Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = prime editor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2595 KB  
Review
Gene Editing Therapies Targeting Lipid Metabolism for Cardiovascular Disease: Tools, Delivery Strategies, and Clinical Progress
by Zhuoying Ren, Jun Zhou, Dongshan Yang, Yanhong Guo, Jifeng Zhang, Jie Xu and Y Eugene Chen
Cells 2026, 15(2), 134; https://doi.org/10.3390/cells15020134 - 12 Jan 2026
Viewed by 499
Abstract
Gene editing technologies have revolutionized therapeutic development, offering potentially curative and preventative strategies for cardiovascular disease (CVD), which remains a leading global cause of morbidity and mortality. This review provides an introduction to the state-of-the-art gene editing tools—including ZFNs, TALENs, CRISPR/Cas9 systems, base [...] Read more.
Gene editing technologies have revolutionized therapeutic development, offering potentially curative and preventative strategies for cardiovascular disease (CVD), which remains a leading global cause of morbidity and mortality. This review provides an introduction to the state-of-the-art gene editing tools—including ZFNs, TALENs, CRISPR/Cas9 systems, base editors, and prime editors—and evaluates their application in lipid metabolic pathways central to CVD pathogenesis. Emphasis is placed on targets such as PCSK9, ANGPTL3, CETP, APOC3, ASGR1, LPA, and IDOL, supported by findings from human genetics, preclinical models, and recent first-in-human trials. Emerging delivery vehicles (AAVs, LNPs, lentivirus, virus-like particles) and their translational implications are discussed. The review highlights ongoing clinical trials employing liver-targeted in vivo editing modalities (LivGETx-CVD) and provides insights into challenges in delivery, off-target effects, genotoxicity, and immunogenicity. Collectively, this review captures the rapid progress of LivGETx-CVD from conceptual innovation to clinical application, and positions gene editing as a transformative, single-dose strategy with the potential to redefine prevention and long-term management of dyslipidemia and atherosclerotic cardiovascular disease. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing in Translational Research—Third Edition)
Show Figures

Figure 1

47 pages, 1332 KB  
Review
Base and Prime Editing for Inherited Retinal Diseases: Delivery Platforms, Safety, Efficacy, and Translational Perspectives
by Haoliang Zhang, Yuxuan Li, Jiajie Li, Xiaosa Li and Tong Li
Pharmaceutics 2025, 17(11), 1405; https://doi.org/10.3390/pharmaceutics17111405 - 30 Oct 2025
Viewed by 3091
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous spectrum of disorders that lead to progressive and irreversible vision loss. Gene therapy is the most promising emerging treatment for IRDs. While gene augmentation strategies have demonstrated clinical benefit and results within the [...] Read more.
Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous spectrum of disorders that lead to progressive and irreversible vision loss. Gene therapy is the most promising emerging treatment for IRDs. While gene augmentation strategies have demonstrated clinical benefit and results within the first approved ocular gene therapy, their application is restricted by adeno-associated virus (AAV) packaging capacity and limited efficacy for dominant mutations. Recent breakthroughs in precision genome editing, particularly base editing (BE) and prime editing (PE), have provided alternatives capable of directly correcting pathogenic variants. BE enables targeted single-nucleotide conversions, whereas PE further allows for precise insertions and deletions, both circumventing the double-strand DNA cleavage or repair processes typically induced by conventional CRISPR–Cas editing systems, thereby offering advantages in post-mitotic retinal cells. Preclinical investigations across murine and non-human primate models have demonstrated the feasibility, molecular accuracy, and preliminary safety profiles of these platforms in targeting IRD-associated mutations. However, critical challenges remain before clinical application can be realized, including limited editing efficiency in photoreceptors, interspecies variability in therapeutic response, potential risks of off-target effects, and barriers in large-scale vector manufacturing. Moreover, the delivery of genome editors to the outer retina remains suboptimal, prompting intensive efforts in capsid engineering and the development of non-viral delivery systems. This review synthesizes the current progress in BE and PE optimization, highlights innovations in delivery platforms that encompass viral and emerging non-viral systems and summarizes the major barriers to clinical translation. We further discuss AI-driven strategies for the rational design of BE/PE systems, thereby outlining their future potential and perspectives in the treatment of IRDs. Full article
(This article belongs to the Special Issue Ophthalmic Drug Delivery, 3rd Edition)
Show Figures

Graphical abstract

52 pages, 1174 KB  
Review
CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(19), 9409; https://doi.org/10.3390/ijms26199409 - 26 Sep 2025
Cited by 11 | Viewed by 4036
Abstract
Repairing the central nervous system (CNS) remains one of the most difficult obstacles to overcome in translational neurosciences. This is due to intrinsic growth inhibitors, extracellular matrix issues, the glial scar–form barrier, chronic neuroinflammation, and epigenetic silencing. The purpose of this review is [...] Read more.
Repairing the central nervous system (CNS) remains one of the most difficult obstacles to overcome in translational neurosciences. This is due to intrinsic growth inhibitors, extracellular matrix issues, the glial scar–form barrier, chronic neuroinflammation, and epigenetic silencing. The purpose of this review is to bring together findings from recent developments in genome editing and computational approaches, which center around the possible convergence of clustered regularly interspaced short palindromic repeats (CRISPR) platforms and artificial intelligence (AI), towards precision neuroregeneration. We wished to outline possible ways in which CRISPR-based systems, including but not limited to Cas9 and Cas12 nucleases, RNA-targeting Cas13, base and prime editors, and transcriptional regulators such as CRISPRa/i, can be applied to potentially reactivate axon-growth programs, alter inhibitory extracellular signaling, reprogram or lineage transform glia to functional neurons, and block oncogenic pathways in glioblastoma. In addition, we wanted to highlight how AI approaches, such as single-cell multi-omics, radiogenomic prediction, development of digital twins, and design of adaptive clinical trials, will increasingly be positioned to act as system-level architects that allow translation of complex datasets into predictive and actionable therapeutic approaches. We examine convergence consumers in spinal cord injury and adaptive neuro-oncology and discuss expanse consumers in ischemic stroke, Alzheimer’s disease, Parkinson’s disease, and rare neurogenetic syndromes. Finally, we discuss the ethical and regulatory landscape around beyond off-target editing and genomic stability of CRISPR, algorithmic bias, explainability, and equitable access to advanced neurotherapies. Our intent was not to provide a comprehensive inventory of possibilities but rather to provide a conceptual tool where CRISPR acts as a molecular manipulator and AI as a computational integrator, converging to create pathways towards precision neuroregeneration, personalized medicine, and adaptive neurotherapeutics that are ethically sound. Full article
(This article belongs to the Special Issue Molecular Research in Spinal Cord Injury)
Show Figures

Figure 1

18 pages, 2970 KB  
Article
Prime Editing Modification with FEN1 Improves F508del Variant Editing in the CFTR Gene in Airway Basal Cells
by Olga V. Volodina, Anna G. Demchenko, Arina A. Anuchina, Oxana P. Ryzhkova, Valeriia A. Kovalskaya, Ekaterina V. Kondrateva, Ekaterina V. Artemova, Vyacheslav Y. Tabakov, Maxim A. Ignatov, Natalia Y. Vorobyeva, Andreyan N. Osipov, Alexander V. Lavrov and Svetlana A. Smirnikhina
Int. J. Mol. Sci. 2025, 26(16), 7943; https://doi.org/10.3390/ijms26167943 - 18 Aug 2025
Viewed by 2040
Abstract
Prime editing is a promising approach for correcting pathogenic variants, but its efficiency remains variable across genomic contexts. Here, we systematically evaluated 12 modifications of the PEmax system for correcting the CFTR F508del pathogenic variant that caused cystic fibrosis in patient-derived airway basal [...] Read more.
Prime editing is a promising approach for correcting pathogenic variants, but its efficiency remains variable across genomic contexts. Here, we systematically evaluated 12 modifications of the PEmax system for correcting the CFTR F508del pathogenic variant that caused cystic fibrosis in patient-derived airway basal cells. We chose EXO1 and FEN1 nucleases to improve the original system. While all tested variants showed comparatively low efficiency in this AT-rich genomic region, 4-FEN modification demonstrated significantly improved editing rates (up to 2.13 fold) compared to standard PEmax. Our results highlight two key findings: first, the persistent challenge of AT-rich target sequence correction even with optimized editors, and second, the performance of 4-FEN suggests its potential value for other genomic targets. Full article
(This article belongs to the Special Issue CRISPR/Cas Systems and Genome Editing—3rd Edition)
Show Figures

Figure 1

21 pages, 992 KB  
Review
Prime Editing for Crop Improvement: A Systematic Review of Optimization Strategies and Advanced Applications
by Shuangrui Tian, Lan Yao, Yuhong Zhang, Xiaoyu Rao and Hongliang Zhu
Genes 2025, 16(8), 965; https://doi.org/10.3390/genes16080965 - 16 Aug 2025
Cited by 1 | Viewed by 6473
Abstract
Prime editing (PE), a novel “search-and-replace” genome editing technology, demonstrates significant potential for crop genetic improvement due to its precision and versatility. However, since its initial application in plants, PE technology has consistently faced challenges of low and variable editing efficiency, [...] Read more.
Prime editing (PE), a novel “search-and-replace” genome editing technology, demonstrates significant potential for crop genetic improvement due to its precision and versatility. However, since its initial application in plants, PE technology has consistently faced challenges of low and variable editing efficiency, representing a major bottleneck hindering its broader application. Therefore, this study conducted a systematic review following the PRISMA 2020 guidelines. We systematically searched databases—Web of Science, PubMed, and Google Scholar—for studies published up to June 2025 focusing on enhancing PE performance in crops. After a rigorous screening process, 38 eligible primary research articles were ultimately included for comprehensive analysis. Our analysis revealed that early PE systems such as PE2 could perform diverse edits, including all 12 base substitutions and small insertions or deletions (indels), but their efficiency was highly variable across species, targets, and edit types. To overcome this bottleneck, researchers developed four major optimization strategies: (1) engineering core components such as Cas9, reverse transcriptase (RT), and editor architecture; (2) enhancing expression and delivery via optimized promoters and vectors; (3) improving reaction processes by modulating DNA repair pathways or external conditions; and (4) enriching edited events through selectable or visual markers. These advancements broadened PE’s targeting scope with novel Cas9 variants and enabled complex, kilobase-scale DNA insertions and rearrangements. The application of PE technology in plants has evolved from basic functional validation, through systematic optimization for enhanced efficiency, to advanced stages of functional expansion. This review charts this trajectory and clarifies the key strategies driving these advancements. We posit that future breakthroughs will increasingly depend on synergistically integrating these strategies to enable the efficient, precise, and predictable application of PE technology across diverse crops and complex breeding objectives. This study provides an important theoretical framework and practical guidance for subsequent research and application in this field. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

24 pages, 3858 KB  
Review
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding
by Archana Khadgi, Saikrisha Lekkala, Pankaj K. Verma, Naveen Puppala and Madhusudhana R. Janga
Toxins 2025, 17(8), 394; https://doi.org/10.3390/toxins17080394 - 6 Aug 2025
Cited by 1 | Viewed by 3061
Abstract
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. [...] Read more.
Aflatoxin contamination, primarily caused by Aspergillus flavus, poses a significant threat to peanut (Arachis hypogaea L.) production, food safety, and global trade. Despite extensive efforts, breeding for durable resistance remains difficult due to the polygenic and environmentally sensitive nature of resistance. Although germplasm such as J11 have shown partial resistance, none of the identified lines demonstrated stable or comprehensive protection across diverse environments. Resistance involves physical barriers, biochemical defenses, and suppression of toxin biosynthesis. However, these traits typically exhibit modest effects and are strongly influenced by genotype–environment interactions. A paradigm shift is underway with increasing focus on host susceptibility (S) genes, native peanut genes exploited by A. flavus to facilitate colonization or toxin production. Recent studies have identified promising S gene candidates such as AhS5H1/2, which suppress salicylic acid-mediated defense, and ABR1, a negative regulator of ABA signaling. Disrupting such genes through gene editing holds potential for broad-spectrum resistance. To advance resistance breeding, an integrated pipeline is essential. This includes phenotyping diverse germplasm under stress conditions, mapping resistance loci using QTL and GWAS, and applying multi-omics platforms to identify candidate genes. Functional validation using CRISPR/Cas9, Cas12a, base editors, and prime editing allows precise gene targeting. Validated genes can be introgressed into elite lines through breeding by marker-assisted and genomic selection, accelerating the breeding of aflatoxin-resistant peanut varieties. This review highlights recent advances in peanut aflatoxin resistance research, emphasizing susceptibility gene targeting and genome editing. Integrating conventional breeding with multi-omics and precision biotechnology offers a promising path toward developing aflatoxin-free peanut cultivars. Full article
(This article belongs to the Special Issue Strategies for Mitigating Mycotoxin Contamination in Food and Feed)
Show Figures

Figure 1

10 pages, 1283 KB  
Communication
Optimized Ribonucleoprotein Complexes Enhance Prime Editing Efficiency in Zebrafish
by Lang Qin and Qiupeng Lin
Animals 2025, 15(15), 2295; https://doi.org/10.3390/ani15152295 - 6 Aug 2025
Cited by 2 | Viewed by 1901
Abstract
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined [...] Read more.
Prime editing (PE) has emerged as a transformative genome editing technology, enabling precise base substitutions, insertions, and deletions without inducing double-strand DNA breaks (DSBs). However, its application in zebrafish remains limited by low efficiency. Here, we leveraged PE7, a state-of-the-art PE system, combined with La-accessible prime editing guide RNAs (pegRNAs), to enhance editing efficiency in zebrafish. By co-incubating PE7 protein with La-accessible pegRNAs to form ribonucleoprotein (RNP) complexes and microinjecting these complexes into zebrafish embryos, we achieved up to 15.99% editing efficiency at target loci—an improvement of 6.81- to 11.46-fold over PE2. Additionally, we observed 16.60% 6 bp insertions and 13.18% 10 bp deletions at the adgrf3b locus, representing a 3.13-fold increase over PE2. Finally, we used PE to introduce desired edits at the tyr locus, successfully generating zebrafish with the tyr P302L mutation that exhibited melanin reduction. These findings demonstrate that PE7 significantly enhances prime editing efficiency in fish, providing novel tools for functional gene studies and genetic breeding in aquatic species. Full article
Show Figures

Figure 1

34 pages, 1227 KB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Cited by 8 | Viewed by 5014
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

17 pages, 814 KB  
Review
Macrobrachium rosenbergii Genome Editing Breeding with CRISPR–Cas Nucleases, Base Editors, and Prime Editors
by Guo Li, Xinzhi Zhou, Guanglin Zhu, Yingjia Pan, Junjun Yan, Jilun Meng, Tiantian Ye, Yaxian Cheng, Cui Liu and Zhimin Gu
Animals 2025, 15(15), 2161; https://doi.org/10.3390/ani15152161 - 22 Jul 2025
Cited by 2 | Viewed by 1630
Abstract
This review focuses on CRISPR genome editing technology, particularly its application in the study of Macrobrachium rosenbergii (M. rosenbergii). It first elaborates on the basic principles and mechanisms of CRISPR–Cas9 technology, base editors, and prime editors. Then, it explores the application [...] Read more.
This review focuses on CRISPR genome editing technology, particularly its application in the study of Macrobrachium rosenbergii (M. rosenbergii). It first elaborates on the basic principles and mechanisms of CRISPR–Cas9 technology, base editors, and prime editors. Then, it explores the application of this technology in M. rosenbergii breeding, including improving growth rate, enhancing disease resistance, and sex control. Additionally, it introduces the progress of genome editing technology in M. rosenbergii, epidemiology and pathogenesis, diagnostic techniques, analyzes the opportunities and challenges it faces, reviews the historical evolution, and looks ahead to future development directions. CRISPR technology has brought new opportunities to the research and industrial development of M. rosenbergii, but it also needs to address numerous technical and safety challenges. Full article
Show Figures

Figure 1

14 pages, 2794 KB  
Article
Comprehensive Analysis of Ghd7 Variations Using Pan-Genomics and Prime Editing in Rice
by Jiarui Wang, Shihang Liu, Jisong Pu, Jun Li, Changcai He, Lanjing Zhang, Xu Zhou, Dongyu Xu, Luyao Zhou, Yuting Guo, Yuxiu Zhang, Yang Wang, Bin Yang, Pingrong Wang, Xiaojian Deng and Changhui Sun
Genes 2025, 16(4), 462; https://doi.org/10.3390/genes16040462 - 17 Apr 2025
Cited by 1 | Viewed by 1172
Abstract
The Ghd7 gene in rice plays a crucial role in determining heading date, plant height, and grain yield. However, the variations in Ghd7 and their functional implications across different rice accessions are not fully understood. Based on the release of a large amount [...] Read more.
The Ghd7 gene in rice plays a crucial role in determining heading date, plant height, and grain yield. However, the variations in Ghd7 and their functional implications across different rice accessions are not fully understood. Based on the release of a large amount of rice genome data in recent years, we investigated Ghd7 through pan-genome analysis of 372 diverse rice varieties and figured out the structural variations (SVs) in the Ghd7 locus. However, due to the high cost of pan-genomes, most genomes are based on next-generation sequencing (NGS) data now. Therefore, we developed a method for identifying SVs using NGS data and Polymerase Chain Reaction (PCR) based on the results of pan-genome analysis and identified 977 accessions carrying such SVs of Ghd7. Furthermore, we identified 46 single-nucleotide polymorphisms (SNPs) and one insertion-deletion (InDel) in the coding region of Ghd7. They are classified into 49 haplotypes. Notably, a splice-site mutation in haplotype H6 causes aberrant mRNA splicing. Using prime editing (PE) technology, we successfully restored the functional of Ghd7 in Yixiang 1B (YX1B), delaying the heading date by approximately 16 days. This modification synchronized the heading date between YX1B and the restorer line Yahui 2115 (YH2115R), enhancing the hybrid rice seed production efficiency. In conclusion, our findings highlight the potential of integrating pan-genomics and precision gene editing to accelerate crop improvement and enhance agronomic traits. Full article
(This article belongs to the Collection Feature Papers: 'Plant Genetics and Genomics' Section)
Show Figures

Figure 1

15 pages, 1623 KB  
Review
Current Advancement and Future Prospects in Simplified Transformation-Based Plant Genome Editing
by Xueying Han, Zhaolong Deng, Huiyun Liu and Xiang Ji
Plants 2025, 14(6), 889; https://doi.org/10.3390/plants14060889 - 12 Mar 2025
Cited by 5 | Viewed by 5388
Abstract
Recent years have witnessed remarkable progress in plant biology, driven largely by the rapid evolution of CRISPR/Cas-based genome editing (GE) technologies. These tools, including versatile CRISPR/Cas systems and their derivatives, such as base editors and prime editors, have significantly enhanced the universality, efficiency, [...] Read more.
Recent years have witnessed remarkable progress in plant biology, driven largely by the rapid evolution of CRISPR/Cas-based genome editing (GE) technologies. These tools, including versatile CRISPR/Cas systems and their derivatives, such as base editors and prime editors, have significantly enhanced the universality, efficiency, and convenience of plant functional genomics, genetics, and molecular breeding. However, traditional genetic transformation methods are essential for obtaining GE plants. These methods depend on tissue culture procedures, which are time-consuming, labor-intensive, genotype-dependent, and challenging to regenerate. Here, we systematically outline current advancements in simplifying plant GE, focusing on the optimization of tissue culture process through developmental regulators, the development of in planta transformation methods, and the establishment of nanomaterial- and viral vector-based delivery platforms. We also discuss critical challenges and future directions for achieving genotype-independent, tissue culture-free plant GE. Full article
Show Figures

Figure 1

43 pages, 7604 KB  
Review
Prime Editing: Mechanistic Insights and DNA Repair Modulation
by Astrid Mentani, Marcello Maresca and Anna Shiriaeva
Cells 2025, 14(4), 277; https://doi.org/10.3390/cells14040277 - 13 Feb 2025
Cited by 4 | Viewed by 10108
Abstract
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the [...] Read more.
Prime editing is a genome editing technique that allows precise modifications of cellular DNA without relying on donor DNA templates. Recently, several different prime editor proteins have been published in the literature, relying on single- or double-strand breaks. When prime editing occurs, the DNA undergoes one of several DNA repair pathways, and these processes can be modulated with the use of inhibitors. Firstly, this review provides an overview of several DNA repair mechanisms and their modulation by known inhibitors. In addition, we summarize different published prime editors and provide a comprehensive overview of associated DNA repair mechanisms. Finally, we discuss the delivery and safety aspects of prime editing. Full article
(This article belongs to the Special Issue Gene Therapy for Rare Diseases)
Show Figures

Graphical abstract

27 pages, 12325 KB  
Article
Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases
by Rodrigo Cerna-Chavez, Alba Ortega-Gasco, Hafiz Muhammad Azhar Baig, Nathan Ehrenreich, Thibaud Metais, Michael J. Scandura, Kinga Bujakowska, Eric A. Pierce and Marcela Garita-Hernandez
Int. J. Mol. Sci. 2025, 26(1), 114; https://doi.org/10.3390/ijms26010114 - 26 Dec 2024
Cited by 5 | Viewed by 5485
Abstract
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) [...] Read more.
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs, especially when the genetic context precludes the screening of multiple pegRNAs, and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system, we generated other isogenic models of inherited retinal diseases (IRDs), including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure, such as plasmid concentrations, PE component ratios, and delivery method settings, showing that our improved workflow increased the hiPSC editing efficiency. Full article
(This article belongs to the Special Issue Molecular Research in Retinal Degeneration)
Show Figures

Figure 1

15 pages, 1830 KB  
Article
Precise Insertion of AttB Sequences in Goat Genome Using Enhanced Prime Editor
by Aicong Li, Zhenliang Zhu, Jing Yang, Yayi Liu, Yong Zhang and Jun Liu
Int. J. Mol. Sci. 2024, 25(17), 9486; https://doi.org/10.3390/ijms25179486 - 31 Aug 2024
Cited by 3 | Viewed by 1981
Abstract
Prime editor, an editing tool based on the CRISPR/Cas9 system, allows for all 12 types of nucleotide exchanges and arbitrary indels in genomic sequences without the need for inducing DNA double-strand breaks. Despite its flexibility and precision, prime editing efficiency is still low [...] Read more.
Prime editor, an editing tool based on the CRISPR/Cas9 system, allows for all 12 types of nucleotide exchanges and arbitrary indels in genomic sequences without the need for inducing DNA double-strand breaks. Despite its flexibility and precision, prime editing efficiency is still low and hindered by various factors such as target sites, editing types, and the length of the primer binding site. In this study, we developed a prime editing system by incorporating an RNA motif at the 3′ terminal of the pegRNA and integrating all twin prime editor factors into a single plasmid. These two strategies enhanced prime editing efficiency at target sites by up to 3.58-fold and 2.19-fold, respectively. Subsequently, enhanced prime editor was employed in goat cells and embryos to efficiently insert a 38 bp attB sequence into the Gt(ROSA)26Sor (Rosa26) and C-C motif chemokine receptor 5 (CCR5) loci. The enhanced prime editor can mediate 11.9% and 6.8% editing efficiency in parthenogenetic activation of embryos through embryo microinjection. In summary, our study introduces a modified prime editing system with improved editing and transfection efficiency, making it more suitable for inserting foreign sequences into primary cells and embryos. These results broaden the potential applications of prime editing technologies in the production of transgenic animals. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

42 pages, 5459 KB  
Review
Emerging Perspectives on Prime Editor Delivery to the Brain
by Eli BenDavid, Sina Ramezanian, Yaoyao Lu, Joël Rousseau, Avi Schroeder, Marc Lavertu and Jacques P. Tremblay
Pharmaceuticals 2024, 17(6), 763; https://doi.org/10.3390/ph17060763 - 11 Jun 2024
Cited by 3 | Viewed by 8896
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a [...] Read more.
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood–brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neurodegeneration Disorders)
Show Figures

Figure 1

Back to TopTop