, Y.; Cui, L.; Shan, G.; Tian, B.; et al. U1 snRNP regulates chromatin retention of noncoding RNAs. Nature 2020, 580, 147–150. [Google Scholar] [CrossRef]
- Ye, W.; Liang, X.; Chen, G.; Chen, Q.; Zhang, H.; Zhang, N.; Huang, Y.; Cheng, Q.; Chen, X. NDC80/HEC1 promotes macrophage polarization and predicts glioma prognosis via single-cell RNA-seq and in vitro experiment. CNS Neurosci. Ther. 2024, 30, e14850. [Google Scholar] [CrossRef]
- Schnitzler, G.R.; Kang, H.; Fang, S.; Angom, R.S.; Lee-Kim, V.S.; Ma, X.R.; Zhou, R.; Zeng, T.; Guo, K.; Taylor, M.S.; et al. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024, 626, 799–807. [Google Scholar] [CrossRef]
- Bick, A.G.; Weinstock, J.S.; Nandakumar, S.K.; Fulco, C.P.; Bao, E.L.; Zekavat, S.M.; Szeto, M.D.; Liao, X.; Leventhal, M.J.; Nasser, J.; et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 2020, 586, 763–768. [Google Scholar] [CrossRef]
- Vivek, A.T.; Sahu, N.; Kalakoti, G.; Kumar, S. ANNInter: A platform to explore ncRNA-ncRNA interactome of Arabidopsis thaliana. Comput. Biol. Chem. 2025, 115, 108328. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.J.; Kingston, R.E. HOTAIR lifts noncoding RNAs to new levels. Cell 2007, 129, 1257–1259. [Google Scholar] [CrossRef]
- Liu, H.; Peng, L.; So, J.; Tsang, K.H.; Chong, C.H.; Mak, P.H.S.; Chan, K.M.; Chan, S.Y. TSPYL2 Regulates the Expression of EZH2 Target Genes in Neurons. Mol. Neurobiol. 2019, 56, 2640–2652. [Google Scholar] [CrossRef]
- Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; Sicks, J.D. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef]
- Ankö, M.L.; Neugebauer, K.M. Long noncoding RNAs add another layer to pre-mRNA splicing regulation. Mol. Cell 2010, 39, 833–834. [Google Scholar] [CrossRef]
- Lei, L.; Chen, J.; Huang, J.; Lu, J.; Pei, S.; Ding, S.; Kang, L.; Xiao, R.; Zeng, Q. Functions and regulatory mechanisms of metastasis-associated lung adenocarcinoma transcript 1. J. Cell Physiol. 2018, 234, 134–151. [Google Scholar] [CrossRef]
- Razzaq, S.; Rauf, A.; Raza, A.; Akhtar, S.; Tabish, T.A.; Sandhu, M.A.; Zaman, M.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; et al. A Multifunctional Polymeric Micelle for Targeted Delivery of Paclitaxel by the Inhibition of the P-Glycoprotein Transporters. Nanomaterials 2021, 11, 2858. [Google Scholar] [CrossRef]
- Rodriguez, P.D.; Paculova, H.; Kogut, S.; Heath, J.; Schjerven, H.; Frietze, S. Non-Coding RNA Signatures of B-Cell Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2021, 22, 2683. [Google Scholar] [CrossRef] [PubMed]
- Engreitz, J.M.; Pandya-Jones, A.; McDonel, P.; Shishkin, A.; Sirokman, K.; Surka, C.; Kadri, S.; Xing, J.; Goren, A.; Lander, E.S.; et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013, 341, 1237973. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Li, J.S.; Xue, M.; Wu, W.J.; Li, X.; Chen, W. LncRNA UCA1 Participates in De Novo Synthesis of Guanine Nucleotides in Bladder Cancer by Recruiting TWIST1 to Increase IMPDH1/2. Int. J. Biol. Sci. 2023, 19, 2599–2612. [Google Scholar] [CrossRef]
- Fu, S.; Wang, Y.; Li, H.; Chen, L.; Liu, Q. Regulatory Networks of LncRNA MALAT-1 in Cancer. Cancer Manag. Res. 2020, 12, 10181–10198. [Google Scholar] [CrossRef]
- Bhan, A.; Soleimani, M.; Mandal, S.S. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017, 77, 3965–3981. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Yan, S.; Wang, H.; Shao, X.; Xiao, M.; Yang, B.; Qin, G.; Kong, R.; Chen, R.; et al. Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat. Commun. 2020, 11, 3162. [Google Scholar] [CrossRef] [PubMed]
- Pei, C.; Gong, X.; Zhang, Y. LncRNA MALAT-1 promotes growth and metastasis of epithelial ovarian cancer via sponging microrna-22. Am. J. Transl. Res. 2020, 12, 6977–6987. [Google Scholar]
- Song, W.; Wang, K.; Zou, S.B. UCA1 lncRNA in metastases and prognosis. Panminerva Med. 2017, 59, 278–279. [Google Scholar] [CrossRef]
- Ferrè, F.; Colantoni, A.; Helmer-Citterich, M. Revealing protein-lncRNA interaction. Brief. Bioinform. 2016, 17, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Rastad, H.; Samimisedeh, P.; Alan, M.S.; Afshar, E.J.; Ghalami, J.; Hashemnejad, M.; Alan, M.S. The role of lncRNA CERS6-AS1 in cancer and its molecular mechanisms: A systematic review and meta-analysis. Pathol. Res. Pract. 2023, 241, 154245. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zheng, H.; Chan, M.T.; Wu, W.K. HULC: An oncogenic long non-coding RNA in human cancer. J. Cell Mol. Med. 2017, 21, 410–417. [Google Scholar] [CrossRef]
- Ou, C.; Sun, Z.; He, X.; Li, X.; Fan, S.; Zheng, X.; Peng, Q.; Li, G.; Li, X.; Ma, J. Targeting YAP1/LINC00152/FSCN1 Signaling Axis Prevents the Progression of Colorectal Cancer. Adv. Sci. 2020, 7, 1901380. [Google Scholar] [CrossRef]
- Sun, J.Y.; Ni, M.M. Long non-coding RNA HEIH: A novel tumor activator in multiple cancers. Cancer Cell Int. 2021, 21, 558. [Google Scholar] [CrossRef]
- Mu, Y.; Li, N.; Cui, Y.L. The lncRNA CCAT1 upregulates TGFβR1 via sponging miR-490-3p to promote TGFβ1-induced EMT of ovarian cancer cells. Cancer Cell Int. 2018, 18, 145. [Google Scholar] [CrossRef]
- Gao, P.; Sun, D.; Guo, H.; Wu, Z.; Chen, J. LncRNA CCAT2 promotes proliferation and suppresses apoptosis of colorectal cancer cells. JBUON 2020, 25, 1840–1846. [Google Scholar]
- Chen, B.; Dragomir, M.P.; Fabris, L.; Bayraktar, R.; Knutsen, E.; Liu, X.; Tang, C.; Li, Y.; Shimura, T.; Ivkovic, T.C.; et al. The Long Noncoding RNA CCAT2 Induces Chromosomal Instability Through BOP1-AURKB Signaling. Gastroenterology 2020, 159, 2146–2162.e33. [Google Scholar] [CrossRef]
- Hashemi, M.; Moosavi, M.S.; Abed, H.M.; Dehghani, M.; Aalipour, M.; Heydari, E.A.; Behroozaghdam, M.; Entezari, M.; Salimimoghadam, S.; Gunduz, E.S.; et al. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy. Pharmacol. Res. 2022, 184, 106418. [Google Scholar] [CrossRef]
- Fang, H.; Liu, H.M.; Wu, W.H.; Liu, H.; Pan, Y.; Li, W.J. Upregulation of long noncoding RNA CCAT1-L promotes epithelial-mesenchymal transition in gastric adenocarcinoma. Onco Targets Ther. 2018, 11, 5647–5655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, H.; Yu, J.; Yao, X.; Yang, S.; Li, W.; Xu, L.; Zhao, L. LncRNA CRNDE attenuates chemoresistance in gastric cancer via SRSF6-regulated alternative splicing of PICALM. Mol. Cancer 2021, 20, 6. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Zhan, L.; Li, Q.; Li, Y.; Wu, G.; Wei, H.; Dong, X. LncRNA FER1L4 promotes differentiation and inhibits proliferation of NSCs via miR-874-3p/Ascl2. Am. J. Transl. Res. 2022, 14, 2256–2266. [Google Scholar] [PubMed]
- Jiang, J.; Azevedo-Pouly, A.C.; Redis, R.S.; Lee, E.J.; Gusev, Y.; Allard, D.; Sutaria, D.S.; Badawi, M.; Elgamal, O.A.; Lerner, M.R.; et al. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma. Oncotarget 2016, 7, 53165–53177. [Google Scholar] [CrossRef] [PubMed]
- Boyd, J.H.; Fjell, C.D.; Russell, J.A.; Sirounis, D.; Cirstea, M.S.; Walley, K.R. Increased Plasma PCSK9 Levels Are Associated with Reduced Endotoxin Clearance and the Development of Acute Organ Failures during Sepsis. J. Innate Immun. 2016, 8, 211–220. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Qiu, Y.; Sun, F.; Zhu, G.; Sun, J.; Cai, G.; Lin, W.; Fu, Y.; Wu, H.; et al. LncRNA NEAT1 Promotes Gastric Cancer Progression Through miR-17-5p/TGFβR2 Axis Up-Regulated Angiogenesis. Front. Cell Dev. Biol. 2021, 9, 705697. [Google Scholar] [CrossRef]
- Liu, F.L.; Zhang, Z.C.; Zhou, S.L.; Liu, X.L.; Xu, W. Unlocking the Therapeutic Potential of LncRNA BLACAT1 in Hypopharynx Squamous Cell Carcinoma. Discov. Med. 2024, 36, 546–558. [Google Scholar] [CrossRef]
- Bozděchová, L.; Rudolfová, A.; Hanáková, K.; Fojtová, M.; Fajkus, J. Optimizing ChIRP-MS for Comprehensive Profiling of RNA-Protein Interactions in Arabidopsis thaliana: A Telomerase RNA Case Study. Plants 2024, 13, 850. [Google Scholar] [CrossRef]
- Chu, C.; Chang, H.Y. ChIRP-MS: RNA-Directed Proteomic Discovery. Methods Mol. Biol. 2018, 1861, 37–45. [Google Scholar] [CrossRef]
- Spiniello, M.; Knoener, R.A.; Steinbrink, M.I.; Yang, B.; Cesnik, A.J.; Buxton, K.E.; Scalf, M.; Jarrard, D.F.; Smith, L.M. HyPR-MS for Multiplexed Discovery of MALAT1, NEAT1, and NORAD lncRNA Protein Interactomes. J. Proteome Res. 2018, 17, 3022–3038. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Esmaeili, M.; Taheri, M.; Samsami, M. Highly upregulated in liver cancer (HULC): An update on its role in carcinogenesis. J. Cell Physiol. 2020, 235, 9071–9079. [Google Scholar] [CrossRef]
- Cheng, K.; Cai, N.; Zhu, J.; Yang, X.; Liang, H.; Zhang, W. Tumor-associated macrophages in liver cancer: From mechanisms to therapy. Cancer Commun. 2022, 42, 1112–1140. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Zhao, Q.; An, L.; Jiao, S.; Li, R.; Sang, Y.; Liao, J.; Nie, P.; Wen, F.; Ju, J.; et al. A TNFR2-hnRNPK Axis Promotes Primary Liver Cancer Development via Activation of YAP Signaling in Hepatic Progenitor Cells. Cancer Res. 2021, 81, 3036–3050. [Google Scholar] [CrossRef]
- Wongpalee, S.P.; Vashisht, A.; Sharma, S.; Chui, D.; Wohlschlegel, J.A.; Black, D.L. Large-scale remodeling of a repressed exon ribonucleoprotein to an exon definition complex active for splicing. eLife 2016, 5, e19743. [Google Scholar] [CrossRef] [PubMed]
- Ly, T.; Endo, A.; Brenes, A.; Gierlinski, M.; Afzal, V.; Pawellek, A.; Lamond, A.I. Proteome-wide analysis of protein abundance and turnover remodelling during oncogenic transformation of human breast epithelial cells. Wellcome Open Res. 2018, 3, 51. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.W.; Cai, Q.Q.; Yang, Y.; Dong, S.; Liu, Y.Y.; Chen, Z.Y.; Kang, C.L.; Qi, B.; Dong, Y.W.; Wu, W.; et al. LncRNA BC promotes lung adenocarcinoma progression by modulating IMPAD1 alternative splicing. Clin. Transl. Med. 2023, 13, e1129. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Tan, Z.; Zhang, F.; Huang, W.; Chen, K. The lncRNA FENDRR inhibits colorectal cancer progression via interacting with and triggering GSTP1 ubiquitination by FBX8. Heliyon 2023, 9, e23161. [Google Scholar] [CrossRef]
- Chang, K.C.; Diermeier, S.D.; Yu, A.T.; Brine, L.D.; Russo, S.; Bhatia, S.; Alsudani, H.; Kostroff, K.; Bhuiya, T.; Brogi, E.; et al. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat. Commun. 2020, 11, 6438. [Google Scholar] [CrossRef]
- Fang, D.; Ou, X.; Sun, K.; Zhou, X.; Li, Y.; Shi, P.; Zhao, Z.; He, Y.; Peng, J.; Xu, J. m6A modification-mediated lncRNA TP53TG1 inhibits gastric cancer progression by regulating CIP2A stability. Cancer Sci. 2022, 113, 4135–4150. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Sun, F.; Zhao, X.; Dong, Y.; Yu, S.; Li, J.; Liang, H. LncRNA CRLM1 inhibits apoptosis and promotes metastasis through transcriptional regulation cooperated with hnRNPK in colorectal cancer. Cell Biosci. 2022, 12, 120. [Google Scholar] [CrossRef]
- Gandhi, M.; Groß, M.; Holler, J.M.; Coggins, S.A.; Patil, N.; Leupold, J.H.; Munschauer, M.; Schenone, M.; Hartigan, C.R.; Allgayer, H.; et al. The lncRNA lincNMR regulates nucleotide metabolism via a YBX1–RRM2 axis in cancer. Nat. Commun. 2020, 11, 3214. [Google Scholar] [CrossRef]
- Tang, J.; Yan, T.; Bao, Y.; Shen, C.; Yu, C.; Zhu, X.; Tian, X.; Guo, F.; Liang, Q.; Liu, Q.; et al. LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nat. Commun. 2019, 10, 3499. [Google Scholar] [CrossRef]
- Lamsisi, M.; Wakrim, L.; Bouziyane, A.; Benhessou, M.; Oudghiri, M.; Laraqui, A.; Elkarroumi, M.; Ennachit, M.; El Mzibri, M.; Ennaji, M.M. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. Int. J. Mol. Cell Med. 2021, 10, 75–101. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Taheri, M.; Akbari Dilmaghani, N. A review on the role of PTENP1 in human disorders with an especial focus on tumor suppressor role of this lncRNA. Cancer Cell Int. 2022, 22, 207. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, X.; Zhu, C.; Wang, K. lncRNA PVT1: A novel oncogene in multiple cancers. Cell Mol. Biol. Lett. 2022, 27, 84. [Google Scholar] [CrossRef] [PubMed]
- Galamb, O.; Barták, B.K.; Kalmár, A.; Nagy, Z.B.; Szigeti, K.A.; Tulassay, Z.; Igaz, P.; Molnár, B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J. Gastroenterol. 2019, 25, 5026–5048. [Google Scholar] [CrossRef] [PubMed]
- Goyal, B.; Yadav, S.R.M.; Awasthee, N.; Gupta, S.; Kunnumakkara, A.B.; Gupta, S.C. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188502. [Google Scholar] [CrossRef]
- Hausman, D.M. What Is Cancer? Perspect. Biol. Med. 2019, 62, 778–784. [Google Scholar] [CrossRef]
- Shaath, H.; Vishnubalaji, R.; Elango, R.; Kardousha, A.; Islam, Z.; Qureshi, R.; Alam, T.; Kolatkar, P.R.; Alajez, N.M. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin. Cancer Biol. 2022, 86, 325–345. [Google Scholar] [CrossRef]
- Gordon, M.A.; Babbs, B.; Cochrane, D.R.; Bitler, B.G.; Richer, J.K. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol. Carcinog. 2019, 58, 196–205. [Google Scholar] [CrossRef]
- Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar] [CrossRef]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef]
- Xia, M.; Yao, L.; Zhang, Q.; Wang, F.; Mei, H.; Guo, X.; Huang, W. Long noncoding RNA HOTAIR promotes metastasis of renal cell carcinoma by up-regulating histone H3K27 demethylase JMJD3. Oncotarget 2017, 8, 19795–19802. [Google Scholar] [CrossRef] [PubMed]
- Ramya, V.; Shyam, K.P.; Angelmary, A.; Kadalmani, B. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2024, 1869, 159429. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Sun, J.; Zhang, N.; Shen, Y.; Wang, T.; Li, Z.; Yang, M. Novel Implications of MicroRNAs, Long Non-coding RNAs and Circular RNAs in Drug Resistance of Esophageal Cancer. Front. Cell Dev. Biol. 2021, 9, 764313. [Google Scholar] [CrossRef] [PubMed]
- Mathias, C.; Rodrigues, A.C.; Baal, S.C.S.; de Azevedo, A.L.K.; Kozak, V.N.; Alves, L.F.; de Oliveira, J.C.; Guil, S.; Gradia, D.F. The landscape of lncRNAs in cell granules: Insights into their significance in cancer. Wiley Interdiscip. Rev. RNA 2024, 15, e1870. [Google Scholar] [CrossRef] [PubMed]
S No. | LncRNAs | Specific Method | Remarks/Conclusions | References |
---|---|---|---|---|
1 | MALAT-1 | Patient samples and ovarian cancer cell lines (SKOV3 and CAOV3) | MALAT-1 is a diagnostic or prognostic biomarker or therapeutic target for many cancers. | [35] |
2 | UCA1 | Via the miR-145/MYO6 axis | The UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer. | [36] |
3 | T2D/HCC | NAFLD/T2D-associated HCC | Metformin may reduce the risk of cancer in patients with T2D. The unadjusted odds ratio was 0.86 (95% CI 0.73 to 1.02). The unadjusted odds ratio for any exposure to metformin since 1993 was 0.79 (0.67 to 0.93 lncRNA–protein interactions in the context of T2D or HCC). | [4,37] |
4 | Revealing protein | RAPID-SELEX, RNAcompete, RNA Bind-n-Seq, and RNA-Ma | Better understanding of lncRNA cellular mechanisms and their disease-associated perturbations. | [37,38] |
5 | LncRNA interaction | MS2 trapping, SILAC-based phage display, and protein arrays | LncRNA-bound proteome, or if still-uncharacterized protein domains and architectures are involved, the network will be high. | [37] |
6 | HULC | Tumorigenesis test in vitro and in vivo: RT-PCR and W. B. | Potential implications in cancer diagnosis and therapy. | [33,37] |
7 | HULC | HULC interacts with the glycolytic enzyme LDHA | HULC promotes the Warburg effect by orchestrating the enzymatic activities of glycolytic enzymes. | [34,39] |
8 | Linc00152 | Human tissue samples | Targeting YAP1/LINC00152/FSCN1 signaling axis prevents the progression of colorectal cancer. | [40] |
9 | HEIH | Non-coding RNAs | Nearly 8000 cancer-specific lncRNAs have been nominated; PCA3 is a prostate-specific prognostic biomarker for prostate cancer. | [41] |
10 | HOTTIP | In silico analysis, plasmid construction and transfection | Significantly, M1 exosomes and HOTTIP polarize circulating monocytes into the antitumor M1 phenotype, which may provide novel insight into HNSCC immunotherapy. | [11] |
11 | HOTAIR | HOTAIR-mediated gene silencing | It could be used in conjunction with current drugs to sensitize tumors to the existing therapies | [12] |
12 | CCAT1 | RT-qPCR to level of miR-490-3p and CCAT1 | Facilitate the development of novel therapeutic therapies for treating ovarian cancer. | [42] |
13 | CCAT2 | BOP1-AURKB signaling | Overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1, an activator of aurora kinase B. | [43,44] |
14 | H19 | Enhancing the growth and cell cycle of cancer by EMT induction | Increased proliferation, glycolysis induction, and miRNA-519d-3p downregulation by H19 to increase LDHA expression. | [45] |
15 | CCAT1-L | Quantitative real-time PCR and Western blotting, respectively | Inhibits epithelial–mesenchymal transition of gastric adenocarcinoma cells and thus suppresses the gastric adenocarcinoma metastasis. | [46] |
16 | CRNDE | Chemosensitivity of GC in clinical samples and a PDX model | Highlights the significance of CRNDE as a potential prognostic marker and therapeutic target against chemoresistance in GC. | [47] |
17 | FER1L4 | The cells were extracted from the embryos of rats | FER1L4 modulates the proliferation and differentiation of NSCs via regulating Ascl2. | [48] |
18 | PTENP | Luciferase reporter assay and RNA pull-down assay | Inhibit cell proliferation and EMT and induce cell apoptosis in cervical cancer cells. | [15] |
19 | T-UCRs | qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens and pancreatic cancer cell lines | Expression of T-UCRs in both human and mouse PDAC and a similar mechanism of upregulation in PDAC. | [49] |
20 | TUC338 | Plasma, treatment, and cell lines, MS2-MBP protein expression and immobilization | The understanding of molecular mechanisms of lncRNAs. Inhibition of PCSK9 activity is an attractive target for treating the spectrum of sepsis and septic shock. | [33,50] |
Method | Description | Strengths | Limitations | Applications in Cancer (Examples) | Key References |
---|---|---|---|---|---|
RNA pull-down | Biotinylated probes hybridize to lncRNA, isolating associated proteins for MS. | Direct isolation, high specificity. | It requires high RNA abundance and has potential for non-specific binding. | Lung: LncRNA BC promotes lung adenocarcinoma by modulating IMPAD1 splicing. Gastric: NEAT1/miR-17-5p/TGFβR2 axis drives GC angiogenesis. Colorectal: lncRNA FENDRR suppresses colorectal cancer by binding GSTP1 and promoting FBX8-mediated ubiquitination. | [61]; [51] [62] |
ChIRP-MS | Probes hybridize to chromatin-bound lncRNAs, capturing associated proteins. | Identifies chromatin-associated partners; works for low-abundance lncRNAs. | Limited to nuclear lncRNAs; probe design critical. | Breast: MaTAR25 modulates Tensin1, influencing breast cancer progression. Gastric: m6A-modified TP53TG1 suppresses gastric cancer progression by modulating CIP2A stability. Liver: LncRNA CRLM1 cooperates with hnRNPK to inhibit apoptosis and promote metastasis in colorectal cancer. | [63] [64] |
RAP-MS | Identifies key lncRNA–protein interactions that govern RNA stability, localization, and function. | Yields high-confidence, direct RNA–protein interactions via UV crosslinking and stringent purification. | Requires high RNA abundance and may miss transient or weak interactions. | Liver: lncRNA lincNMR modulates nucleotide metabolism via the YBX1-RRM2 axis in liver cancer. | [65] |
HyPR-MS | Enables multiplexed discovery of specific RNA–protein interactomes. | Versatile method for probing in vivo protein interactomes of target RNAs | Multiplexing capacity beyond three targets and applicability to other RNA species (e.g., rRNA and tRNA) remain untested. | Prostate: HyPR-MS maps MALAT1, NEAT1, and NORAD interactomes in PC3 cells | [66] |
TOBAP-MS | Integrates tobramycin affinity purification with quantitative mass spectrometry. | It enables the isolation of native RNP complexes and the identification of RNA-associated proteins and supports both biochemical and structural studies of these complexes. | Liver: In liver cancer, HULC—a lncRNA prominently overexpressed in the disease—engages with 140 interacting proteins. | [34] | |
BioID-MS | Fuses a promiscuous biotin ligase to a target protein to tag nearby proteins for MS analysis. | Captures transient, weak, and insoluble protein interactions in living cells via biotin tagging for high-affinity purification. | Lower sensitivity, slower labeling kinetics, and higher non-specific biotinylation. | RNA-BioID in HEK293T and MCF-7 cells reveals HOTAIR’s association with mitoribosomes, suggesting functions beyond (post)transcriptional regulation. | [55] |
SILAC-MS | Uses non-radioactive isotopic labeling to quantify protein abundance differences across samples. | Accurate, multiplexed quantitative proteomics via metabolic labeling with broad proteome coverage and reproducibility. | Restricted to cell culture systems (not applicable to primary tissues/biofluids directly) and limited multiplexing capacity (typically 2–3 samples). | LincNMR promotes tumor proliferation via a YBX1-RRM2-TYMS-TK1 axis in nucleotide metabolism in liver, lung, and breast cancer cell lines. GLCC1 drives colorectal cancer through oncogenic mechanisms, functions, and clinical relevance. | [55] [66,67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.S.; Vij, P.; Kotnala, S.; Ahmad, S.; Chauhan, S.C.; Tripathi, M.K. Approaches for Identifying LncRNA-Associated Proteins for Therapeutic Targets and Cancer Biomarker Discovery. Targets 2025, 3, 27. https://doi.org/10.3390/targets3030027
Hussain MS, Vij P, Kotnala S, Ahmad S, Chauhan SC, Tripathi MK. Approaches for Identifying LncRNA-Associated Proteins for Therapeutic Targets and Cancer Biomarker Discovery. Targets. 2025; 3(3):27. https://doi.org/10.3390/targets3030027
Chicago/Turabian StyleHussain, Mohammad Shabir, Puneet Vij, Sudhir Kotnala, Shadab Ahmad, Subhash C. Chauhan, and Manish K. Tripathi. 2025. "Approaches for Identifying LncRNA-Associated Proteins for Therapeutic Targets and Cancer Biomarker Discovery" Targets 3, no. 3: 27. https://doi.org/10.3390/targets3030027
APA StyleHussain, M. S., Vij, P., Kotnala, S., Ahmad, S., Chauhan, S. C., & Tripathi, M. K. (2025). Approaches for Identifying LncRNA-Associated Proteins for Therapeutic Targets and Cancer Biomarker Discovery. Targets, 3(3), 27. https://doi.org/10.3390/targets3030027