Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = prime-boost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1416 KiB  
Article
Humic Substances Promote the Activity of Enzymes Related to Plant Resistance
by Rakiely M. Silva, Fábio L. Olivares, Lázaro E. P. Peres, Etelvino H. Novotny and Luciano P. Canellas
Agriculture 2025, 15(15), 1688; https://doi.org/10.3390/agriculture15151688 - 5 Aug 2025
Abstract
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve [...] Read more.
The extensive use of pesticides has significant implications for public health and the environment. Breeding crop plants is the most effective and environmentally friendly approach to improve the plants’ resistance. However, it is time-consuming and costly, and it is sometimes difficult to achieve satisfactory results. Plants induce defense responses to natural elicitors by interpreting multiple genes that encode proteins, including enzymes, secondary metabolites, and pathogenesis-related (PR) proteins. These responses characterize systemic acquired resistance. Humic substances trigger positive local and systemic physiological responses through a complex network of hormone-like signaling pathways and can be used to induce biotic and abiotic stress resistance. This study aimed to assess the effect of humic substances on the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POX), and β-1,3-glucanase (GLU) used as a resistance marker in various plant species, including orange, coffee, sugarcane, soybeans, maize, and tomato. Seedlings were treated with a dilute aqueous suspension of humic substances (4 mM C L−1) as a foliar spray or left untreated (control). Leaf tissues were collected for enzyme assessment two days later. Humic substances significantly promoted the systemic acquired resistance marker activities compared to the control in all independent assays. Overall, all enzymes studied in this work, PAL, GLUC, and POX, showed an increase in activity by 133%, 181%, and 149%, respectively. Among the crops studied, citrus and coffee achieved the highest activity increase in all enzymes, except for POX in coffee, which showed a decrease of 29% compared to the control. GLUC exhibited the highest response to HS treatment, the enzyme most prominently involved in increasing enzymatic activity in all crops. Plants can improve their resistance to pathogens through the exogenous application of HSs as this promotes the activity of enzymes related to plant resistance. Finally, we consider the potential use of humic substances as a natural chemical priming agent to boost plant resistance in agriculture Full article
(This article belongs to the Special Issue Biocontrol Agents for Plant Pest Management)
Show Figures

Figure 1

12 pages, 3410 KiB  
Article
Nasal and Ocular Immunization with Bacteriophage Virus-Like Particle Vaccines Elicits Distinct Systemic and Mucosal Antibody Profiles
by Andzoa N. Jamus, Zoe E. R. Wilton, Samantha D. Armijo, Julian Flanagan, Isabella G. Romano, Susan B. Core and Kathryn M. Frietze
Vaccines 2025, 13(8), 829; https://doi.org/10.3390/vaccines13080829 (registering DOI) - 3 Aug 2025
Viewed by 96
Abstract
Background/Objectives: Intramuscular immunization elicits systemic IgG and is the primary route of vaccine administration in humans. However, there is growing interest in utilizing other routes of administration to tailor antibody profiles, increase immunity at primary sites of infection, simplify administration, and eliminate [...] Read more.
Background/Objectives: Intramuscular immunization elicits systemic IgG and is the primary route of vaccine administration in humans. However, there is growing interest in utilizing other routes of administration to tailor antibody profiles, increase immunity at primary sites of infection, simplify administration, and eliminate needle waste. Here, we investigated the antibody profiles elicited by immunization with bacteriophage virus-like particle vaccine platforms at various routes of administration. Methods: We chose two model bacteriophage vaccines for investigation: bacteriophage MS2 virus-like particles (VLPs) recombinantly displaying a short, conserved peptide from Chlamydia trachomatis major outer membrane protein (MS2) and bacteriophage Qβ VLPs displaying oxycodone through chemical conjugation (Qβ). We comprehensively characterized the antibodies elicited systemically and at various mucosal sites when the vaccines were administered intramuscularly, intranasally or periocularly with or without an intramuscular prime using various prime/boost schemes. Results: Intranasal and periocular immunization elicited robust mucosal and systemic IgA responses for both MS2 and Qβ. The intramuscular prime followed by intranasal or periocular boosts elicited broad antibody responses, and increased antibodies titers at certain anatomical sites. Conclusions: These findings demonstrate the tractability of bacteriophage VLP-based vaccines in generating specific antibody profiles based on the prime–boost regimen and route of administration. Full article
Show Figures

Figure 1

17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Viewed by 218
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 206
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

19 pages, 4424 KiB  
Article
Humoral and Memory B Cell Responses Following SARS-CoV-2 Infection and mRNA Vaccination
by Martina Bozhkova, Ralitsa Raycheva, Steliyan Petrov, Dobrina Dudova, Teodora Kalfova, Marianna Murdjeva, Hristo Taskov and Velizar Shivarov
Vaccines 2025, 13(8), 799; https://doi.org/10.3390/vaccines13080799 - 28 Jul 2025
Viewed by 337
Abstract
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T [...] Read more.
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T cells plays a vital role in sustaining immunity. Materials and Methods: We conducted a longitudinal prospective study over 12 months, enrolling 285 participants in total, either after natural infection or vaccination with BNT162b2 or mRNA-1273. Peripheral blood samples were collected at four defined time points (baseline, 1–2 months, 6–7 months, and 12–13 months after vaccination or disease onset). Immune responses were assessed through serological assays quantifying anti-RBD IgG and neutralizing antibodies, B-ELISPOT, and multiparameter flow cytometry for S1-specific memory B cells. Results: Both mRNA vaccines induced robust B cell and antibody responses, exceeding those observed after natural infection. Memory B cell frequencies peaked at 6 months and declined by 12 months, but remained above the baseline. The mRNA-1273 vaccine elicited stronger and more durable humoral and memory B-cell-mediated immunity compared to BNT162b2, likely influenced by its higher mRNA dose and longer prime-boost interval. Class-switched memory B cells and S1-specific B cells were significantly expanded in vaccine recipients. Natural infection induced more heterogeneous immune memory. Conclusions: Both mRNA vaccination and natural SARS-CoV-2 infection induce a comparable expansion of memory B cell subsets, reflecting a consistent pattern of humoral immune responses across all studied groups. These findings highlight the importance of vaccination in generating sustained immunological memory and suggest that the vaccine platform and dosage influence the magnitude and durability of immune responses against SARS-CoV-2. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Adjuvanted Protein Vaccines Boost RNA-Based Vaccines for Broader and More Potent Immune Responses
by Jiho Kim, Jenn Davis, Bryan Berube, Malcolm Duthie, Sean A. Gray and Darrick Carter
Vaccines 2025, 13(8), 797; https://doi.org/10.3390/vaccines13080797 - 28 Jul 2025
Viewed by 457
Abstract
Background/Objectives: mRNA vaccines introduced during the COVID-19 pandemic were a significant step forward in the rapid development and deployment of vaccines in a global pandemic context. These vaccines showed good protective efficacy, but—due to limited breadth of the immune response—they required frequent [...] Read more.
Background/Objectives: mRNA vaccines introduced during the COVID-19 pandemic were a significant step forward in the rapid development and deployment of vaccines in a global pandemic context. These vaccines showed good protective efficacy, but—due to limited breadth of the immune response—they required frequent boosters with manufactured spike sequences that often lagged behind the circulating strains. In order to enhance the breadth, durability, and magnitude of immune responses, we studied the effect of combining priming with an RNA vaccine technology with boosting with protein/adjuvant using a TLR4-agonist based adjuvant. Methods: Specifically, four proprietary adjuvants (EmT4TM, LiT4QTM, MiT4TM, and AlT4TM) were investigated in combination with multiple modes of SARS-CoV-2 vaccination (protein, peptide, RNA) for their effectiveness in boosting antibody responses to SARS-CoV-2 spike protein in murine models. Results: Results showed significant improvement in immune response strength and breadth—especially against more distant SARS-CoV-2 variants such as Omicron—when adjuvants were used in combination with boosters following an RNA vaccine prime. Conclusions: The use of novel TLR4 adjuvants in combination with protein or RNA vaccinations presents a promising strategy for improving the efficacy of vaccines in the event of future pandemics, by leveraging rapid response using an RNA vaccine prime and following up with protein/adjuvant-based vaccines to enhance the breadth of immunity. Full article
(This article belongs to the Special Issue Novel Adjuvants and Delivery Systems for Vaccines)
Show Figures

Figure 1

17 pages, 5140 KiB  
Article
Comparative Analysis of Chitosan, Lipid Nanoparticles, and Alum Adjuvants in Recombinant SARS-CoV-2 Vaccine: An Evaluation of Their Immunogenicity and Serological Efficacy
by Majed Ghattas, Garima Dwivedi, Anik Chevrier, Trevor Scobey, Rakan El-Mayta, Melissa D. Mattocks, Dong Wang, Marc Lavertu and Mohamad-Gabriel Alameh
Vaccines 2025, 13(8), 788; https://doi.org/10.3390/vaccines13080788 - 24 Jul 2025
Viewed by 457
Abstract
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following [...] Read more.
Background: Chitosan, a family of polysaccharides composed of glucosamine and N-acetyl glucosamine, is a promising adjuvant candidate for eliciting potent immune response. Methods: This study compared the adjuvant effects of chitosan to those of empty lipid nanoparticles (eLNPs) and aluminum hydroxide (alum) following administration of recombinant SARS-CoV-2 spike immunogen in adult mice. Mice received the adjuvanted recombinant protein vaccine in a prime-boost regimen with four weeks interval. Subsequent analyses included serological assessment of antibody responses, evaluation of T cell activity, immune cell recruitment and cytokine profiles at injection site. Results: Compared to alum, chitosan induced a more balanced Th1/Th2 response, akin to that observed with eLNPs, demonstrating its ability to modulate both the humoral and cellular immune pathways. Chitosan induced a different proinflammatory cytokine (e.g., IL-1⍺, IL-2, IL-6, and IL-7) and chemokine (e.g., Eotaxin, IP-10, MIP-1a) profile compared to eLNPs and alum at the injection site and in the draining lymph nodes. Moreover, chitosan potentiated the recruitment of innate immune cells, with neutrophils accounting for about 40% of the infiltrating cells in the muscle, representing a ~10-fold increase compared to alum and a comparable level to eLNPs. Conclusions: These findings collectively indicate that chitosan has the potential to serve as an effective adjuvant, offering comparable, and potentially superior, properties to those of currently approved adjuvants. Full article
(This article belongs to the Special Issue Advances in Vaccine Adjuvants)
Show Figures

Figure 1

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 348
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

21 pages, 3103 KiB  
Article
Systemic and Mucosal Humoral Immune Responses to Lumazine Synthase 60-mer Nanoparticle SARS-CoV-2 Vaccines
by Cheng Cheng, Jeffrey C. Boyington, Edward K. Sarfo, Cuiping Liu, Danealle K. Parchment, Andrea Biju, Angela R. Corrigan, Lingshu Wang, Wei Shi, Yi Zhang, Yaroslav Tsybovsky, Tyler Stephens, Adam S. Olia, Audrey S. Carson, Syed M. Moin, Eun Sung Yang, Baoshan Zhang, Wing-Pui Kong, Peter D. Kwong, John R. Mascola and Theodore C. Piersonadd Show full author list remove Hide full author list
Vaccines 2025, 13(8), 780; https://doi.org/10.3390/vaccines13080780 - 23 Jul 2025
Viewed by 404
Abstract
Background: Vaccines that stimulate systemic and mucosal immunity to a level required to prevent SARS-CoV-2 infection and transmission are an unmet need. Highly protective hepatitis B and human papillomavirus nanoparticle vaccines highlight the potential of multivalent nanoparticle vaccine platforms to provide enhanced immunity. [...] Read more.
Background: Vaccines that stimulate systemic and mucosal immunity to a level required to prevent SARS-CoV-2 infection and transmission are an unmet need. Highly protective hepatitis B and human papillomavirus nanoparticle vaccines highlight the potential of multivalent nanoparticle vaccine platforms to provide enhanced immunity. Here, we report the construction and characterization of self-assembling 60-subunit icosahedral nanoparticle SARS-CoV-2 vaccines using the bacterial enzyme lumazine synthase (LuS). Methods and Results: Nanoparticles displaying prefusion-stabilized SARS-CoV-2 spike ectodomains fused to the surface-exposed amino terminus of LuS were designed using structure-guided approaches. Negative stain-electron microscopy studies of purified nanoparticles were consistent with self assembly into 60-mer nanoparticles displaying 20 spike trimers. After two intramuscular doses, these purified spike-LuS nanoparticles elicited significantly higher SARS-CoV-2 neutralizing activity than spike trimers in vaccinated mice. Furthermore, intramuscular DNA priming and intranasal boosting with a SARS-CoV-2 LuS nanoparticle vaccine stimulated mucosal IgA responses. Conclusion: These data identify LuS nanoparticles as highly immunogenic SARS-CoV-2 vaccine candidates and support the further development of this platform against SARS-CoV-2 and its emerging variants. Full article
(This article belongs to the Special Issue Novel Vaccines and Vaccine Technologies for Emerging Infections)
Show Figures

Figure 1

11 pages, 1605 KiB  
Article
Year-Long Antibody Response to the EuCorVac-19 SARS-CoV-2 Vaccine in Healthy Filipinos
by Jonathan F. Lovell, Kazutoyo Miura, Yeong Ok Baik, Chankyu Lee, YoungJin Choi, Jeong-Yoon Lee, Carole A. Long, Michelle Ylade, Roxas Lee-Llacer, Norman De Asis, Mitzi Trinidad-Aseron, Jose Manuel Ranola, Loreta Zoleta De Jesus and Howard Her
Vaccines 2025, 13(8), 776; https://doi.org/10.3390/vaccines13080776 - 22 Jul 2025
Viewed by 385
Abstract
Background: We previously reported an interim safety and immunogenicity analysis of a Phase 3 trial in the Philippines of the EuCorVac-19 (ECV-19) COVID-19 vaccine with the COVISHIELDTM (CS) comparator (ClinicalTrials.gov identifier NCT05572879). Here, we present full-year humoral immunogenicity analysis. Methods: [...] Read more.
Background: We previously reported an interim safety and immunogenicity analysis of a Phase 3 trial in the Philippines of the EuCorVac-19 (ECV-19) COVID-19 vaccine with the COVISHIELDTM (CS) comparator (ClinicalTrials.gov identifier NCT05572879). Here, we present full-year humoral immunogenicity analysis. Methods: Healthy adults over 18 years of age received two injections of ECV-19 or CS vaccines, with 4 weeks between prime and boost. Analysis was carried out in individuals with immunogenicity measurements available at all 4 timepoints (weeks 0, 6, 30, and 56; n = 535 for ECV-19 and n = 260 for CS). Results: 2 weeks after boosting (week 6), ECV-19 elicited higher median anti-RBD IgG (1512 vs. 340 BAU/mL, p < 0.001) and neutralizing antibodies (1280 vs. 453 median microneutralization (MN) titer, p < 0.001) compared to CS. Anti-RBD IgG remained higher for ECV-19 compared to CS through week 30 (412 vs. 238 BAU/mL, p < 0.001) and 56 (425 vs. 260 BAU/mL, p < 0.001). MN titers remained higher for ECV-19 compared to CS through week 30 (640 vs. 453, p < 0.001) and 56 (453 vs. 320, p < 0.001). Correlation between anti-RBD IgG and neutralization titers persisted throughout the study. Women generally exhibited greater antibody responses than men. In the first six months following immunization, the ECV-19 group had a median antibody half-life of 80 days for anti-RBD IgG and 112 days for MN titer. In the subsequent six months, antibody half-life increased to 237 days for anti-RBD IgG and 168 days for MN titer. Conclusions: Following initial prime-boost vaccination, ECV-19 maintained higher anti-RBD IgG and neutralizing antibody titers relative to the CS comparator over a full-year period. Full article
Show Figures

Figure 1

13 pages, 944 KiB  
Review
An In Vitro Approach to Prime or Boost Human Antigen-Specific CD8+ T Cell Responses: Applications to Vaccine Studies
by Hoang Oanh Nguyen, Mariela P. Cabral-Piccin, Victor Appay and Laura Papagno
Vaccines 2025, 13(7), 729; https://doi.org/10.3390/vaccines13070729 - 4 Jul 2025
Cited by 1 | Viewed by 637
Abstract
Although vaccine development has primarily focused on inducing neutralizing antibodies, increasing evidence supports an important role of CD8+ T cell responses in vaccine effectiveness. Routine assays, which are mainly based on antibody titers, may therefore not accurately reflect the full immune response [...] Read more.
Although vaccine development has primarily focused on inducing neutralizing antibodies, increasing evidence supports an important role of CD8+ T cell responses in vaccine effectiveness. Routine assays, which are mainly based on antibody titers, may therefore not accurately reflect the full immune response elicited by vaccination. Assessing antigen-specific T cell responses upon vaccination poses several challenges. A common issue in studying T cells specific to a vaccine antigen is their low frequency in circulation, which can limit their ex vivo analysis. Moreover, the use of human cell-based models is crucial for studying and optimizing the induction of T cell responses to design effective vaccines. We developed an innovative in vitro approach of human CD8+ T cell priming, based on the rapid mobilization of dendritic cells (DCs) directly from unfractionated peripheral blood mononuclear cells (PBMCs). This simple and original method allows for side-by-side comparisons of multiple test parameters in a standardized system, providing both quantitative and qualitative readouts of primed antigen-specific CD8+ T cells. Here, we discuss the genesis of this approach and its versatile applications, including monitoring antigen-specific T cell responses, evaluating an individual’s T cell priming capacity, and conducting preclinical studies on potential adjuvants and vaccine candidates. Full article
(This article belongs to the Special Issue Analysis of Vaccine-Induced Adaptive Immune Responses)
Show Figures

Figure 1

16 pages, 876 KiB  
Article
M72 Fusion Proteins in Nanocapsules Enhance BCG Efficacy Against Bovine Tuberculosis in a Mouse Model
by Federico Carlos Blanco, Renée Onnainty, María Rocío Marini, Laura Inés Klepp, Elizabeth Andrea García, Cristina Lourdes Vazquez, Ana Canal, Gladys Granero and Fabiana Bigi
Pathogens 2025, 14(6), 592; https://doi.org/10.3390/pathogens14060592 - 16 Jun 2025
Viewed by 603
Abstract
Mycobacterium bovis is the causative pathogen of bovine tuberculosis (bTB), a disease that affects cattle and other mammals, including humans. Currently, there is no efficient vaccine against bTB, underscoring the need for novel immunization strategies. The M72 fusion protein, composed of three polypeptides derived [...] Read more.
Mycobacterium bovis is the causative pathogen of bovine tuberculosis (bTB), a disease that affects cattle and other mammals, including humans. Currently, there is no efficient vaccine against bTB, underscoring the need for novel immunization strategies. The M72 fusion protein, composed of three polypeptides derived from Mycobacterium tuberculosis and M. bovis, has demonstrated protective efficacy against M. tuberculosis in clinical trials when combined with the AS01E adjuvant. Given the established efficacy of nanocapsule formulations as vaccine delivery systems, this study evaluated a novel immunization strategy combining BCG with either full-length M72 or a truncated M72 fused to a streptococcal albumin-binding domain (ABDsM72). Both antigens were encapsulated in chitosan/alginate nanocapsules and assessed in a murine M. bovis challenge model. Priming with BCG followed by an M72 boost significantly improved splenic protection compared to BCG alone, but it did not enhance pulmonary protection. Notably, boosting with ABDsM72 further increased the proportion of CD4+KLRG1-CXCR3+ T cells in the lungs of M. bovis-challenged mice, a key correlate of protective immunity. These findings demonstrate that chitosan/alginate-encapsulated antigens enhance BCG-induced immunity, supporting their potential as next-generation vaccine candidates for bTB control. Full article
(This article belongs to the Special Issue Mycobacterial Infection: Pathogenesis and Drug Development)
Show Figures

Figure 1

15 pages, 5946 KiB  
Article
Safety and Immunogenicity of a Canine Distemper DNA Vaccine Formulated with Lipid Nanoparticles in Dogs, Foxes, and Raccoon Dogs
by Hong Huo, Han Wang, Shulin Liang, Zilong Wang, Jinming Wang, Qingzhu Wang, Chan Li, Yuting Tao, Jinying Ge, Zhiyuan Wen, Jinliang Wang, Weiye Chen, Xijun Wang, Lei Shuai and Zhigao Bu
Vaccines 2025, 13(6), 614; https://doi.org/10.3390/vaccines13060614 - 6 Jun 2025
Viewed by 809
Abstract
Background: canine distemper (CD) is a highly contagious and fatal disease caused by canine distemper virus (CDV), posing a significant threat to carnivores. New CDV strain circulation and multi-species infection may lead to the potential dilemma of safety concern and insufficient efficacy of [...] Read more.
Background: canine distemper (CD) is a highly contagious and fatal disease caused by canine distemper virus (CDV), posing a significant threat to carnivores. New CDV strain circulation and multi-species infection may lead to the potential dilemma of safety concern and insufficient efficacy of the commercial modified live vaccines. Safe and effective vaccines for canine and wildlife prevention of CD need to be continuously updated and developed. Methods: we developed two DNA vaccines, p17F-LNP and p17H-LNP, encoding the fusion protein (F) or hemagglutinin protein (H) of a field CDV strain (HLJ17) and encapsulated in lipid nanoparticles (LNPs). Serum neutralizing antibody (NAb) was evaluated via neutralization tests, and mouse serum cytokine detection were evaluated via ELISA. Results: immunization of p17F-LNP and p17H-LNP monovalent or bivalent were safe, and induced robust CDV NAb and cytokine responses in mice. LNP encapsulation improved immune responses compared to naked DNA formulation, and the bivalent formulation of p17F-LNP and p17H-LNP (p17F/H-LNP) exhibited synergistic effects with a high level of immune responses. Moreover, two doses of p17F/H-LNP induced long-lasting CDV NAb for over 300 days in dogs, and prime and boost NAb responses in foxes and raccoon dogs. Conclusions: the preliminary findings provided here warrant further development of the p17F/H-LNP vaccine for animal targets against CDV infection. Full article
Show Figures

Figure 1

16 pages, 1598 KiB  
Article
Enhancing Tomato (Solanum lycopersicum L.) Resistance Against Bacterial Canker Disease (Clavibacter michiganensis ssp. michiganensis) via Seed Priming with β-Aminobutyric Acid (BABA)
by Nazlı Özkurt, Harun Bektas and Yasemin Bektas
Horticulturae 2025, 11(6), 587; https://doi.org/10.3390/horticulturae11060587 - 25 May 2025
Viewed by 737
Abstract
Many stressors contribute to productivity and quality losses in agricultural production, ranging from the rising global population to shrinking agricultural lands. To boost yield and quality, plants must be protected from abiotic and biotic stressors. Seed priming is the process of boosting germination [...] Read more.
Many stressors contribute to productivity and quality losses in agricultural production, ranging from the rising global population to shrinking agricultural lands. To boost yield and quality, plants must be protected from abiotic and biotic stressors. Seed priming is the process of boosting germination and seedling development by treating seeds with particular pre-treatments before germination. Seed priming is used to improve plant yield and germination. Plant defense elicitors stimulate the plant’s natural immune system when administered externally, strengthening the plant and making it more resistant/tolerant to diseases. β-Aminobutyric Acid (BABA) is a plant defense elicitor, and in this study, the effect of BABA seed priming on Clavibacter michiganensis ssp. michiganensis (Cmm), which causes bacterial cancer in tomato (Solanum lycopersicum L.), was investigated. Tomato seeds were subjected to seed priming for 72 h with 12 mM BABA (BABA priming) or water (water priming) as the control group. Tomato seedlings that germinated normally were utilized as a positive control. When the plants reached the 3–4 leaf stage, they were infected with Cmm. According to the data, BABA priming was the most effective experimental group in reducing disease severity. Furthermore, it has been shown that the use of BABA as a spray or water-priming application gives better protection than the control treatment. To understand the molecular basis of this suppression, plant samples were obtained at two separate time points (0th and the 7th day), and transcriptional changes of essential plant immunity genes (NPR1, PAL, PR1, WRKY70, WRKY33b, TPK1b, and PR5) were studied. The qRT-PCR results showed that NPR1 gene expression increased considerably with the BABA priming treatment compared to the control. BABA priming at the 0th hour enhanced NPR1 gene expression by approximately five times. In addition, BABA priming increased PR1 gene expression. Furthermore, foliar spraying of BABA (BABA priming+BABA-Sp) on seed-primed plants resulted in a nine-fold increase in PR1 gene expression. At day 7, the BABA priming+Cmm treatment increased PR5 gene expression. Along with the control of other genes, the molecular architecture of BABA seed priming has been attempted to be discovered. The application of BABA seed priming is expected to contribute to the literature and have favorable impacts on plant protection against Cmm. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Graphical abstract

14 pages, 2776 KiB  
Article
The Mechanism of Seed Priming with Abscisic Acid for Enhancing Cuticle Deposition Under Drought Stress: Phenotypic and Transcriptomic Insights
by Luhua Yao, Sennan Li, Nana Zhou and Yanjun Guo
Agriculture 2025, 15(11), 1124; https://doi.org/10.3390/agriculture15111124 - 23 May 2025
Viewed by 481
Abstract
Plant cuticles are crucial for protecting plants from various environmental stresses. Seed priming with abscisic acid (ABA) enhances crop stress tolerance, but its molecular mechanisms in cuticular wax and cutin biosynthesis remain unclear. This study investigated ABA-priming’s role in boosting cuticular wax and [...] Read more.
Plant cuticles are crucial for protecting plants from various environmental stresses. Seed priming with abscisic acid (ABA) enhances crop stress tolerance, but its molecular mechanisms in cuticular wax and cutin biosynthesis remain unclear. This study investigated ABA-priming’s role in boosting cuticular wax and cutin accumulation in sweet sorghum (Sorghum bicolor L.) using physiological and transcriptomic analyses. Abscisic acid priming increased leaf wax (37.7%) and cutin (25.6%) under drought, reducing water loss (9.8–36.6%) and improving leaf water content (28.4–120%). Transcriptomics identified 921 differentially expressed genes, including key fatty acid biosynthesis genes (ADH2, DES2, KAS2). Co-expression analysis revealed the synergistic regulation of wax and cutin biosynthesis by the abscisic acid and jasmonic acid (JA) pathways. Exogenous ABA and JA application confirmed their roles, with combined treatment increasing wax content by 71.7% under drought stress. These findings were validated in other sweet sorghum cultivars (DLS and ML8000), highlighting the potential of ABA priming as a universal strategy to enhance wax deposition in crops. Our study provides new insights into the molecular mechanisms underlying ABA-induced drought resistance and offers a practical approach for improving crop resilience in water-limited environments. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

Back to TopTop