Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = probe station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2552 KiB  
Article
The Biogeographic Patterns of Two Typical Mesopelagic Fishes in the Cosmonaut Sea Through a Combination of Environmental DNA and a Trawl Survey
by Yehui Wang, Chunlin Liu, Mi Duan, Peilong Ju, Wenchao Zhang, Shuyang Ma, Jianchao Li, Jianfeng He, Wei Shi and Yongjun Tian
Fishes 2025, 10(7), 354; https://doi.org/10.3390/fishes10070354 - 17 Jul 2025
Viewed by 278
Abstract
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a [...] Read more.
Investigating biodiversity in remote and harsh environments, particularly in the Southern Ocean, remains costly and challenging through traditional sampling methods such as trawling. Environmental DNA (eDNA) sampling, which refers to sampling genetic material shed by organisms from environmental samples (e.g., water), provides a more cost-effective and sustainable alternative to traditional sampling approaches. To study the biogeographic patterns of two typical mesopelagic fishes, Antarctic lanternfish (Electrona antarctica) and Antarctic deep-sea smelt (Bathylagus antarcticus), in the Cosmonaut Sea in the Indian Ocean sector of the Southern Ocean, we conducted both eDNA and trawling sampling at a total of 86 stations in the Cosmonaut Sea during two cruises in 2021–2022. Two sets of species-specific primers and probes were developed for a quantitative eDNA analysis of two fish species. Both the eDNA and trawl results indicated that the two fish species are widely distributed in the Cosmonaut Sea, with no significant difference in eDNA concentration, biomass, or abundance between stations. Spatially, E. antarctica tended to be distributed in shallow waters, while B. antarcticus tended to be distributed in deep waters. Vertically, E. antarctica was more abundant above 500 m, while B. antarcticus had a wider range of habitat depths. The distribution patterns of both species were affected by nutrients, with E. antarctica additionally affected by chlorophyll, indicating that their distribution is primarily influenced by food resources. Our study provides broader insight into the biogeographic patterns of the two mesopelagic fishes in the remote Cosmonaut Sea, demonstrates the potential of combining eDNA with traditional methods to study biodiversity and ecosystem dynamics in the Southern Ocean and even at high latitudes, and contributes to future ecosystem research and biodiversity conservation in the region. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

16 pages, 5068 KiB  
Technical Note
VGOS Dual Linear Polarization Data Processing Techniques Applied to Differential Observation of Satellites
by Jiangying Gan, Fengchun Shu, Xuan He, Yidan Huang, Fengxian Tong and Yan Sun
Remote Sens. 2025, 17(13), 2319; https://doi.org/10.3390/rs17132319 - 7 Jul 2025
Viewed by 274
Abstract
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio [...] Read more.
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio source observation regularly. However, these VGOS stations have not yet been used to observe Earth satellites or deep-space probes. In addition, suitable systems for processing VGOS satellite data are unavailable. In this study, we explored a data processing pipeline and method suitable for VGOS data observed in the dual linear polarization mode and applied to the differential observation of satellites. We present the VGOS observations of the Chang’e 5 lunar orbiter as a pilot experiment for VGOS observations of Earth satellites to verify our processing pipeline. The interferometric fringes were obtained by the cross-correlation of Chang’e 5 lunar orbiter signals. The data analysis yielded a median delay precision of 0.16 ns with 30 s single-channel integration and a baseline closure delay standard deviation of 0.14 ns. The developed data processing pipeline can serve as a foundation for future Earth-orbiting satellite observations, potentially supporting space-tie satellite missions aimed at constructing the terrestrial reference frame (TRF). Full article
(This article belongs to the Special Issue Space Geodesy and Time Transfer: From Satellite to Science)
Show Figures

Figure 1

17 pages, 2928 KiB  
Article
Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming
by Alberto Nájera, Rocío Sánchez-Montero, Jesús González-Rubio, Jorge Guillén-Pina, Ricardo Chocano-del-Cerro and Pablo-Luis López-Espí
Appl. Sci. 2025, 15(13), 7471; https://doi.org/10.3390/app15137471 - 3 Jul 2025
Viewed by 319
Abstract
In this study, we provide a comparison of radiofrequency electromagnetic field exposure level maps as determined using two approaches: a broadband meter (NARDA EMR-300) equipped with an isotropic probe in the range of 100 kHz to 3 GHz, and a Personal Exposimeter (Satimo [...] Read more.
In this study, we provide a comparison of radiofrequency electromagnetic field exposure level maps as determined using two approaches: a broadband meter (NARDA EMR-300) equipped with an isotropic probe in the range of 100 kHz to 3 GHz, and a Personal Exposimeter (Satimo EME Spy 140) in the range of 88 MHz to 5.8 GHz. The aim of this research was to determine the necessary adjustments to the measurements made with personal exposimeters to obtain RF-EMF exposure maps equivalent to those made with broadband meters. We evaluated different possibilities to obtain the best equivalence of measurements between both devices. For this purpose, the datasets obtained in both cases were analyzed, as well as the possible correction factors. First, the possibility of establishing a single or double correction factor depending on the existence (or lack thereof) of a line of sight with respect to the base stations was analyzed by minimizing the average value of the error between the values of the broadband meter and the corrected values of the personal exposure meter. Due to the differences observed in the exposure maps, a second procedure was carried out, in which a genetic algorithm was used to determine the ratio between the measurements from both methods (the broadband meter and personal exposure meter), depending on the existence (or lack thereof) of a line of sight, and we compared the exposure maps generated using kriging interpolation. Full article
Show Figures

Figure 1

27 pages, 10560 KiB  
Article
Ground Heat Exchangers from Artificial Ground-Freezing Probes for Tunnel Excavations
by Fawad Ahmed, Nicola Massarotti, Alessandro Mauro and Gennaro Normino
Energies 2025, 18(11), 2965; https://doi.org/10.3390/en18112965 - 4 Jun 2025
Viewed by 459
Abstract
Ground-source heat pumps (GSHPs), despite their high efficiencies, are still not as cost-effective as air-source heat pumps, especially in urban environments, due to the necessity of drilling/excavation. Integrating GSHPs into existing geo-structures, such as underground tunnels, can play a vital role in reducing [...] Read more.
Ground-source heat pumps (GSHPs), despite their high efficiencies, are still not as cost-effective as air-source heat pumps, especially in urban environments, due to the necessity of drilling/excavation. Integrating GSHPs into existing geo-structures, such as underground tunnels, can play a vital role in reducing the overall costs of GSHP systems and promoting their use in cities. Tunnels can be realized through artificial ground freezing (AGF) by using probes for circulating the freezing fluid, which are left in the ground once the tunnel is completed. The novelty of the present work lies in the proposal of a sustainable reuse of AGF probes as ground heat exchangers (GHEs). The idea of converting AGF probes is both sustainable and cost-effective for GSHPs, as it can reduce installation costs by eliminating the drilling/excavation process. A test was performed for the first time in the Piazza Municipio metro station in Naples, Southern Italy, where several AGF probes, initially used for the construction of two tunnels, have then been converted into GHEs. The probes have been connected to a testing device called the energy box. The experiments included testing the heat transfer in the recovered AGF probes through cooling and heating operations. This work presents a numerical simulation of a test that has been validated against experimental results. Full article
Show Figures

Figure 1

12 pages, 2754 KiB  
Article
μPPET: Investigating the Muon Puzzle with J-PET Detectors
by Alessio Porcelli, Kavya Valsan Eliyan, Gabriel Moskal, Nousaba Nasrin Protiti, Diana Laura Sirghi, Ermias Yitayew Beyene, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Manish Das, Marek Gorgol, Jakub Hajduga, Sharareh Jalali, Bożena Jasińska, Krzysztof Kacprzak, Tevfik Kaplanoglu, Łukasz Kapłon, Kamila Kasperska, Aleksander Khreptak, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Karol Kubat, Edward Lisowski, Filip Lisowski, Justyna Mędrala-Sowa, Wiktor Mryka, Simbarashe Moyo, Szymon Niedźwiecki, Szymon Parzych, Piyush Pandey, Elena Perez del Rio, Bartłomiej Rachwał, Martin Rädler, Sushil Sharma, Magdalena Skurzok, Ewa Łucja Stȩpień, Tomasz Szumlak, Pooja Tanty, Keyvan Tayefi Ardebili, Satyam Tiwari and Paweł Moskaladd Show full author list remove Hide full author list
Universe 2025, 11(6), 180; https://doi.org/10.3390/universe11060180 - 2 Jun 2025
Viewed by 949
Abstract
The μPPET [mu(μ)on Probe with J-PET] project aims to investigate the “Muon Puzzle” seen in cosmic ray air showers. This puzzle arises from the observation of a significantly larger number of muons on Earth’s surface than that predicted by the [...] Read more.
The μPPET [mu(μ)on Probe with J-PET] project aims to investigate the “Muon Puzzle” seen in cosmic ray air showers. This puzzle arises from the observation of a significantly larger number of muons on Earth’s surface than that predicted by the current theoretical models. The investigated hypothesis is based on recently observed asymmetries in the parameters for the strong interaction cross-section and trajectory of an outgoing particle due to projectile–target polarization. The measurements require detailed information about muons at the ground level, including their track and charge distributions. To achieve this, the two PET scanners developed at the Jagiellonian University in Krakow (Poland), the J-PET detectors, will be employed, taking advantage of their well-known resolution and convenient location for detecting muons that reach long depths in the atmosphere. One station will be used as a muon tracker, while the second will reconstruct the core of the air shower. In parallel, the existing hadronic interaction models will be modified and fine-tuned based on the experimental results. In this work, we present the conceptualization and preliminary designs of μPPET. Full article
(This article belongs to the Special Issue Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

16 pages, 4161 KiB  
Article
Use of Capacitive Probes to Detect Asymmetry and Earth Fault in a Medium-Voltage Power Network
by Krzysztof Walczak and Aleksandra Schött-Szymczak
Energies 2025, 18(9), 2254; https://doi.org/10.3390/en18092254 - 28 Apr 2025
Viewed by 318
Abstract
The detection of short circuits in a medium-voltage (MV) network is a complex issue due to the way the neutral point works. An additional difficulty is the relatively large load asymmetry. The methods used so far include complex equipment (e.g., a system of [...] Read more.
The detection of short circuits in a medium-voltage (MV) network is a complex issue due to the way the neutral point works. An additional difficulty is the relatively large load asymmetry. The methods used so far include complex equipment (e.g., a system of voltage transformers) for use mainly in power stations. The detection of short circuits deep in the network is therefore difficult, and this could facilitate the process of fault localization and limit the areas that should be disconnected for the time of fault removal. This article presents the new concept of using a system of capacitive probes as a simple and cheap tool that allows for the detection of a short circuit in an MV network based on the assessment of the zero-voltage component. This component is considered to be one of the basic starting criteria for various types of specialist earth-fault protections. Appropriately placed capacitive probes—through the existence of capacitive coupling with phase conductors—record the voltages of individual phases, including the total resultant voltage, which is the criterion for detecting a short circuit in the system. An important advantage of using such a solution is that capacitive probes allow for voltage measurement and assessment of line asymmetry in a non-contact and, therefore, safe manner. The presented concept has been tested in the laboratory and supported by simulation studies. The modeling of the system was based on the parameters of real structures used in overhead lines, recreated in laboratory conditions. Obtaining positive results of the simulation studies—primarily the appropriate sensitivity of short-circuit detection, confirmed in the laboratory—allows for the creation of a prototype of the device and the commencement of field tests, which will be the subject of further work conducted by the authors. Full article
(This article belongs to the Special Issue Innovation in High-Voltage Technology and Power Management)
Show Figures

Figure 1

23 pages, 7878 KiB  
Article
FPGA Design, Implementation, and Breadboard Development of an Innovative SCCC Telemetry + Pseudo-Noise Ranging Satellite System
by Nico Corsinovi, Matteo Bertolucci, Simone Vagaggini and Luca Fanucci
Electronics 2025, 14(9), 1786; https://doi.org/10.3390/electronics14091786 - 27 Apr 2025
Viewed by 532
Abstract
In recent years, missions requiring payload telemetry data transmission to ground stations have increasingly demanded a higher bandwidth. Traditional ranging techniques for spacecraft position determination often use a dedicated spectrum, reducing the available bandwidth for telemetry. To overcome this limitation, a transmission system [...] Read more.
In recent years, missions requiring payload telemetry data transmission to ground stations have increasingly demanded a higher bandwidth. Traditional ranging techniques for spacecraft position determination often use a dedicated spectrum, reducing the available bandwidth for telemetry. To overcome this limitation, a transmission system capable of simultaneously sending high data-rate telemetry and ranging signals within the same bandwidth represents a key advancement for modern space missions, particularly Lagrangian science missions and planetary probes. To enhance the technological readiness of such a system, a hardware demonstrator has been developed using the AMD Xilinx (San Jose, CA, USA) ZCU111 Field Programmable Gate Array (FPGA), selected for its high-speed digital signal processing capabilities and integrated converters. The system, in this preliminary breadboarding phase, operates at a fixed telemetry rate of 4.25 Msym/s and a ranging rate of 2.987 Mchip/s, constrained within a 10 MHz bandwidth typical for science missions. Despite these limitations, tests demonstrated that integrating telemetry with Pseudo Noise (PN) Ranging introduces negligible implementation losses compared to telemetry-only transmission. The system also supports high-order modulations up to 64-APSK, improving spectral efficiency within the available bandwidth. Although some limitations have been found in the use of very high-order modulations, this prototype demonstrates the feasibility of integrating advanced coding techniques with PN Ranging. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

15 pages, 8753 KiB  
Article
Dielectric Passivation Treatment of InGaN MESA on Si Substrates for Red Micro-LED Application
by Hongyu Qin, Shuhan Zhang, Qian Fan, Xianfeng Ni, Li Tao and Xing Gu
Crystals 2025, 15(3), 267; https://doi.org/10.3390/cryst15030267 - 13 Mar 2025
Viewed by 1056
Abstract
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN [...] Read more.
The emergence of GaN-based micro-LEDs has revolutionized display technologies due to their superior brightness, energy efficiency, and thermal stability compared to traditional counterparts. However, the development of red-emitting micro-LEDs on silicon substrates (GaN-on-Si) faces significant challenges, among them including hydrogen-induced deactivation of p-GaN caused by hydrogen species generated from SiH4 decomposition during SiO2 passivation layer growth, which degrades device performance. This study systematically investigates the use of high-density metal-oxide dielectric passivation layers deposited by atomic layer deposition (ALD), specifically Al2O3 and HfO2, to mitigate these effects and enhance device reliability. The passivation layers effectively suppress hydrogen diffusion and preserve p-GaN activation, ensuring improved ohmic contact formation and reduced forward voltage, which is measured by the probe station. The properties of the epitaxial layer and the cross-section morphology of the dielectric layer were characterized by photoluminescence (PL) and scanning electron microscopy (SEM), respectively. Experimental results reveal that Al2O3 exhibits superior thermal stability and lower current leakage under high-temperature annealing, while HfO2 achieves higher light-output power (LOP) and efficiency under increased current densities. Electroluminescence (EL) measurements confirm that the passivation strategy maintains the intrinsic optical properties of the epitaxial wafer with minimal impact on Wp and FWHM across varying process conditions. The findings demonstrate the efficacy of metal-oxide dielectric passivation in addressing critical challenges in InGaN red micro-LED on silicon substrate fabrication, contributing to accelerating scalable and efficient next-generation display technologies. Full article
Show Figures

Figure 1

27 pages, 39555 KiB  
Article
Development and Comparison of Artificial Neural Networks and Gradient Boosting Regressors for Predicting Topsoil Moisture Using Forecast Data
by Miriam Zambudio Martínez, Larissa Haringer Martins da Silveira, Rafael Marin-Perez and Antonio Fernando Skarmeta Gomez
AI 2025, 6(2), 41; https://doi.org/10.3390/ai6020041 - 19 Feb 2025
Cited by 2 | Viewed by 953
Abstract
Introduction: The Earth’s growing population is increasing resource consumption, heavily pressuring agriculture, which, currently, uses 70% of the world’s freshwater from rivers and lakes, which, themselves, comprise only 1% of the Earth’s water reserves. Combined with climate change, the situation is alarming. [...] Read more.
Introduction: The Earth’s growing population is increasing resource consumption, heavily pressuring agriculture, which, currently, uses 70% of the world’s freshwater from rivers and lakes, which, themselves, comprise only 1% of the Earth’s water reserves. Combined with climate change, the situation is alarming. These challenges drive Agriculture 4.0, which is focused on sustainable agricultural processes to optimise water use. Objective: Given this context, this study proposes a model, based on Artificial Intelligence (AI) techniques to predict topsoil moisture in a study area located in the south of the Iberian Peninsula, primarily an agricultural region facing recurrent droughts and water scarcity. Methods: To develop the model, a comparison between Artificial Neural Networks (ANNs) and Gradient Booster Regressors (GBRs) was conducted, and topsoil moisture data from seven probes distributed over the study area were used, in addition to several variables (temperature, relative humidity, solar radiation, wind speed, precipitation and evapotranspiration) from a selection of weather stations and ensemble forecasts from meteorological models. Results: The final GBR model, with a 0.01 learning rate, 5 max depth, and 350 estimators, predicted topsoil moisture with an average mean squared error (MSE) of 0.027 and a maximum difference between observed and predicted data of 20.09% in a two-year series (May 2022–June 2024). Full article
(This article belongs to the Special Issue Artificial Intelligence in Agriculture)
Show Figures

Figure 1

21 pages, 4389 KiB  
Article
Numerical Evaluation on Massif Vibration of Pumped Storage Power Plant in Hydraulic Transients
by Tao Wang, Hongfen Tang, Hongsheng Chen, Dong Ma, Yuchuan Wang and Honggang Fan
Energies 2025, 18(1), 222; https://doi.org/10.3390/en18010222 - 6 Jan 2025
Cited by 1 | Viewed by 1330
Abstract
This research aims to assess the massif vibration that results from hydraulic transitions of pumped storage power plant (PSPP) and probe into their consequences on mountain stability. Firstly, numerical simulations of the hydraulic transitions in a pumped storage power plant were carried out, [...] Read more.
This research aims to assess the massif vibration that results from hydraulic transitions of pumped storage power plant (PSPP) and probe into their consequences on mountain stability. Firstly, numerical simulations of the hydraulic transitions in a pumped storage power plant were carried out, and the pressure pulsations within different sections of the waterway system under pumping and generating conditions were obtained. The historical pressure during the hydraulic transients was used as the dynamic loading condition for transient structural analysis. The time-history curves of horizontal and vertical accelerations were obtained for four main working conditions, and four detection areas were demarcated on the massif surface for analysis. The results showed that the maximum amplitude of horizontal acceleration occurred within the height range of 760 m to 960 m of work condition T2. Statistical methods and one-third octave analysis were further applied to analyze the acceleration time-history curves, showing that the highest vibration levels in the horizontal direction were observed at a specific frequency of 50 Hz. This study indicates that the hydraulic transition process of pumped-storage power stations will have a significant impact on massif stability; therefore, it is crucial to consider corresponding seismic mitigation measures during the design and operating stages to ensure structural safety. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 1520 KiB  
Article
Fully Canonical Triple-Mode Filter with Source-Load Coupling for 5G Systems
by Cristóbal López-Montes and José R. Montejo-Garai
Sensors 2025, 25(1), 90; https://doi.org/10.3390/s25010090 - 27 Dec 2024
Viewed by 1018
Abstract
This work presents the design of a novel fully canonical triple-mode filter with source–load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion [...] Read more.
This work presents the design of a novel fully canonical triple-mode filter with source–load coupling for 5G applications, exploiting its very compact size for the FR1 band. The design is carried out using circular waveguide technology to attain power handling and low insertion losses. The fully canonical topology allows for increasing the selectivity of the filter since the number of finite transmission zeros is equal to the order of the filter. Given that this topology needs a source–load coupling level that is not possible to achieve with the classical iris ports, coaxial probes are used as input–output ports. A systematic procedure is developed to obtain the initial geometry before the full-wave optimization. The proof of concept is verified by a manufactured prototype at 3.7 GHz with 1.1% relative bandwidth for high coverage of 5G base stations. The results show an excellent agreement between the simulation and the measurement, validating the triple-mode filter and its underlying design process. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

15 pages, 5707 KiB  
Article
Space Environment Monitoring Unit on Wentian Laboratory Cabin Module of China Space Station
by Huanxin Zhang, Guohong Shen, Donghui Hou, Shenyi Zhang, Chunqin Wang, Ying Sun, Liping Wang and Jiajie Liao
Aerospace 2024, 11(12), 1006; https://doi.org/10.3390/aerospace11121006 - 5 Dec 2024
Viewed by 865
Abstract
This article introduces the design and development of a space environment monitoring unit embedded in the versatile experimental assembly for electronic components outside the China space station’s Wentian laboratory cabin module. A newly designed comprehensive detection system is being used for the first [...] Read more.
This article introduces the design and development of a space environment monitoring unit embedded in the versatile experimental assembly for electronic components outside the China space station’s Wentian laboratory cabin module. A newly designed comprehensive detection system is being used for the first time in this kind of detector. The sensor head of the instrument includes a silicon telescope (composed of two silicon semiconductors) for measuring the LET spectrum and radiation dose rate, a typical chip for monitoring a single-event upset, and a CR-39 plastic nuclear track detector for detecting heavy ion tracks. The two silicon sensors stacked up and down are used for measuring the LET spectrum, which ranges from 0.001 to 100 MeV·cm2/mg. A sensor charge allocation method is adopted to divide the detection range into four cascaded levels, each achieving different detection ranges separately and then concatenated together, while traditional detection methods need multiple sets of probes to achieve the same dynamic range. At the same time, using the two sensors mentioned above, the silicon absorption dose rate under two different shielding thicknesses can be obtained through calculation, ranging from 10−5 to 10−1 rad (Si)/h. Multiple calibration methods are applied on the ground. The preliminary in-orbit detection results are provided and compared with the simulation results obtained using the existing space environment model, and we analyze and discuss their differences. Full article
(This article belongs to the Special Issue Deep Space Exploration)
Show Figures

Figure 1

12 pages, 1389 KiB  
Article
Use of Environmental DNA to Evaluate the Spatial Distribution of False Kelpfish (Sebastiscus marmoratus) in Nearshore Areas of Gouqi Island
by Rijin Jiang, Huibo Hao, Rui Yin, Peng Zhao, Feng Chen, Yongdong Zhou and Xuejun Chai
Fishes 2024, 9(10), 418; https://doi.org/10.3390/fishes9100418 - 19 Oct 2024
Viewed by 1022
Abstract
This study aims to explore the spatial distribution of false kelpfish (Sebastiscus marmoratus) in the mussel farming area, artificial reef areas of Gouqi Island (Shengsi, China), and natural areas using eDNA detection methods. Surface and bottom water samples were collected at [...] Read more.
This study aims to explore the spatial distribution of false kelpfish (Sebastiscus marmoratus) in the mussel farming area, artificial reef areas of Gouqi Island (Shengsi, China), and natural areas using eDNA detection methods. Surface and bottom water samples were collected at 12 stations in November 2022 and April 2023, totaling 52 samples. We used species-specific primers and probes for quantitative PCR (qPCR) detection of Sebastiscus marmoratus eDNA. The eDNA concentrations differed seasonally (p < 0.05) and did not differ (p > 0.05) among the three sampling areas and two water layers. The greatest eDNA concentrations occurred in the surface layer during the spring. Higher concentrations of Sebastiscus marmoratus eDNA were also found in the mussel aquaculture area. Temperature exhibited a significant positive correlation with Sebastiscus marmoratus eDNA concentration (p < 0.05). Additionally, we developed linear equations predicting the relationship between environmental factors and environmental factors, providing a reference for future fishery resource surveys. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes)
Show Figures

Figure 1

12 pages, 6000 KiB  
Article
Development and Design Validation of an Inflow-Settling Chamber for Turbomachinery Test-Benches
by Michael Henke, Stefan Gärling, Lena Junge, Lars Wein and Hans-Ulrich Fleige
Int. J. Turbomach. Propuls. Power 2024, 9(4), 31; https://doi.org/10.3390/ijtpp9040031 - 24 Sep 2024
Viewed by 1398
Abstract
At Leibniz University of Hannover, Germany, a new turbomachinery test facility has been built over the last few years. A major part of this facility is a new 6 MW compressor station, which is connected to a large piping system, both designed and [...] Read more.
At Leibniz University of Hannover, Germany, a new turbomachinery test facility has been built over the last few years. A major part of this facility is a new 6 MW compressor station, which is connected to a large piping system, both designed and built by AERZEN. This system provides air supply to several wind tunnel and turbomachinery test rigs, e.g., axial turbines and axial compressors. These test rigs are designed to conduct high-quality aerodynamic, aeroelastic, and aeroacoustic measurements to increase physical understanding of steady and unsteady effects in turbomachines. One primary purpose of these investigations is the validation of aerodynamic and aeroacoustic numerical methods. To provide precise boundary conditions for the validation process, extremely high homogeneity of the inflow to the investigated experimental setup is imminent. Thus, customized settling chambers have been developed using analytical and numerical design methods. The authors have chosen to follow basic aerodynamic design steps, using analytical assumptions for the inlet section, the “mixing” area of a settling chamber, and the outlet nozzle in combination with state-of-the-art numerical investigations. In early 2020, the first settling chamber was brought into operation for the acceptance tests. In order to collect high-resolution flow field data during the tests, Leibniz University and AERZEN have designed a unique measurement device for robust and fast in-line flow field measurements. For this measurement device, total pressure and total-temperature rake probes, as well as traversing multi-hole probes, have been used in combination to receive high-resolution flow field data at the outlet section of the settling chamber. The paper provides information about the design process of the settling chamber, the developed measurement device, and measurement data gained from the acceptance tests. Full article
Show Figures

Figure 1

17 pages, 9607 KiB  
Article
Field Measurements of Spatial Air Emissions from Dairy Pastures Using an Unmanned Aircraft System
by Doee Yang, Yuchuan Wang and Neslihan Akdeniz
Remote Sens. 2024, 16(16), 3007; https://doi.org/10.3390/rs16163007 - 16 Aug 2024
Viewed by 1385
Abstract
Unmanned aircraft systems (UASs) are emerging as useful tools in environmental studies due to their mobility and ability to cover large areas. In this study, we used an air analyzer attached to a UAS to measure gas and particulate matter (PM) emissions from [...] Read more.
Unmanned aircraft systems (UASs) are emerging as useful tools in environmental studies due to their mobility and ability to cover large areas. In this study, we used an air analyzer attached to a UAS to measure gas and particulate matter (PM) emissions from rotationally grazed dairy pastures in northern Wisconsin. UAS-based sampling enabled wireless data transmission using the LoRa protocol to a ground station, synchronizing with a cloud server. During the measurements, latitude, longitude, and altitude were recorded using a high-precision global positioning system (GPS). Over 1200 measurements per parameter were made during each site visit. The spatial distribution of the emission rates was estimated using the Lagrangian mass balance approach and Kriging interpolation. A horizontal sampling probe effectively minimized the impact of propeller downwash on the measurements. The average concentrations of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were 800.1 ± 39.7 mg m−3, 1.38 ± 0.063 mg m−3, and 0.71 ± 0.03 mg m−3, respectively. No significant difference was found between CO2 concentrations measured by the UAS sensor and gas chromatography (p = 0.061). Emission maps highlighted variability across the pasture, with an average CO2 emission rate of 1.52 ± 0.80 g day−1 m−2, which was within the range reported in the literature. Future studies could explore the impact of pasture management on air emissions. Full article
Show Figures

Graphical abstract

Back to TopTop