Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,336)

Search Parameters:
Keywords = product regulation mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 58970 KB  
Article
Aspirin Eugenol Ester Alleviates Vascular Endothelial Ferroptosis by Enhancing Antioxidant Ability and Inhibiting the JNK/c-Jun/NCOA4/FTH Signaling Pathway
by Ji Feng, Qi Tao, Zhi-Jie Zhang, Qin-Fang Yu, Ya-Jun Yang and Jian-Yong Li
Antioxidants 2025, 14(10), 1220; https://doi.org/10.3390/antiox14101220 (registering DOI) - 10 Oct 2025
Abstract
Oxidative stress occurs within bovine when exposed to harmful stimuli, accompanied by substantial accumulation of reactive oxygen species. Without timely clearance, these reactive oxygen species attack vascular endothelial cells, concurrently inducing extensive production of lipid peroxides within the vascular endothelium, and thereby triggering [...] Read more.
Oxidative stress occurs within bovine when exposed to harmful stimuli, accompanied by substantial accumulation of reactive oxygen species. Without timely clearance, these reactive oxygen species attack vascular endothelial cells, concurrently inducing extensive production of lipid peroxides within the vascular endothelium, and thereby triggering ferroptosis. Aspirin eugenol ester (AEE) showed pharmacological activity against oxidative stress-induced vascular endothelial damage. However, whether it could alleviate vascular endothelial damage by inhibiting ferroptosis remains unclear. This study aimed to evaluate the effects of AEE on vascular endothelial ferroptosis and elucidate its underlying molecular mechanisms. This study established vascular endothelial damage models in vitro and in vivo to explore the ability of AEE to inhibit ferroptosis and oxidative stress by measuring ferroptosis- and oxidative stress-related biomarkers. Transcriptomic and network pharmacology analyses were performed to identify AEE-regulated pathways and key targets. Validation of the pathways were conducted using molecular docking, cellular thermal shift assay, and specific protein agonists/inhibitors. AEE inhibited oxidative stress and ferroptosis in bovine aortic endothelial cells induced by hydrogen peroxide (H2O2) or RSL3 via suppressing the upregulation of ferroptosis-related genes and enhancing the expression of antioxidant genes. Transcriptomic and network pharmacology analyses identified JNK as a core target of AEE in regulating ferroptosis. JNK agonists enhanced H2O2-induced ferritinophagy; on the contrary, JNK inhibitors alleviated it. AEE suppressed H2O2-induced phosphorylation of JNK/c-Jun and ferritinophagy. In a carrageenan-induced rat aortic vascular endothelial damage model, AEE alleviated vascular endothelial damage and ferroptosis-related gene changes, promoted antioxidant gene expression, and inhibited JNK/c-Jun phosphorylation and ferritinophagy. AEE inhibited vascular endothelial ferroptosis by enhancing antioxidant ability, blocking downstream ferritinophagy, and reducing ferrous ion release. Full article
(This article belongs to the Section Aberrant Oxidation of Biomolecules)
23 pages, 1154 KB  
Article
Competition and Coordination of Regional Fresh Supply Chain Under Government Regulation
by Chao Zhao, Yongmei Chi, Nini Gao and Jixiang Song
Games 2025, 16(5), 53; https://doi.org/10.3390/g16050053 (registering DOI) - 10 Oct 2025
Abstract
Fresh agricultural products have significant seasonality and perishability, and their cross-regional sales often face differences in market demand, price, and sales volume. In the context of government quality regulation, competition among retailers in different regions drives supply chain members to improve product quality, [...] Read more.
Fresh agricultural products have significant seasonality and perishability, and their cross-regional sales often face differences in market demand, price, and sales volume. In the context of government quality regulation, competition among retailers in different regions drives supply chain members to improve product quality, expand sales, and reduce losses. However, conflicts of interest under decentralized decision-making may lead to overall inefficiency. This article constructs a supply chain model consisting of a single Manufacturer and two regional Retailers to study the quality competition and coordination mechanism of cross-regional fresh food supply chains under government supervision. By comparing centralized and decentralized decision-making, it is found that although quality improvement in decentralized mode helps enhance competitiveness and sales performance, it is difficult to effectively increase profits and may even lead to a decline in profits. Therefore, this article proposes a cost-sharing contract to achieve supply chain coordination. Research has shown that this contract can effectively improve the overall profit of the supply chain and achieve Pareto improvement; under high market demand and strict regulatory penalties, the total profit of the supply chain increases, but the dominant Retailer benefits more, which can easily trigger the “Matthew effect”. The research results reveal the comprehensive impact of quality investment, contract coordination, market demand fluctuations, and regulatory intensity on supply chain performance, providing theoretical basis and management insights for improving the collaborative efficiency and policy design of cross-regional fresh food supply chains. Full article
23 pages, 3677 KB  
Article
Enhancing the Conversion Efficiency of Ecological Product Value Through Digital Finance: Measurement and Mechanism Analysis
by Weifeng Deng, Yaobin Liu and Shuoshuo Li
Land 2025, 14(10), 2024; https://doi.org/10.3390/land14102024 - 10 Oct 2025
Abstract
The conversion of ecological product value is vital for reconciling economic growth with environmental sustainability. As a financial innovation that combines digital technology with inclusive finance, digital finance has emerged as a key driver of this process. Drawing on Chinese provincial panel data [...] Read more.
The conversion of ecological product value is vital for reconciling economic growth with environmental sustainability. As a financial innovation that combines digital technology with inclusive finance, digital finance has emerged as a key driver of this process. Drawing on Chinese provincial panel data from 2011 to 2020, this study shows that digital finance significantly enhances the conversion efficiency of ecological product value (CEEPV), and the results remain robust after addressing endogeneity and sensitivity concerns. The analysis reveals that the depth of use and the level of digitalization of digital finance strongly promote CEEPV, while coverage breadth has no significant effect. Mechanism tests indicate that digital finance improves CEEPV mainly through alleviating rural financing constraints, fostering entrepreneurship, encouraging green innovation, enhancing agricultural social services, and supporting rural e-commerce. In addition, traditional finance and financial regulation complement digital finance in strengthening CEEPV. Heterogeneity analysis further shows that the positive effect of digital finance is concentrated in provinces with higher levels of marketization and urbanization. Overall, the findings underscore the importance of accelerating digital finance development and implementing region-specific policies to maximize its potential in advancing ecological product value realization. Full article
(This article belongs to the Section Land Socio-Economic and Political Issues)
Show Figures

Figure 1

23 pages, 1230 KB  
Review
Insights into the Bioactivities and Mechanism of Action of the Microbial Diketopiperazine Cyclic Dipeptide Cyclo(L-leucyl-L-prolyl)
by Christian Bailly
Mar. Drugs 2025, 23(10), 397; https://doi.org/10.3390/md23100397 - 9 Oct 2025
Abstract
Diketopiperazines (DKPs) are biologically important cyclic dipeptides widespread in nature, associated primarily with microorganisms. This is the case for the 2,5-DKP derivative cyclo(L-Leu-L-Pro) (cLP), also known as gancidin W or PPDHMP, identified from a variety of bacteria and fungi, and occasionally found in [...] Read more.
Diketopiperazines (DKPs) are biologically important cyclic dipeptides widespread in nature, associated primarily with microorganisms. This is the case for the 2,5-DKP derivative cyclo(L-Leu-L-Pro) (cLP), also known as gancidin W or PPDHMP, identified from a variety of bacteria and fungi, and occasionally found in food products. The present review retraces the discovery of cLP, its identification in living species, its chemical syntheses, and its biochemical properties. In bacteria, cLP is often associated with other DKPs to serve as a defense element against other microorganisms and/or as a regulator of bacterial growth. cLP plays a role in quorum-sensing and functions as an anticariogenic and antifungal agent. The antimicrobial mechanism of action and molecular targets of cLP are evoked. The interest in cLP for combatting certain parasitic diseases, such as malaria, and cancers is discussed. The capacity of cLP to interact with CD151 and to down-regulate the expression of this tetraspanin can be exploited to reduce tumor dissemination and metastases. The review sheds light on the pharmacology and specific properties of cyclo(L-Leu-L-Pro), which can be useful for the development of a novel therapeutic approach for different human pathologies. It is also of interest to help define the bioactivity and mechanisms of action of closely related DKP-based natural products. Full article
(This article belongs to the Section Marine Pharmacology)
18 pages, 1138 KB  
Review
Determination of Inorganic Elements in Paper Food Packaging Using Conventional Techniques and in Various Matrices Using Microwave Plasma Atomic Emission Spectrometry (MP-AES): A Review
by Maxime Chivaley, Samia Bassim, Vicmary Vargas, Didier Lartigue, Brice Bouyssiere and Florence Pannier
Analytica 2025, 6(4), 41; https://doi.org/10.3390/analytica6040041 - 9 Oct 2025
Abstract
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be [...] Read more.
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be a polluting industry and a consumer of a large amount of energy but remains an essential heavy industry globally. Paper production, based largely on the kraft process, is mainly intended for the food packaging sector and, thus, is associated with contamination risks. The lack of standardized regulations and the different analytical techniques used make information on the subject complex, particularly for inorganic elements where little information is available in the literature. Most research in this field is based on sample preparation using mineralization via acid digestion to obtain a liquid and homogeneous matrix, mainly with a HNO3/H2O2 mixture. The most commonly used techniques are Atomic Absorption Spectrometry (AAS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), each with its advantages and disadvantages, which complicates the use of these tech-niques for routine analyses on an industrial site. In the same field of inorganic compound analysis, Microwave Plasma Atomic Emission Spectrometry (MP-AES) has become a real alternative to techniques such as AAS or ICP-AES. This technique has been used in several studies in the food and environmental fields. This publication aims to examine, for the first time, the state of the art regarding the analysis of inorganic elements in food packaging and different matrices using MP-AES. The entire manufacturing process is studied to identify possible sources of inorganic contaminants. Various analytical techniques used in the field are also presented, as well as research conducted with MP-AES to highlight the potential benefits of this technique in the field. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

16 pages, 2143 KB  
Article
Inhibition of Photosynthesis in Quercus acutissima Seedlings by LaCl3 Through Calcium Signaling Regulation
by Xiaohang Weng, Hui Li, Yongbin Zhou, Hongbo Wang, Jian Feng, Shihe Yu and Ying Zheng
Forests 2025, 16(10), 1553; https://doi.org/10.3390/f16101553 - 8 Oct 2025
Abstract
Calcium is an essential macronutrient for plant growth and development, and there is an optimal calcium concentration for plant growth. Calcium ion concentration changes create “calcium signals” that regulate plant growth through perception, decoding, transduction, and response processes. However, the mechanisms by which [...] Read more.
Calcium is an essential macronutrient for plant growth and development, and there is an optimal calcium concentration for plant growth. Calcium ion concentration changes create “calcium signals” that regulate plant growth through perception, decoding, transduction, and response processes. However, the mechanisms by which calcium signaling regulates photosynthesis are still not fully understood. In this study, Quercus acutissima seedlings were used to investigate the inhibitory effects of different concentrations of the calcium channel blocker lanthanum chloride (LaCl3) on photosynthesis and the underlying mechanisms. The results show that increasing LaCl3 concentration significantly decreased photosynthetic parameters, photosynthetic pigment contents, and photosynthetic product accumulation. Long-term water use efficiency decreased with increasing LaCl3 concentration, while instantaneous water use efficiency initially increased and then decreased. Structural equation modeling analysis indicated that LaCl3 concentration was significantly positively correlated with leaf calcium concentration in Quercus acutissima seedlings, while it was significantly negatively correlated with stomatal conductance, carotenoids, and soluble sugar content. The study concludes that LaCl3 directly inhibits the photosynthetic physiological processes of Quercus acutissima seedlings by blocking calcium signaling, providing insights into the regulatory mechanisms of calcium signaling in plant photosynthesis and a theoretical basis for the cultivation and application of Quercus acutissima under varying environmental conditions. Full article
Show Figures

Figure 1

29 pages, 3364 KB  
Article
Effects of Stand Age Gradient and Thinning Intervention on the Structure and Productivity of Larix gmelinii Plantations
by Jiang Liu, Xin Huang, Shaozhi Chen, Pengfei Zheng, Dongyang Han and Wendou Liu
Forests 2025, 16(10), 1552; https://doi.org/10.3390/f16101552 - 8 Oct 2025
Abstract
Larix gmelinii is the fourth most important tree species in China and a typical zonal climax species in the cold temperate region, with high ecological and resource value. However, intensive logging, high-density afforestation, and insufficient scientific management have led to overly dense, homogeneous, [...] Read more.
Larix gmelinii is the fourth most important tree species in China and a typical zonal climax species in the cold temperate region, with high ecological and resource value. However, intensive logging, high-density afforestation, and insufficient scientific management have led to overly dense, homogeneous, and unstable plantations, severely limiting productivity. To clarify the mechanisms by which structural dynamics regulate productivity, we established a space-for-time sequence (T1–T3, T2-D, CK) under a consistent early-tending background. Using the “1 + 4” nearest-neighbor framework and six spatial structural parameters, we developed tree and forest spatial structure indices (TSSI and FSSI) and integrated nine structural–functional indicators for multivariate analysis. The results showed that TSSI and FSSI effectively characterized multi-level stability and supported stability classification. Along the stand-age gradient, structural stability and spatial use efficiency improved significantly, with FSSI and biomass per hectare (BPH) increasing by 91% and 18% from T1 to T3, though a “structural improvement–functional lag” occurred at T2. Moderate thinning markedly optimized stand configuration, reducing low-stability individuals from 86.45% in T1 to 42.65% in T2-D, while DBH, crown width, FSSI, and BPH (229.87 t·hm−2) increased to near natural-forest levels. At the tree scale, DBH, tree height, crown width, and TSSI were positive drivers, whereas a high height–diameter ratio (HDR) constrained growth. At the stand scale, canopy density, species richness, and mean DBH promoted FSSI and BPH, while mean HDR and stand density imposed major constraints. A critical management window was identified when DBH < 25 cm, HDR > 10, and TSSI < 0.25 (approximately 10–30 years post-planting). We propose a stepwise, moderate, and targeted thinning strategy with necessary underplanting to reduce density and slenderness, increase diameter and canopy structure, and enhance diversity, thereby accelerating the synergy between stability and productivity. This framework provides a practical pathway for the scientific management and high-quality development of L. gmelinii plantations. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 1349 KB  
Article
Enzymatic Spirulina Extract Enhances the Vasodilation in Aorta and Mesenteric Arteries of Aged Rats
by Michal S. Majewski, Mercedes Klett-Mingo, Carlos M. Verdasco-Martín, Cristina Otero and Mercedes Ferrer
Mar. Drugs 2025, 23(10), 395; https://doi.org/10.3390/md23100395 - 8 Oct 2025
Viewed by 51
Abstract
Aging, one of the main factors associated with cardiovascular diseases, induces vascular modifications through nitric oxide (NO) release and oxidative stress. Based on the antioxidant properties of the non-enzymatic spirulina extract (non-Enz-Spir-E) and that degrading enzymes enhances the extract bioactivity, the aim of [...] Read more.
Aging, one of the main factors associated with cardiovascular diseases, induces vascular modifications through nitric oxide (NO) release and oxidative stress. Based on the antioxidant properties of the non-enzymatic spirulina extract (non-Enz-Spir-E) and that degrading enzymes enhances the extract bioactivity, the aim of this study was to analyze the in vitro effect of an Alcalase-assisted Enz-Spir-E on the vasodilator function of conduit and resistance arteries (which differently contribute to blood pressure regulation) in aging. Therefore, thoracic aorta (TA) and mesenteric arteries (MA) from male Sprague–Dawley rats (20–22 months-old) were divided into two groups: non-incubated vessels and vessels exposed to Enz-Spir-E (0.1% w/v) for 3 h. The vasodilation to acetylcholine (ACh), sodium nitroprusside (SNP, a NO donor), carbon-monoxide-releasing molecule (CORM), and cromakalim (a potassium channel opener), as well as NO and superoxide anion production, were studied. Enz-Spir-E increased the ACh-, SNP-, and CORM-induced responses in both types of arteries, while the cromalakim-induced relaxation was increased only in MA. Enz-Spir-E increased NO release (TA: 5.69-fold; MA: 1.79-fold), while it reduced superoxide anion formation (TA: 0.52-fold; MA: 0.66-fold). These results indicate that Enz-Spir-E improves aging-associated vasodilation through increasing NO release/bioavailability in both types of arteries and hyperpolarizing mechanisms only in MA. Full article
(This article belongs to the Special Issue Marine Antioxidants 2025)
Show Figures

Figure 1

30 pages, 10955 KB  
Article
Experimental Study on the Anti-Erosion of the Exterior Walls of Ancient Rammed-Earth Houses in Yangjiatang Village, Lishui
by Yujun Zheng, Junxin Song, Xiaohan Zhang, Yake Hu, Ruihang Chen and Shuai Yang
Coatings 2025, 15(10), 1173; https://doi.org/10.3390/coatings15101173 - 7 Oct 2025
Viewed by 86
Abstract
Yangjiatang Village traces its origins to the late Ming and early Qing dynasties. It has evolved over more than 400 years of history. There are 78 rammed-earth buildings left, making it one of the most complete and largest rammed-earth building complexes in East [...] Read more.
Yangjiatang Village traces its origins to the late Ming and early Qing dynasties. It has evolved over more than 400 years of history. There are 78 rammed-earth buildings left, making it one of the most complete and largest rammed-earth building complexes in East China. This study investigated the traditional rammed-earth houses in Yangjiatang Village, Songyang County, Zhejiang Province. By combining field investigation, microscopic characterization, and experimental simulation, we systematically revealed the erosion resistance of rammed earth in a subtropical humid climate was systematically revealed. Using a combination of advanced techniques including drone aerial photography, X-ray diffraction (XRD), microbial community analysis, scanning electron microscopy (SEM), and soil leaching simulations, we systematically revealed the anti-erosion mechanisms of rammed-earth surfaces in Yangjiatang Village. The study found that (1) rammed-earth walls are primarily composed of Quartz, Mullite, lepidocrocite, and Nontronite, with quartz and lepidocrocite being the dominant minerals across all orientations. (2) Regulating the community structure of specific functional microorganisms enhanced the erosion resistance of rammed-earth buildings. (3) The surface degradation of rammed-earth walls is mainly caused by four factors: structural cracks, surface erosion, biological erosion and roof damage. These factors work together to cause surface cracking and peeling (depth up to 3–5 cm). (4) This study indicates that the microbial communities in rammed-earth building walls show significant differences in various orientations. Microorganisms play a dual role in the preservation and deterioration of rammed-earth buildings: they can slow down weathering by forming protective biofilms or accelerating erosion through acid production. Full article
Show Figures

Figure 1

20 pages, 983 KB  
Review
Lipid Peroxidation in Diabetic Kidney Disease: Mechanism and Natural Solution
by Yuxin Dong and Yanqing Tong
Int. J. Mol. Sci. 2025, 26(19), 9764; https://doi.org/10.3390/ijms26199764 - 7 Oct 2025
Viewed by 214
Abstract
Diabetic kidney disease (DKD), as one of the most serious microvascular complications of diabetes, is the main cause of end-stage renal disease in the world. Lipid peroxidation plays a crucial role in the development and progression of DKD. Under conditions of high glucose [...] Read more.
Diabetic kidney disease (DKD), as one of the most serious microvascular complications of diabetes, is the main cause of end-stage renal disease in the world. Lipid peroxidation plays a crucial role in the development and progression of DKD. Under conditions of high glucose and insulin resistance, renal lipid metabolism disorders result in abnormal accumulation of polyunsaturated fatty acids (PUFAs), which undergo lipid peroxidation via free radical chain reactions to generate reactive aldehydes. These substances not only directly damage the cell structure but can also be used as signaling molecules that activate pathways related to inflammation, fibrosis, and ferroptosis, eventually leading to glomerular sclerosis and tubulointerstitial fibrosis. Natural products have shown considerable application prospects in the treatment of DKD due to their multi-functional properties, including anti-inflammatory, antioxidant, and lipid-metabolism-regulating effects. To elucidate this, we conducted a systematic review of the literature available in electronic databases (including PubMed, Web of Science, and Scopus, and Google Scholar) from January 2000 to May 2025. This study further discusses the therapeutic effect and mechanism of natural products targeting lipid peroxidation in DKD. The results indicate that natural products are promising anti-lipid peroxidation drugs. Further clinical trials will be necessary to verify the safety and effectiveness of these natural compounds in clinical applications, thereby laying the foundation for developing novel treatment strategies for DKD. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 11233 KB  
Article
Comparative Transcriptome Analysis of Walnuts (Juglans regia L.) in Response to Freezing Stress
by Lin Chen, Juntao Wang, Qi Zhang, Taoyu Xu, Zhongrui Ji, Huazheng Hao, Jing Wang, Gensheng Shi and Jian Li
Plants 2025, 14(19), 3089; https://doi.org/10.3390/plants14193089 - 7 Oct 2025
Viewed by 160
Abstract
Walnuts (Juglans regia L.) are an economically important woody crop, but spring frost poses a serious threat to their growth and productivity. However, the molecular mechanisms underlying walnut responses to freezing stress remain largely unknown. In this study, transcriptome analyses were performed [...] Read more.
Walnuts (Juglans regia L.) are an economically important woody crop, but spring frost poses a serious threat to their growth and productivity. However, the molecular mechanisms underlying walnut responses to freezing stress remain largely unknown. In this study, transcriptome analyses were performed on cold-tolerant and cold-sensitive walnut varieties subjected to freezing stress. A total of 9611 differentially expressed genes (DEGs) responsive to freezing stress were obtained, of which 2853 were common up-regulated and 2880 were common down-regulated in both varieties. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed 15 significantly enriched pathways in both varieties, including flavonoid biosynthesis. A simplified walnut flavonoid biosynthesis pathway was constructed, encompassing 36 DEGs encoding 13 key enzymes, demonstrating that flavonoid biosynthesis in walnut is significantly activated under freezing stress. Furthermore, weighted gene co-expression network analysis (WGCNA) identified a regulatory network centered on the JrCBF genes and uncovered 34 potential interacting genes. Collectively, these findings provide novel insights into the molecular responses of walnut to freezing stress and establish a foundation for elucidating the mechanisms underlying walnut cold tolerance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

46 pages, 2724 KB  
Review
From Diabetes to Degenerative Diseases: The Multifaceted Action of Metformin
by Lucrezia Irene Maria Campagnoli, Angelica Varesi, Foroogh Fahmideh, Reza Hakimizad, Petra Petkovic, Annalisa Barbieri, Nicoletta Marchesi and Alessia Pascale
Int. J. Mol. Sci. 2025, 26(19), 9748; https://doi.org/10.3390/ijms26199748 - 7 Oct 2025
Viewed by 436
Abstract
Metformin, an oral antihyperglycemic drug, represents the cornerstone of pharmacological treatment for type 2 diabetes mellitus (T2DM). Its primary glucose-lowering effects are well established, predominantly mediated through the activation of AMP-activated protein kinase (AMPK). This activation leads to a reduction in hepatic glucose [...] Read more.
Metformin, an oral antihyperglycemic drug, represents the cornerstone of pharmacological treatment for type 2 diabetes mellitus (T2DM). Its primary glucose-lowering effects are well established, predominantly mediated through the activation of AMP-activated protein kinase (AMPK). This activation leads to a reduction in hepatic glucose production (primarily by inhibiting gluconeogenesis and glycogenolysis) and an increase in peripheral glucose uptake and utilization. Beyond its direct impact on glucose metabolism, metformin also improves insulin sensitivity and has beneficial effects on lipid profiles. Increasingly, research shows that metformin has pleiotropic effects. In addition to its recognized antihyperglycemic action, metformin is emerging as a regulator of cellular processes implicated in aging. Indeed, emerging evidence suggests a potential role of metformin in modulating pathways associated with longevity and ameliorating the symptoms of age-related diseases, including neurodegenerative disorders (such as Alzheimer’s and Parkinson’s diseases), cardiovascular diseases, age-related macular degeneration, and osteoporosis. The proposed mechanisms for these broader effects involve AMPK activation, modulation of the mTOR pathway, reduction of oxidative stress, and promotion of autophagy. After exploring the established role of metformin in T2D, this review provides a comprehensive investigation of its promising applications in the context of age-related diseases, offering valuable insights into its multifaceted therapeutic potential beyond glycemic control. Full article
Show Figures

Figure 1

23 pages, 6714 KB  
Article
The Climate–Fire–Carbon Nexus in Tropical Asian Forests: Fire Behavior as a Mediator and Forest Type-Specific Responses
by Sisheng Luo, Zhangwen Su, Shujing Wei, Yingxia Zhong, Yimin Chen, Xuemei Li, Yufei Zhou, Yangpeng Liu and Zepeng Wu
Forests 2025, 16(10), 1544; https://doi.org/10.3390/f16101544 - 6 Oct 2025
Viewed by 176
Abstract
Forest fires significantly impact the global climate through carbon emissions, yet the multi-scale coupling mechanisms among meteorological factors, fire behavior, and emissions remain uncertain. Focusing on tropical Asia, this study integrated satellite-based fire behavior products, meteorological datasets, and emission factors, and employed machine [...] Read more.
Forest fires significantly impact the global climate through carbon emissions, yet the multi-scale coupling mechanisms among meteorological factors, fire behavior, and emissions remain uncertain. Focusing on tropical Asia, this study integrated satellite-based fire behavior products, meteorological datasets, and emission factors, and employed machine learning together with structural equation modeling (SEM) to explore the mediating role of fire behavior in the meteorological regulation of carbon emissions. The results revealed significant differences among vegetation types in both carbon emission intensity and sensitivity to meteorological drivers. For example, average gas emissions (GEs) and particle emissions (PEs) in mixed forests (MF, 323.68 g/m2/year for GE and 0.73 g/m2/year for PE) were approximately 172% and 151% higher, respectively, than those in evergreen broadleaf forests (EBF, 118.92 g/m2/year for GE and 0.29 g/m2/year for PE), which exhibited the lowest emission intensity. Mixed forests and deciduous broadleaf forests exhibited stronger meteorological regulation effects, whereas evergreen broadleaf forests were comparatively stable. Temperature and vapor pressure deficit emerged as the core drivers of fire behavior and carbon emissions, exerting indirect control through fire behavior. Overall, the findings highlight fire behavior as a critical link between meteorological conditions and carbon emissions, with ecosystem-specific differences determining the responsiveness of carbon emissions to meteorological drivers. These insights provide theoretical support for improving the accuracy of wildfire emission simulations in climate models and for developing vegetation-specific fire management and climate adaptation strategies. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

15 pages, 5128 KB  
Article
Effect of Drought and High-Light Stress on Volatile Compounds and Quality of Welsh Onion (Allium fistulosum L.)
by Xuena Liu, Zijing Chen, Kun Xu and Kang Xu
Agronomy 2025, 15(10), 2349; https://doi.org/10.3390/agronomy15102349 - 6 Oct 2025
Viewed by 184
Abstract
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized [...] Read more.
Welsh onion (Allium fistulosum L.) is a globally significant culinary vegetable with extensive cultivation and high application value. In China, Welsh onion is vulnerable to drought and strong-light stress in summer production, resulting in growth inhibition and quality decline. This study utilized LED-intelligent spectral-customized lamps to simulate high-light stress and a 10% PEG-6000 Hoagland solution to simulate drought stress. The effects of different stress treatments on the nutritional quality, volatile compounds, and mineral element composition of the edible portions were systematically analyzed. The results demonstrated that drought stress significantly promoted the accumulation of alcoholic compounds in leaf tissues while reducing the content of sulfur-containing compounds. High-light stress markedly increased the levels of hydrocarbon compounds in leaves. Sulfur-containing compounds in leaf tissues were predominantly disulfides, but under combined drought and high-light stress, their content decreased, while the proportion of trisulfides significantly increased. Volatile compounds in pseudostems were primarily composed of sulfur-containing and aldehyde compounds, yet their levels markedly declined under combined stress. Additionally, combined stress led to reductions in pyruvic acid, soluble sugars, and soluble protein content in the edible portions, while the crude fiber content increased, thereby significantly impairing nutritional quality. This study provides a scientific basis for understanding the abiotic stress response mechanisms of Welsh onion and offers valuable insights for cultivation management and quality regulation. Full article
Show Figures

Figure 1

24 pages, 669 KB  
Review
Nutrient-Element-Mediated Alleviation of Cadmium Stress in Plants: Mechanistic Insights and Practical Implications
by Xichao Sun, Liwen Zhang, Yingchen Gu, Peng Wang, Haiwei Liu, Liwen Qiang and Qingqing Huang
Plants 2025, 14(19), 3081; https://doi.org/10.3390/plants14193081 - 6 Oct 2025
Viewed by 345
Abstract
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as [...] Read more.
Cadmium (Cd), a pervasive and highly phytotoxic metal pollutant, poses severe threats to agricultural productivity, ecosystem stability, and human health through its entry into the food chain. Plants have evolved intricate defense mechanisms, among which the strategic manipulation of nutrient elements emerges as a critical physiological and biochemical strategy for mitigating Cd stress. This comprehensive review delves deeply into the multifaceted roles of essential macronutrient elements (nitrogen, phosphorus, potassium, calcium, magnesium, sulfur), essential micronutrient elements (zinc, iron, manganese, copper) and non-essential beneficial elements (silicon, selenium) in modulating plant responses to Cd toxicity. We meticulously dissect the physiological, biochemical, and molecular underpinnings of how these nutrients influence Cd bioavailability in the rhizosphere, Cd uptake and translocation pathways, sequestration and compartmentalization within plant tissues, and the activation of antioxidant defense systems. Nutrient elements exert their influence through diverse mechanisms: competing with Cd for root uptake transporters, promoting the synthesis of complexes that reduce Cd mobility, stabilizing cell walls and plasma membranes to restrict apoplastic flow and symplastic influx, modulating redox homeostasis by enhancing antioxidant enzyme activities and non-enzymatic antioxidant pools, regulating signal transduction pathways, and influencing gene expression profiles related to metal transport, chelation, and detoxification. The complex interactions between nutrients themselves further shape the plant’s capacity to withstand Cd stress. Recent advances elucidating nutrient-mediated epigenetic regulation, microRNA involvement, and the role of nutrient-sensing signaling hubs in Cd responses are critically evaluated. Furthermore, we synthesize the practical implications of nutrient management strategies, including optimized fertilization regimes, selection of nutrient-efficient genotypes, and utilization of nutrient-enriched amendments, for enhancing phytoremediation efficiency and developing low-Cd-accumulating crops, thereby contributing to safer food production and environmental restoration in Cd-contaminated soils. The intricate interplay between plant nutritional status and Cd stress resilience underscores the necessity for a holistic, nutrient-centric approach in managing Cd toxicity in agroecosystems. Full article
(This article belongs to the Special Issue Plant Ecotoxicology and Remediation Under Heavy Metal Stress)
Show Figures

Figure 1

Back to TopTop