CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology
Abstract
1. Introduction
2. The Barriers to CNS Repair: Molecular, Cellular, and Systems Landscapes
2.1. Intrinsic Suppression of Neuronal Growth
2.2. Extracellular and Immune Barriers to Repair
2.3. Systems–Level Stabilization of Non-Regenerative States
3. CRISPR as a Molecular Toolbox for Neural Reprogramming
3.1. Expanding the CRISPR Toolbox for Neural Systems
3.2. Functional Discovery Through High-Throughput Screens
3.3. Delivery and Safety Innovations
3.4. Toward Integration with Artificial Intelligence
4. Artificial Intelligence as the Integrator of Neuroregeneration
4.1. Data Integration, Temporal Forecasting, and Network Reconstruction
4.2. Immune Microenvironments, Vascular Dynamics, and Glymphatic Function
4.3. Real-Time Biosignals, Brain–Computer Interfaces, and Behavioral Readouts
4.4. Clinical Translation, Trial Design, and Ethical Alignment
4.5. The Implementation of Closed-Loop CRISPR–AI Systems
5. Convergence in Spinal Cord Regeneration
5.1. Models as Layered Testbeds of Convergence
5.2. AI-Driven Stratification, Digital Twins, and Biomarker-Guided Feedback
5.3. Biomaterials and Co-Optimization of Scaffolds with Edited Cells
5.4. Rehabilitation Robotics and AI as Functional Sensors
5.5. Closed-Loop Regenerative Ecosystems
5.6. Cross-Disease Insights and Broader Implications
6. Convergence in Adaptive Neuro-Oncology
6.1. Mapping Heterogeneity and Evolutionary Trajectories
6.2. CRISPR Reprogramming of Tumor States
6.2.1. Oncogenic Drivers and Synthetic Vulnerabilities
6.2.2. Epigenomic Stabilization
6.2.3. Therapy Sensitization
6.2.4. Immunoediting
6.3. Tumor Ecology: Vascular, Metabolic, and Neuronal Niches
6.4. Delivery: Engineering Access to the Brain
6.5. Adaptive AI–CRISPR Feedback Systems
6.6. Toward the Adaptive Operating Room
6.7. Risks, Safeguards, and Trial Design
7. Expanding Horizons: Beyond Spinal Cord Injury and GBM
7.1. Stroke and Ischemic Injury: Digital Penumbra and Network Reconnection
7.2. Neurodegenerative Diseases: Engineering Resilience in Progressive Collapse
7.2.1. Alzheimer’s Disease
7.2.2. Parkinson’s Disease
7.2.3. Rare Neurogenetic Disorders: Trajectory Aware Allele Correction
7.3. Traumatic Brain Injury: Closing the Loop on Inflammation and Repair
7.4. Cross-System Interfaces: Endothelial, Immune, and Metabolic Crosstalk
7.5. Delivery Innovations Across Disorders
7.6. Ethical, Translational, and Trial Considerations
7.7. Toward a Universal Regenerative Logic
8. Building the CRISPR–AI Neurotherapeutic Pipeline
8.1. Input Layer: Standardized, Multimodal, and Context-Rich Data
8.2. Processing Layer: AI Integration with Causality, Control, and Verification
8.3. Feedback Layer: Continuous Telemetry and Adaptive Control
8.4. Bridging In Silico, Organoids, and In Vivo Models
8.5. Clinical Translation and Trial Innovation
8.6. Standards, Ontologies, and Benchmarking
8.7. Integration with Neurotechnology and Prosthetics
8.8. Global Governance, Equity, and Ethics
8.9. Emerging Horizons: Quantum, Edge, and Beyond
9. Ethical, Safety, and Regulatory Considerations
9.1. CRISPR-Specific Safety Challenges in the Nervous System
9.2. Ethical Complexities in AI-Guided Neurotherapeutics
9.3. The Dual-Risk Landscape: Intersections Between Biology and Computation
9.4. Regulatory Transformation: Toward Continuous Oversight
9.5. Equity, Access, and the Global Dimension
9.6. Data Privacy, Security, and Neuro-Identity
10. Future Horizons: The Decade Ahead
10.1. Entry Points: First Clinical Applications and Critical Time Windows
10.2. Beyond Repair: Molecular–Electrical Symbiosis
10.3. Organoids, Living Biobanks, and Regeneration Rehearsal Platforms
10.4. Adaptive Clinical Trials and Living Protocols
10.5. Expansion to Neuro-Immune and Neuro-Metabolic Axes
10.6. Translational Readiness and Scalable Manufacturing
10.7. Planetary Dimensions and Sustainability
10.8. Long-Term Stewardship and Neuro-Identity
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafqat, A.; Albalkhi, I.; Magableh, H.M.; Saleh, T.; Alkattan, K.; Yaqinuddin, A. Tackling the glial scar in spinal cord regeneration: New discoveries and future directions. Front. Cell. Neurosci. 2023, 17, 1180825. [Google Scholar] [CrossRef]
- Costa, G.; Ribeiro, F.F.; Sebastião, A.M.; Muir, E.M.; Vaz, S.H. Bridging the gap of axonal regeneration in the central nervous system: A state of the art review on central axonal regeneration. Front. Neurosci. 2022, 16, 1003145. [Google Scholar] [CrossRef]
- Clifford, T.; Finkel, Z.; Rodriguez, B.; Joseph, A.; Cai, L. Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells 2023, 12, 853. [Google Scholar] [CrossRef] [PubMed]
- Sipos, D.; Raposa, B.L.; Freihat, O.; Simon, M.; Mekis, N.; Cornacchione, P.; Kovács, Á. Glioblastoma: Clinical Presentation, Multidisciplinary Management, and Long-Term Outcomes. Cancers 2025, 17, 146. [Google Scholar] [CrossRef] [PubMed]
- Krsek, A.; Jagodic, A.; Baticic, L. Nanomedicine in Neuroprotection, Neuroregeneration, and Blood–Brain Barrier Modulation: A Narrative Review. Medicina 2024, 60, 1384. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Malviya, R.; Sridhar, S.B.; Shareef, J.; Wadhwa, T. Biomaterials and tissue engineering strategies for management of neurodegeneration: A critical perspective. Med. Nov. Technol. Devices 2025, 26, 100369. [Google Scholar] [CrossRef]
- Kim, M.; Go, M.; Kang, S.-H.; Jeong, S.; Lim, K. Revolutionizing CRISPR technology with artificial intelligence. Exp. Mol. Med. 2025, 57, 1419–1431. [Google Scholar] [CrossRef]
- Allemailem, K.S.; Almatroodi, S.A.; Almatroudi, A.; Alrumaihi, F.; Al Abdulmonem, W.; Al-Megrin, W.A.I.; Aljamaan, A.N.; Rahmani, A.H.; Khan, A.A. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Int. J. Mol. Sci. 2023, 24, 7052. [Google Scholar] [CrossRef]
- Donohoue, P.D.; Pacesa, M.; Lau, E.; Vidal, B.; Irby, M.J.; Nyer, D.B.; Rotstein, T.; Banh, L.; Toh, M.S.; Gibson, J.; et al. Conformational control of Cas9 by CRISPR hybrid RNA-DNA guides mitigates off-target activity in T cells. Mol. Cell 2021, 81, 3637–3649.e5. [Google Scholar] [CrossRef]
- Chen, P.J.; Liu, D.R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 2023, 24, 161–177. [Google Scholar] [CrossRef]
- Mentani, A.; Maresca, M.; Shiriaeva, A. Prime Editing: Mechanistic Insights and DNA Repair Modulation. Cells 2025, 14, 277. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, S.; Qin, H.; Yao, K. From bench to bedside: Cutting-edge applications of base editing and prime editing in precision medicine. J. Transl. Med. 2024, 22, 1133. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, H.; Xi, S.; Zhang, Y.; Sun, T. Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies. Int. J. Nanomed. 2025, 20, 1443–1490. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Benfante, V.; Basirinia, G.; Alongi, P.; Sperandeo, A.; Quattrocchi, A.; Giannone, A.G.; Cabibi, D.; Yezzi, A.; Di Raimondo, D.; et al. Applications of Artificial Intelligence, Deep Learning, and Machine Learning to Support the Analysis of Microscopic Images of Cells and Tissues. J. Imaging 2025, 11, 59. [Google Scholar] [CrossRef]
- Guo, Y.; Bao, C.; Ma, D.; Cao, Y.; Li, Y.; Xie, Z.; Li, S. Network-Based Combinatorial CRISPR-Cas9 Screens Identify Synergistic Modules in Human Cells. ACS Synth. Biol. 2019, 8, 482–490. [Google Scholar] [CrossRef]
- Cerrone, D.; Riccobelli, D.; Gazzoni, S.; Vitullo, P.; Ballarin, F.; Falco, J.; Acerbi, F.; Manzoni, A.; Zunino, P.; Ciarletta, P. Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks. Math. Biosci. 2025, 387, 109468. [Google Scholar] [CrossRef]
- Onciul, R.; Brehar, F.-M.; Dumitru, A.V.; Crivoi, C.; Covache-Busuioc, R.-A.; Serban, M.; Radoi, P.M.; Toader, C. Predicting overall survival in glioblastoma patients using machine learning: An analysis of treatment efficacy and patient prognosis. Front. Oncol. 2025, 15, 1539845. [Google Scholar] [CrossRef]
- Qin, R.; Ma, J.; He, F.; Qin, W. In-depth and high-throughput spatial proteomics for whole-tissue slice profiling by deep learning-facilitated sparse sampling strategy. Cell Discov. 2025, 11, 21. [Google Scholar] [CrossRef]
- Kristof, A.; Karunakaran, K.; Allen, C.; Mizote, P.; Briggs, S.; Jian, Z.; Nash, P.; Blazeck, J. Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation. Genome Biol. 2025, 26, 164. [Google Scholar] [CrossRef]
- Toneyan, S.; Koo, P.K. Interpreting cis-regulatory interactions from large-scale deep neural networks. Nat. Genet. 2024, 56, 2517–2527. [Google Scholar] [CrossRef]
- Tan, F.; Dong, Y.; Qi, J.; Yu, W.; Chai, R. Artificial Intelligence-Based Approaches for AAV Vector Engineering. Adv. Sci. 2025, 12, 2411062. [Google Scholar] [CrossRef]
- Maki, S.; Furuya, T.; Inoue, M.; Shiga, Y.; Inage, K.; Eguchi, Y.; Orita, S.; Ohtori, S. Machine Learning and Deep Learning in Spinal Injury: A Narrative Review of Algorithms in Diagnosis and Prognosis. J. Clin. Med. 2024, 13, 705. [Google Scholar] [CrossRef]
- Twiss, J.L.; Buchanan, C.N. Regulation of Subcellular Protein Synthesis for Restoring Neural Connectivity. Int. J. Mol. Sci. 2025, 26, 7283. [Google Scholar] [CrossRef] [PubMed]
- Abdelsayed, M. AI-Driven Polypharmacology in Small-Molecule Drug Discovery. Int. J. Mol. Sci. 2025, 26, 6996. [Google Scholar] [CrossRef] [PubMed]
- Li, H.R.; Harb, M.; Heath, J.E.; Trippett, J.S.; Shapiro, M.G.; Szablowski, J.O. Engineering viral vectors for acoustically targeted gene delivery. Nat. Commun. 2024, 15, 4924. [Google Scholar] [CrossRef] [PubMed]
- Arjmandmazidi, S.; Heidari, H.R.; Ghasemnejad, T.; Mori, Z.; Molavi, L.; Meraji, A.; Kaghazchi, S.; Mehdizadeh Aghdam, E.; Montazersaheb, S. An In-depth overview of artificial intelligence (AI) tool utilization across diverse phases of organ transplantation. J. Transl. Med. 2025, 23, 678. [Google Scholar] [CrossRef]
- Cooke, P.; Janowitz, H.; Dougherty, S.E. Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Front. Cell. Neurosci. 2022, 16, 872501. [Google Scholar] [CrossRef]
- Thakkar, V.; Mehdipour, M.; Chang, S. Unlocking nerve regeneration: Electrical stimulation and bioscaffolds to enhance peripheral nerve regeneration. Front. Neurosci. 2025, 19, 1594435. [Google Scholar] [CrossRef]
- Wang, Z.; Kumaran, M.; Batsel, E.; Testor-Cabrera, S.; Beine, Z.; Alvarez Ribelles, A.; Tsoulfas, P.; Venkatesh, I.; Blackmore, M.G. Single-Nuclei Sequencing Reveals a Robust Corticospinal Response to Nearby Axotomy But Overall Insensitivity to Spinal Injury. J. Neurosci. 2025, 45, e1508242024. [Google Scholar] [CrossRef]
- Zeng, L.; Zhu, Y.; Moreno, C.S.; Wan, Y. New insights into KLFs and SOXs in cancer pathogenesis, stemness, and therapy. Semin. Cancer Biol. 2023, 90, 29. [Google Scholar] [CrossRef]
- Hilton, B.J.; Husch, A.; Schaffran, B.; Lin, T.; Burnside, E.R.; Dupraz, S.; Schelski, M.; Kim, J.; Müller, J.A.; Schoch, S.; et al. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 2022, 110, 51–69.e7. [Google Scholar] [CrossRef]
- Green, A.; Hossain, T.; Eckmann, D.M. Mitochondrial dynamics involves molecular and mechanical events in motility, fusion and fission. Front. Cell Dev. Biol. 2022, 10, 1010232. [Google Scholar] [CrossRef]
- Schmidt, J.; Quintá, H.R. Mitochondrial dysfunction as a target in spinal cord injury: Intimate correlation between pathological processes and therapeutic approaches. Neural Regen. Res. 2023, 18, 2161–2166. [Google Scholar] [CrossRef]
- Sánchez-Marín, D.; Trujano-Camacho, S.; Pérez-Plasencia, C.; De León, D.C.; Campos-Parra, A.D. LncRNAs driving feedback loops to boost drug resistance: Sinuous pathways in cancer. Cancer Lett. 2022, 543, 215763. [Google Scholar] [CrossRef]
- Perez-Medina, M.; Benito-Lopez, J.J.; Aguilar-Cazares, D.; Lopez-Gonzalez, J.S. A Comprehensive Review of Long Non-Coding RNAs in the Cancer–Immunity Cycle: Mechanisms and Therapeutic Implications. Int. J. Mol. Sci. 2025, 26, 4821. [Google Scholar] [CrossRef]
- Voicu, V.; Toader, C.; Șerban, M.; Covache-Busuioc, R.-A.; Ciurea, A.V. Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS. Biomedicines 2025, 13, 2025. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Li, H.; Li, Z.; Muñoz-Castro, C.; Jaisa-aad, M.; Healey, M.A.; Welikovitch, L.A.; Jayakumar, R.; Bryant, A.G.; Noori, A.; et al. Astrocyte transcriptomic changes along the spatiotemporal progression of Alzheimer’s disease. Nat. Neurosci. 2024, 27, 2384–2400. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.; Uyeda, A.; Manabe, I.; Muramatsu, R. Astrocytic heterogeneous nuclear ribonucleoprotein U is involved in scar formation after spinal cord injury. J. Neuroinflamm. 2025, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Pathak, Z.; Kumar, H. Rab27a-mediated extracellular vesicle release drives astrocytic CSPG secretion and glial scarring in spinal cord injury. Biomater. Adv. 2025, 176, 214357. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.A.; Bobotis, B.C.; Correia, F.F.; Lima-Vasconcellos, T.H.; Chiarantin, G.M.D.; De La Vega, L.; Lombello, C.B.; Willerth, S.M.; Malmonge, S.M.; Paschon, V.; et al. The Impact of Biomaterial Surface Properties on Engineering Neural Tissue for Spinal Cord Regeneration. Int. J. Mol. Sci. 2023, 24, 13642. [Google Scholar] [CrossRef]
- Nheu, D.; Ellen, O.; Ye, S.; Ozturk, E.; Pagnin, M.; Kertadjaja, S.; Theotokis, P.; Grigoriadis, N.; McLean, C.; Petratos, S. Modulation of the Microglial Nogo-A/NgR Signaling Pathway as a Therapeutic Target for Multiple Sclerosis. Cells 2022, 11, 3768. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Bian, Q.; Wang, Q.; Shi, Y.; Zhao, Z.; Yu, H. The role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. Front. Oncol. 2022, 12, 948110. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, F.; Li, Z.; Jiang, Y.; Li, J.; Yu, S.; Hu, X.; Ouyang, F.; Zheng, M.; Cheng, L.; et al. Dynamic phosphorylation of Fascin-1 orchestrates microglial phagocytosis and neurological recovery after spinal cord injury. J. Neuroinflamm. 2025, 22, 121. [Google Scholar] [CrossRef] [PubMed]
- Landau, A.M. Novel Imaging Biomarkers for Brain PET Imaging. Biomolecules 2025, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Zhang, Z.; Wu, S.; Ye, K. Positron emission tomography tracers for synucleinopathies. Mol. Neurodegener. 2025, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, R. Microglia/Macrophages in Autoimmune Demyelinating Encephalomyelitis (Multiple Sclerosis/Neuromyelitis Optica). Int. J. Mol. Sci. 2025, 26, 3585. [Google Scholar] [CrossRef]
- Feng, S.; Tang, D.; Wang, Y.; Li, X.; Bao, H.; Tang, C.; Dong, X.; Li, X.; Yang, Q.; Yan, Y.; et al. The mechanism of ferroptosis and its related diseases. Mol. Biomed. 2023, 4, 33. [Google Scholar] [CrossRef]
- Tetzlaff, S.K.; Reyhan, E.; Layer, N.; Bengtson, C.P.; Heuer, A.; Schroers, J.; Faymonville, A.J.; Langeroudi, A.P.; Drewa, N.; Keifert, E.; et al. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell 2025, 188, 390–411.e36. [Google Scholar] [CrossRef]
- Liu, K.; Li, Y.; Shen, M.; Xu, W.; Wu, S.; Yang, X.; Zhang, B.; Lin, N. Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment. Biomolecules 2025, 15, 71. [Google Scholar] [CrossRef]
- Zhu, S.; Diao, S.; Liu, X.; Zhang, Z.; Liu, F.; Chen, W.; Lu, X.; Luo, H.; Cheng, X.; Liao, Q.; et al. Biomaterial-based strategies: A new era in spinal cord injury treatment. Neural Regen. Res. 2025, 20, 3476–3500. [Google Scholar] [CrossRef]
- Park, C.S.; Lee, J.Y.; Yune, T.Y. Imatinib prevents blood-spinal cord barrier disruption by inhibiting PDGFR-mediated JMJD3 expression and activation after spinal cord injury. Fluids Barriers CNS 2025, 22, 76. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, N.M.H.; Peters, D.C.; Galiana, G.; Sinusas, A.J. Clinical physiology: The crucial role of MRI in evaluation of peripheral artery disease. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H1304–H1323. [Google Scholar] [CrossRef] [PubMed]
- La Sala, G.; Farini, D. Glial Cells and Aging: From the CNS to the Cerebellum. Int. J. Mol. Sci. 2025, 26, 7553. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Luo, R.; Zhao, L.; Chen, D.; Cao, L.; Jin, Z.; Li, K.; Wang, M. Exosomes: A Promising Cell-Free Therapeutic Tool for Treating Cutaneous Nerve Injuries and Promoting Wound Healing. Int. J. Mol. Sci. 2025, 26, 5323. [Google Scholar] [CrossRef]
- Shi, L.; Han, X.; Liu, F.; Long, J.; Jin, Y.; Chen, S.; Duan, G.; Yang, H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr. Issues Mol. Biol. 2024, 46, 7558–7576. [Google Scholar] [CrossRef]
- Capitanescu, B.; Hermann, D.M.; Surugiu, R.; Guzman, R.; Olaru, D.G.; Popa-Wagner, A. Advances in brain remodeling, stem cell therapies, and translational barriers in stroke and brain aging. Biogerontology 2025, 26, 143. [Google Scholar] [CrossRef]
- Weidner, N.; Abel, R.; Maier, D.; Röhl, K.; Röhrich, F.; Baumberger, M.; Hund-Georgiadis, M.; Saur, M.; Benito-Penalva, J.; Rehahn, K.; et al. Safety and efficacy of intrathecal antibodies to Nogo-A in patients with acute cervical spinal cord injury: A randomised, double-blind, multicentre, placebo-controlled, phase 2b trial. Lancet Neurol. 2025, 24, 42–53, Erratum in Lancet Neurol. 2025, 24, e7. [Google Scholar] [CrossRef]
- Liu, L.; Li, T.; Chang, J.; Xia, X.; Ju, J. Microglia inversely regulate the level of perineuronal nets with the treatment of lipopolysaccharide and valproic acid. Neurosci. Lett. 2024, 842, 137992. [Google Scholar] [CrossRef]
- Alexander, G.M.; Nikolova, V.D.; Stöber, T.M.; Gruzdev, A.; Moy, S.S.; Dudek, S.M. Perineuronal Nets on CA2 Pyramidal Cells and Parvalbumin-Expressing Cells Differentially Regulate Hippocampal-Dependent Memory. J. Neurosci. 2025, 45, e1626242024. [Google Scholar] [CrossRef]
- Wang, H.; Feng, N.; Liu, C.; Xie, Y.; Zhou, Z.; Zhao, H.; Xiao, G.; Yang, D. Inhibition of CSPG-PTPσ Activates Autophagy Flux and Lysosome Fusion, Aids Axon and Synaptic Reorganization in Spinal Cord Injury. Mol. Neurobiol. 2025, 62, 773–785. [Google Scholar] [CrossRef]
- Michel-Flutot, P.; Cheng, L.; Thomas, S.J.; Lisi, B.; Schwartz, H.; Lam, S.; Lyttle, M.; Jaffe, D.A.; Smith, G.; Li, S.; et al. PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury. bioRxiv 2024. bioRxiv:2024.01.10.575021. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Noristani, H.N.; Zhai, J.; Manire, M.; Zhai, J.; Li, S.; Zhong, J.; Son, Y.-J. Deleting PTEN, but not SOCS3 or myelin inhibitors, robustly boosts BRAF-elicited intraspinal regeneration of peripheral sensory axons. bioRxiv 2024. bioRxiv:2024.09.18.613685. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, K.; Uyeda, A.; Quan, L.; Tanabe, S.; Kato, Y.; Kawahara, Y.; Muramatsu, R. Synaptotagmin 4 Supports Spontaneous Axon Sprouting after Spinal Cord Injury. J. Neurosci. 2024, 44, e1593232024. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Nemati, S.; Karimi-Abdolrezaee, S. Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury. Stem Cell Rep. 2024, 19, 1451–1473. [Google Scholar] [CrossRef]
- Rao, Y.; Li, J.; Qiao, R.; Luo, J.; Liu, Y. Synergistic effects of tetramethylpyrazine and astragaloside IV on spinal cord injury via alteration of astrocyte A1/A2 polarization through the Sirt1-NF-κB pathway. Int. Immunopharmacol. 2024, 131, 111686. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, D.; Li, L.; Qu, D.; Shi, W.; Xie, L.; Jiang, Q.; Li, H.; Yu, T.; Qi, C.; et al. M2 Microglia-derived Exosomes Promote Spinal Cord Injury Recovery in Mice by Alleviating A1 Astrocyte Activation. Mol. Neurobiol. 2024, 61, 7009–7025. [Google Scholar] [CrossRef]
- Song, W.; Fu, R.; Yuan, Z.; Liu, Y.; Kao, Y.; Zhang, R.; Gu, G.; Zhu, H.; Liu, H.; Zhang, Z.; et al. Targeting RelA/NLRP3/CCL3 axis mitigates microglia inflammatory response and promotes recovery after spinal cord injury. Brain. Behav. Immun. 2025, 129, 801–817. [Google Scholar] [CrossRef]
- Brennan, F.H.; Swarts, E.A.; Kigerl, K.A.; Mifflin, K.A.; Guan, Z.; Noble, B.T.; Wang, Y.; Witcher, K.G.; Godbout, J.P.; Popovich, P.G. Microglia promote maladaptive plasticity in autonomic circuitry after spinal cord injury in mice. Sci. Transl. Med. 2024, 16, eadi3259. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Qi, E.; Wu, M.; Sun, H.; Zhang, T.; Jiang, Y.; Li, H.; Jiang, R.; Li, C.; et al. ISRIB facilitates post-spinal cord injury recovery through attenuation of neuronal apoptosis and modulation of neuroinflammation. J. Orthop. Transl. 2025, 51, 119–131. [Google Scholar] [CrossRef]
- Tang, X.; Deng, P.; Li, L.; He, Y.; Wang, J.; Hao, D.; Yang, H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res. Ther. 2024, 15, 482. [Google Scholar] [CrossRef]
- Covache-Busuioc, R.-A.; Toader, C.; Rădoi, M.P.; Șerban, M. Precision Recovery After Spinal Cord Injury: Integrating CRISPR Technologies, AI-Driven Therapeutics, Single-Cell Omics, and System Neuroregeneration. Int. J. Mol. Sci. 2025, 26, 6966. [Google Scholar] [CrossRef]
- Azeez, S.S.; Hamad, R.S.; Hamad, B.K.; Shekha, M.S.; Bergsten, P. Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Front. Genome Ed. 2024, 6, 1509924. [Google Scholar] [CrossRef]
- Guo, R.; Sun, X.; Wang, F.; Han, D.; Yang, Q.; Gao, H.; Li, Z.; Shao, Z.; Shi, J.; Yang, R.; et al. Engineered IscB-ωRNA system with improved base editing efficiency for disease correction via single AAV delivery in mice. Cell Rep. 2024, 43, 114973. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhou, X.; Wen, M.; Qiao, J.; Li, G.; Yao, Y. CRISPR–Cas13: Pioneering RNA Editing for Nucleic Acid Therapeutics. Biodesign Res. 2024, 6, 0041. [Google Scholar] [CrossRef] [PubMed]
- Melzer, N.; Meuth, S.G.; Barbaric, I.; Krutmann, J.; Rossi, A. SPRINGing forward: Advancing RNA editing efficiency and precision with engineered ADAR2. Mol. Ther. Nucleic Acids 2025, 36, 102517. [Google Scholar] [CrossRef] [PubMed]
- Terrey, M.; Krivoshein, G.; Adamson, S.I.; Arystarkhova, E.; Anderson, L.; Szwec, J.; McKee, S.; Jones, H.; Perkins, S.; Selvam, V.; et al. Alternating hemiplegia of childhood associated mutations in Atp1a3 reveal diverse neurological alterations in mice. Neurobiol. Dis. 2025, 212, 106954. [Google Scholar] [CrossRef]
- Pulecio, J.; Verma, N.; Mejía-Ramírez, E.; Huangfu, D.; Raya, A. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 2017, 21, 431–447. [Google Scholar] [CrossRef]
- Olawade, D.B.; Rashad, I.; Egbon, E.; Teke, J.; Ovsepian, S.V.; Boussios, S. Reversing Epigenetic Dysregulation in Neurodegenerative Diseases: Mechanistic and Therapeutic Considerations. Int. J. Mol. Sci. 2025, 26, 4929. [Google Scholar] [CrossRef]
- Dyck, S.; Kataria, H.; Alizadeh, A.; Santhosh, K.T.; Lang, B.; Silver, J.; Karimi-Abdolrezaee, S. Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTPσ receptors promotes a beneficial inflammatory response following spinal cord injury. J. Neuroinflamm. 2018, 15, 90. [Google Scholar] [CrossRef]
- Long, Z.; Luo, Y.; Yu, M.; Wang, X.; Zeng, L.; Yang, K. Targeting ferroptosis: A new therapeutic opportunity for kidney diseases. Front. Immunol. 2024, 15, 1435139. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, X.; Chen, Z.; Ma, Y. Targeting Ferroptosis in Tumors: Novel Marine-Derived Compounds as Regulators of Lipid Peroxidation and GPX4 Signaling. Mar. Drugs 2025, 23, 258. [Google Scholar] [CrossRef]
- Bayraktar, E.; Bayraktar, R.; Oztatlici, H.; Lopez-Berestein, G.; Amero, P.; Rodriguez-Aguayo, C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Non-Coding RNA 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhao, Z.; Kong, W.; Han, C.; Shen, X.; Zhou, C. Biological role of matrix stiffness in tumor growth and treatment. J. Transl. Med. 2022, 20, 540. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Kang, T.; Zhang, J.; Yang, K.; Liu, Y.; Song, K.; Lin, Q.; Dixit, D.; Gimple, R.C.; Zhang, Q.; et al. Combined targeting of glioblastoma stem cells of different cellular states disrupts malignant progression. Nat. Commun. 2025, 16, 2974. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Zou, C.; Pak, J.; Morse, A.; Pang, D.; Casey-Clyde, T.; Borah, A.A.; Wu, D.; Seo, K.; O’Loughlin, T.; et al. In vivo perturb-seq of cancer and microenvironment cells dissects oncologic drivers and radiotherapy responses in glioblastoma. Genome Biol. 2024, 25, 256. [Google Scholar] [CrossRef]
- Onesto, M.; Kim, J.; Pasca, S.P. Assembloid models of cell-cell interaction to study tissue and disease biology. Cell Stem Cell 2024, 31, 1563–1573. [Google Scholar] [CrossRef]
- Metzner, E.; Southard, K.M.; Norman, T.M. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Cell Syst. 2025, 16, 101161. [Google Scholar] [CrossRef]
- Fang, Y.; Li, X.; Tian, R. Unlocking Glioblastoma Vulnerabilities with CRISPR-Based Genetic Screening. Int. J. Mol. Sci. 2024, 25, 5702. [Google Scholar] [CrossRef]
- Larsson, A.J.M.; Johnsson, P.; Hagemann-Jensen, M.; Hartmanis, L.; Faridani, O.R.; Reinius, B.; Segerstolpe, Å.; Rivera, C.M.; Ren, B.; Sandberg, R. Genomic encoding of transcriptional burst kinetics. Nature 2019, 565, 251–254. [Google Scholar] [CrossRef]
- Roohani, Y.; Huang, K.; Leskovec, J. Predicting transcriptional outcomes of novel multigene perturbations with GEARS. Nat. Biotechnol. 2024, 42, 927–935. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, C.; Jiao, F. A generalized moment-based method for estimating parameters of stochastic gene transcription. Math. Biosci. 2022, 345, 108780. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C. Correlation and distinction between stochastic gene transcription models with and without polymerase dynamics. Phys. Rev. Res. 2025, 7, 023050. [Google Scholar] [CrossRef]
- Mandalawatta, H.P.; Rajendra, K.C.; Fairfax, K.; Hewitt, A.W. Emerging trends in virus and virus-like particle gene therapy delivery to the brain. Mol. Ther. Nucleic Acids 2024, 35, 102280. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Daugherty, A.L.; Khadir, F.; Duzenli, O.F.; Hoffman, A.; Tinklenberg, J.A.; Kang, P.B.; Aslanidi, G.; Pacak, C.A. AAV-DJ is superior to AAV9 for targeting brain and spinal cord, and de-targeting liver across multiple delivery routes in mice. J. Transl. Med. 2024, 22, 824. [Google Scholar] [CrossRef]
- Thomas, J.; Kumar, V.; Sharma, N.; John, N.; Umesh, M.; Kumar Dasarahally Huligowda, L.; Kaur, K.; Utreja, D. Recent approaches in nanotoxicity assessment for drug delivery applications: Challenges and prospects. Med. Drug Discov. 2025, 25, 100204. [Google Scholar] [CrossRef]
- Pandey, A.C.; Bezney, J.; DeAscanis, D.; Kirsch, E.B.; Ahmed, F.; Crinklaw, A.; Choudhary, K.S.; Mandala, T.; Deason, J.; Hamidi, J.S.; et al. A CRISPR/Cas9-based enhancement of high-throughput single-cell transcriptomics. Nat. Commun. 2025, 16, 4664. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery. Int. J. Mol. Sci. 2025, 26, 7364. [Google Scholar] [CrossRef]
- Uddin, F.; Rudin, C.M.; Sen, T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front. Oncol. 2020, 10, 1387. [Google Scholar] [CrossRef]
- Akbar, A.; Haider, R.; Agnello, L.; Noor, B.; Maqsood, N.; Atif, F.; Ali, W.; Ciaccio, M.; Tariq, H. CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies. Genes 2025, 16, 850. [Google Scholar] [CrossRef]
- Yan, W.; Deng, J.; Zhang, J.; Gao, K.; Yi, H.; Zhang, J.; Zhang, F.; Wang, J.; Jiang, Y.; Wu, Y. Effects of the Small-Molecule ISRIB on the Rapid and Efficient Myelination of Oligodendrocytes in Human Stem Cell-Derived Cerebral Organoids in Patients With Leukoencephalopathy With Vanishing White Matter. CNS Neurosci. Ther. 2025, 31, e70398. [Google Scholar] [CrossRef]
- Stojiljkovic, M.R.; Schmeer, C.; Witte, O.W. Pharmacological Depletion of Microglia Leads to a Dose-Dependent Reduction in Inflammation and Senescence in the Aged Murine Brain. Neuroscience 2022, 488, 1–9. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, X.; Wright, N.; Wang, W.; Ye, Y.; Asbury, J.; Li, Y.; Zhu, C.; Wu, R.; Wang, S.; et al. PTPσ-mediated PI3P regulation modulates neurodegeneration in C9ORF72-ALS/FTD. Neuron 2025, 113, 1190–1205.e9. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.C.-L.; Jian, M.; Ma, O.K.-F.; Xiang, A.W.; Bunting, M.; Kwan, J.S.-C.; Wong, C.W.-K.; Yick, L.-W.; Chung, S.K.; Lam, K.S.-L.; et al. Liver-specific adiponectin gene therapy suppresses microglial NLRP3-inflammasome activation for treating Alzheimer’s disease. J. Neuroinflamm. 2024, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Kumamaru, H.; Lu, P.; Rosenzweig, E.S.; Kadoya, K.; Tuszynski, M.H. Regenerating Corticospinal Axons Innervate Phenotypically Appropriate Neurons within Neural Stem Cell Grafts. Cell Rep. 2019, 26, 2329–2339.e4. [Google Scholar] [CrossRef] [PubMed]
- Bijlani, S.; Pang, K.M.; Bugga, L.V.; Rangasamy, S.; Narayanan, V.; Chatterjee, S. Nuclease-free precise genome editing corrects MECP2 mutations associated with Rett syndrome. Front. Genome Ed. 2024, 6, 1346781. [Google Scholar] [CrossRef]
- Zhou, M.; Cao, Y.; Sui, M.; Shu, X.; Wan, F.; Zhang, B. Dead Cas(t) light on new life: CRISPRa-mediated reprogramming of somatic cells into neurons. Cell. Mol. Life Sci. CMLS 2022, 79, 315. [Google Scholar] [CrossRef]
- Baião, A.R.; Cai, Z.; Poulos, R.C.; Robinson, P.J.; Reddel, R.R.; Zhong, Q.; Vinga, S.; Gonçalves, E. A technical review of multi-omics data integration methods: From classical statistical to deep generative approaches. Brief. Bioinform. 2025, 26, bbaf355. [Google Scholar] [CrossRef]
- Vaida, M.; Wu, J.; Himdiat, E.; Haince, J.-F.; Bux, R.A.; Huang, G.; Tappia, P.S.; Ramjiawan, B.; Ford, W.R. M-GNN: A Graph Neural Network Framework for Lung Cancer Detection Using Metabolomics and Heterogeneous Graph Modeling. Int. J. Mol. Sci. 2025, 26, 4655. [Google Scholar] [CrossRef]
- Gatlin, V.; Gupta, S.; Romero, S.; Chapkin, R.S.; Cai, J.J. Exploring cell-to-cell variability and functional insights through differentially variable gene analysis. npj Syst. Biol. Appl. 2025, 11, 29. [Google Scholar] [CrossRef]
- Liu, D.; Sopasakis, A. A combined neural ODE-Bayesian optimization approach to resolve dynamics and estimate parameters for a modified SIR model with immune memory. Heliyon 2024, 10, e38276. [Google Scholar] [CrossRef]
- Liu, Y.; Seguin, C.; Betzel, R.F.; Han, D.; Akarca, D.; Di Biase, M.A.; Zalesky, A. A generative model of the connectome with dynamic axon growth. Netw. Neurosci. 2024, 8, 1192–1211. [Google Scholar] [CrossRef]
- Zheng, Y.; Fuse, H.; Alzoubi, I.; Graeber, M.B. Microglia-Derived Brain Macrophages Associate with Glioblastoma Stem Cells: A Potential Mechanism for Tumor Progression Revealed by AI-Assisted Analysis. Cells 2025, 14, 413. [Google Scholar] [CrossRef]
- Purnama, C.A.; Meiliana, A.; Barliana, M.I.; Lestari, K. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Cell Div. 2023, 18, 5. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Kang, Y.; Zhou, J.; Yi, M. Harnessing the evolving CRISPR/Cas9 for precision oncology. J. Transl. Med. 2024, 22, 749. [Google Scholar] [CrossRef]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. The Collapse of Brain Clearance: Glymphatic-Venous Failure, Aquaporin-4 Breakdown, and AI-Empowered Precision Neurotherapeutics in Intracranial Hypertension. Int. J. Mol. Sci. 2025, 26, 7223. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Duché, G.; Sanderson, J.M. The Chemical Reactivity of Membrane Lipids. Chem. Rev. 2024, 124, 3284–3330. [Google Scholar] [CrossRef] [PubMed]
- Orenuga, S.; Jordache, P.; Mirzai, D.; Monteros, T.; Gonzalez, E.; Madkoor, A.; Hirani, R.; Tiwari, R.K.; Etienne, M. Traumatic Brain Injury and Artificial Intelligence: Shaping the Future of Neurorehabilitation—A Review. Life 2025, 15, 424. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, G.; Nitsche, M.A.; Bergmann, T.O.; Towhidkhah, F.; Violante, I.R.; Lorenz, R.; Kuplicki, R.; Tsuchiyagaito, A.; Mulyana, B.; Mayeli, A.; et al. Closing the loop between brain and electrical stimulation: Towards precision neuromodulation treatments. Transl. Psychiatry 2023, 13, 279. [Google Scholar] [CrossRef]
- Hasan, S.; D’auria, B.G.; Mahmud, M.A.P.; Adams, S.D.; Long, J.M.; Kong, L.; Kouzani, A.Z. AI-Aided Gait Analysis with a Wearable Device Featuring a Hydrogel Sensor. Sensors 2024, 24, 7370. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, C.; He, S.; Zhao, C.; Zhang, K.; Wang, X.; Li, Y. An Adaptive Brain-Computer Interface to Enhance Motor Recovery After Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2023, 31, 2268–2278. [Google Scholar] [CrossRef]
- Chehelgerdi, M.; Chehelgerdi, M.; Allela, O.Q.B.; Pecho, R.D.C.; Jayasankar, N.; Rao, D.P.; Thamaraikani, T.; Vasanthan, M.; Viktor, P.; Lakshmaiya, N.; et al. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023, 22, 169. [Google Scholar] [CrossRef]
- Johnson, B.; Curtius, K. Digital twins are integral to personalizing medicine and improving public health. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 740–741. [Google Scholar] [CrossRef]
- Wang, H.; Arulraj, T.; Ippolito, A.; Popel, A.S. From virtual patients to digital twins in immuno-oncology: Lessons learned from mechanistic quantitative systems pharmacology modeling. npj Digit. Med. 2024, 7, 189. [Google Scholar] [CrossRef] [PubMed]
- Fleck, J.S.; Jansen, S.M.J.; Wollny, D.; Zenk, F.; Seimiya, M.; Jain, A.; Okamoto, R.; Santel, M.; He, Z.; Camp, J.G.; et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature 2023, 621, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Wynn, E.A.; Mould, K.J.; Vestal, B.E.; Moore, C.M. Simulating paired and longitudinal single-cell RNA sequencing data with rescueSim. Bioinformatics 2025, 41, btaf442. [Google Scholar] [CrossRef]
- Li, Q.; Hu, Z.; Wang, Y.; Li, L.; Fan, Y.; King, I.; Jia, G.; Wang, S.; Song, L.; Li, Y. Progress and opportunities of foundation models in bioinformatics. Brief. Bioinform. 2024, 25, bbae548. [Google Scholar] [CrossRef]
- Ben-Eltriki, M.; Rafiq, A.; Paul, A.; Prabhu, D.; Afolabi, M.O.S.; Baslhaw, R.; Neilson, C.J.; Driedger, M.; Mahmud, S.M.; Lacaze-Masmonteil, T.; et al. Adaptive designs in clinical trials: A systematic review-part I. BMC Med. Res. Methodol. 2024, 24, 229. [Google Scholar] [CrossRef]
- Lazaros, K.; Koumadorakis, D.E.; Vrahatis, A.G.; Kotsiantis, S. Federated Learning: Navigating the Landscape of Collaborative Intelligence. Electronics 2024, 13, 4744. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef]
- Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L.; Mesin, L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering 2023, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, W.; Wang, J.; Hu, X.; Wu, Z.; Li, C.; Xiao, Z.; Ma, B.; Cheng, L. Tracing the evolving dynamics and research hotspots of spinal cord injury and surgical decompression from 1975 to 2024: A bibliometric analysis. Front. Neurol. 2024, 15, 1442145. [Google Scholar] [CrossRef] [PubMed]
- Basiratzadeh, S.; Hakimjavadi, R.; Baddour, N.; Michalowski, W.; Viktor, H.; Wai, E.; Stratton, A.; Kingwell, S.; Mac-Thiong, J.-M.; Tsai, E.C.; et al. A data-driven approach to categorize patients with traumatic spinal cord injury: Cluster analysis of a multicentre database. Front. Neurol. 2023, 14, 1263291. [Google Scholar] [CrossRef]
- Ahanger, A.B.; Aalam, S.W.; Masoodi, T.A.; Shah, A.; Khan, M.A.; Bhat, A.A.; Assad, A.; Macha, M.A.; Bhat, M.R. Radiogenomics and machine learning predict oncogenic signaling pathways in glioblastoma. J. Transl. Med. 2025, 23, 121. [Google Scholar] [CrossRef]
- Astaraki, M.; Häger, W.; Lazzeroni, M.; Toma-Dasu, I. Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling. Phys. Med. 2025, 129, 104881. [Google Scholar] [CrossRef]
- Awuah, W.A.; Ben-Jaafar, A.; Roy, S.; Nkrumah-Boateng, P.A.; Tan, J.K.; Abdul-Rahman, T.; Atallah, O. Predicting survival in malignant glioma using artificial intelligence. Eur. J. Med. Res. 2025, 30, 61. [Google Scholar] [CrossRef]
- Redlich, J.-P.; Feuerhake, F.; Weis, J.; Schaadt, N.S.; Teuber-Hanselmann, S.; Buck, C.; Luttmann, S.; Eberle, A.; Nikolin, S.; Appenzeller, A.; et al. Applications of artificial intelligence in the analysis of histopathology images of gliomas: A review. Npj Imaging 2024, 2, 16. [Google Scholar] [CrossRef]
- Patil, C.; Priyanka, R.; Harshitha, B.M.; Oshik, S.; Yashwanth, S.; Darshan, B.R.; Patil, S.; Prajwal, K.A.; Naik, P.; Goudanavar, P.; et al. Advanced nanotheranostic approaches for targeted glioblastoma treatment: A synergistic fusion of CRISPR-Cas gene editing, AI-driven tumor profiling, and BBB-modulation. Med. Oncol. 2025, 42, 413. [Google Scholar] [CrossRef]
- Moreau, N.N.; Valable, S.; Jaudet, C.; Dessoude, L.; Thomas, L.; Hérault, R.; Modzelewski, R.; Stefan, D.; Thariat, J.; Lechervy, A.; et al. Early characterization and prediction of glioblastoma and brain metastasis treatment efficacy using medical imaging-based radiomics and artificial intelligence algorithms. Front. Oncol. 2025, 15, 1497195. [Google Scholar] [CrossRef]
- Dalky, A.; Altawalbih, M.; Alshanik, F.; Khasawneh, R.A.; Tawalbeh, R.; Al-Dekah, A.M.; Alrawashdeh, A.; Quran, T.O.; ALBashtawy, M. Global Research Trends, Hotspots, Impacts, and Emergence of Artificial Intelligence and Machine Learning in Health and Medicine: A 25-Year Bibliometric Analysis. Healthcare 2025, 13, 892. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, T.; Li, Z.; Wei, W.; Zhao, Q.; Wang, S. Dynamic Transcriptomic and Cellular Remodeling Underlie Cuprizone-Induced Demyelination and Endogenous Repair in the CNS. Antioxidants 2025, 14, 692. [Google Scholar] [CrossRef]
- Srivastav, A.K.; Mishra, M.K.; Lillard, J.W.; Singh, R. Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. Pharmaceutics 2025, 17, 555. [Google Scholar] [CrossRef]
- Garmany, A.; Terzic, A. Artificial intelligence powers regenerative medicine into predictive realm. Regen. Med. 2024, 19, 611–616. [Google Scholar] [CrossRef]
- Wathen, C.A.; Ghenbot, Y.G.; Ozturk, A.K.; Cullen, D.K.; O’Donnell, J.C.; Petrov, D. Porcine Models of Spinal Cord Injury. Biomedicines 2023, 11, 2202. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, L.; Nie, Z.; Hu, P.; Zheng, J.; Lv, J.; Cui, T.; Liu, C.; Lan, X. Research on the developments of artificial intelligence in radiomics for oncology over the past decade: A bibliometric and visualized analysis. Discov. Oncol. 2025, 16, 763. [Google Scholar] [CrossRef] [PubMed]
- Tsata, V.; Wehner, D. Know How to Regrow—Axon Regeneration in the Zebrafish Spinal Cord. Cells 2021, 10, 1404. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yao, D.; Imaizumi, K.; Chen, X.; Kelley, K.W.; Reis, N.; Thete, M.V.; Arjun McKinney, A.; Kulkarni, S.; Panagiotakos, G.; et al. Assembloid CRISPR screens reveal impact of disease genes in human neurodevelopment. Nature 2023, 622, 359–366. [Google Scholar] [CrossRef]
- Davis-Anderson, K.; Micheva-Viteva, S.; Solomon, E.; Hovde, B.; Cirigliano, E.; Harris, J.; Twary, S.; Iyer, R. CRISPR/Cas9 Directed Reprogramming of iPSC for Accelerated Motor Neuron Differentiation Leads to Dysregulation of Neuronal Fate Patterning and Function. Int. J. Mol. Sci. 2023, 24, 16161. [Google Scholar] [CrossRef]
- Chen, F.; Chen, L.; Yan, Z.; Xu, J.; Feng, L.; He, N.; Guo, M.; Zhao, J.; Chen, Z.; Chen, H.; et al. Recent advances of CRISPR-based genome editing for enhancing staple crops. Front. Plant Sci. 2024, 15, 1478398. [Google Scholar] [CrossRef]
- Chopra, N.; Menounos, S.; Choi, J.P.; Hansbro, P.M.; Diwan, A.D.; Das, A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NeuroSci 2022, 3, 1–27. [Google Scholar] [CrossRef]
- Gonzalez-Franco, J.D.; Galaviz-Mosqueda, A.; Villarreal-Reyes, S.; Lozano-Rizk, J.E.; Rivera-Rodriguez, R.; Gonzalez-Trejo, J.E.; Licea-Navarro, A.-F.; Lozoya-Arandia, J.; Ibarra-Flores, E.A. Revolutionizing Cardiac Risk Assessment: AI-Powered Patient Segmentation Using Advanced Machine Learning Techniques. Mach. Learn. Knowl. Extr. 2025, 7, 46. [Google Scholar] [CrossRef]
- Zelek, W.M.; Tenner, A.J. Complement therapeutics in neurodegenerative diseases. Immunobiology 2025, 230, 153089. [Google Scholar] [CrossRef]
- Du, J.; Yang, Y.-C.; An, Z.-J.; Zhang, M.-H.; Fu, X.-H.; Huang, Z.-F.; Yuan, Y.; Hou, J. Advances in spatial transcriptomics and related data analysis strategies. J. Transl. Med. 2023, 21, 330. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, J.; Fei, N.; Li, G.; Hu, Y. A Deep-Learning-Based Diffusion Tensor Imaging Pathological Auto-Analysis Method for Cervical Spondylotic Myelopathy. Bioengineering 2025, 12, 806. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, D.; Morelli, S. Exploring the Potential of Digital Twins in Cancer Treatment: A Narrative Review of Reviews. J. Clin. Med. 2025, 14, 3574. [Google Scholar] [CrossRef]
- Geoffroy, C.G.; Meves, J.M.; Kim, H.J.M.; Romaus-Sanjurjo, D.; Sutherland, T.C.; Li, J.J.; Suen, J.; Sanchez, J.J.; Zheng, B. Targeting PTEN but not SOCS3 resists an age-dependent decline in promoting axon sprouting. iScience 2022, 25, 105383. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Navarro, K.J.; Guarino, V.; Alvarez-Perez, M.A. Converging Electrospinning and 3D-Printing Technologies: From Innovative Design for Tissue Engineering to Global Patent Trends and Technology Transfer. Fibers 2025, 13, 83. [Google Scholar] [CrossRef]
- Sendrowski, J.; Bataillon, T.; Ramstein, G.P. In silico prediction of variant effects: Promises and limitations for precision plant breeding. Theor. Appl. Genet. 2025, 138, 193. [Google Scholar] [CrossRef]
- Pinjala, P.; Tryphena, K.P.; Prasad, R.; Khatri, D.K.; Sun, W.; Singh, S.B.; Gugulothu, D.; Srivastava, S.; Vora, L. CRISPR/Cas9 assisted stem cell therapy in Parkinson’s disease. Biomater. Res. 2023, 27, 46. [Google Scholar] [CrossRef]
- Omigbodun, F.T.; Oladapo, B.I. AI-Optimized Lattice Structures for Biomechanics Scaffold Design. Biomimetics 2025, 10, 88. [Google Scholar] [CrossRef]
- Gil-Agudo, Á.; Megía-García, Á.; Pons, J.L.; Sinovas-Alonso, I.; Comino-Suárez, N.; Lozano-Berrio, V.; del-Ama, A.J. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: Results from a randomized controlled trial. J. NeuroEng. Rehabil. 2023, 20, 36, Erratum in J. NeuroEng. Rehabil. 2023, 20, 160. [Google Scholar] [CrossRef]
- Raffaele, I.; Cipriano, G.L.; Anchesi, I.; Oddo, S.; Silvestro, S. CRISPR/Cas9 and iPSC-Based Therapeutic Approaches in Alzheimer’s Disease. Antioxidants 2025, 14, 781. [Google Scholar] [CrossRef] [PubMed]
- Coser, O.; Tamantini, C.; Soda, P.; Zollo, L. AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: A review. Front. Robot. AI 2024, 11, 1341580. [Google Scholar] [CrossRef] [PubMed]
- Cashaback, J.G.A.; Allen, J.L.; Chou, A.H.-Y.; Lin, D.J.; Price, M.A.; Secerovic, N.K.; Song, S.; Zhang, H.; Miller, H.L. NSF DARE—Transforming modeling in neurorehabilitation: A patient-in-the-loop framework. J. Neuroeng. Rehabil. 2024, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Mageswaran, N.; Zainal, S.H.; Hassan, N.I.; Abd Karim, N.H.; Ismail, N.A.S. Emerging Biomarkers and Electrochemical Biosensors for Early Detection of Premature Coronary Artery Disease. Diagnostics 2025, 15, 940. [Google Scholar] [CrossRef]
- Kudłacik-Kramarczyk, S.; Kieres, W.; Przybyłowicz, A.; Ziejewska, C.; Marczyk, J.; Krzan, M. Recent Advances in Micro- and Nano-Enhanced Intravascular Biosensors for Real-Time Monitoring, Early Disease Diagnosis, and Drug Therapy Monitoring. Sensors 2025, 25, 4855. [Google Scholar] [CrossRef]
- Thenuwara, G.; Javed, B.; Singh, B.; Tian, F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. Sensors 2024, 24, 2865. [Google Scholar] [CrossRef]
- Ma, C.; Yu, A.; He, T.; Qian, Y.; Hu, M. Stem Cell Therapy Approaches for Ischemia: Assessing Current Innovations and Future Directions. Int. J. Mol. Sci. 2025, 26, 6320. [Google Scholar] [CrossRef]
- Kamma, E.; Lasisi, W.; Libner, C.; Ng, H.S.; Plemel, J.R. Central nervous system macrophages in progressive multiple sclerosis: Relationship to neurodegeneration and therapeutics. J. Neuroinflamm. 2022, 19, 45. [Google Scholar] [CrossRef]
- Riza, Y.M.; Alzahrani, F.A. Rewiring the Spine—Cutting-Edge Stem Cell Therapies for Spinal Cord Repair. Int. J. Mol. Sci. 2025, 26, 5048. [Google Scholar] [CrossRef]
- Stewart, A.N.; Gensel, J.C.; Jones, L.; Fouad, K. Challenges in Translating Regenerative Therapies for Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2023, 29, 23–43. [Google Scholar] [CrossRef]
- Rong, L.; Li, N.; Zhang, Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.S.; Sadhu, G. Effect of inosine on recurrence of tumor after radiation therapy: A mathematical investigation. J. Theor. Biol. 2025, 609, 112138. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Wang, Z.; Zhang, J.; Chen, X.; Daniels, C.; Wu, X.; Saulnier, O.; Suzuki, H.; De Antonellis, P.; et al. Unveiling spatial heterogeneity in medulloblastoma: A multi-omics analysis of cellular state and geographical organization. Neuro-Oncology 2025, 27, 1611–1627. [Google Scholar] [CrossRef] [PubMed]
- Bourmeau, G.; Anezo, O.; Raymond, J.; Ballestín, A.; Pichol-Thievend, C.; Reveilles, J.; Thomas, A.; Wang, L.; Miranda, M.; Moutaux, E.; et al. Proneural–mesenchymal hybrid glioblastoma cells are resistant to therapy and dependent on nuclear import. Neuro-Oncology 2025, noaf160. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Yu, S.; Hu, W.; Zhang, Z.; Wang, X.; Yuan, Y.; Wang, M.; Chen, L.; Lin, X.; et al. AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications. Biology 2025, 14, 651. [Google Scholar] [CrossRef]
- Franklin, R.; Zhang, B.; Frazier, J.; Chen, M.; Do, B.T.; Padayao, S.; Wu, K.; Vander Heiden, M.G.; Vakoc, C.R.; Roe, J.-S.; et al. Histone chaperones coupled to DNA replication and transcription control divergent chromatin elements to maintain cell fate. Genes Dev. 2025, 39, 652–675. [Google Scholar] [CrossRef]
- Michaels, Y.S.; Major, M.C.; Bonham-Carter, B.; Zhang, J.; Heydari, T.; Edgar, J.M.; Siu, M.M.; Greenstreet, L.; Vilarrasa-Blasi, R.; Kim, S.; et al. Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells. Cell Syst. 2024, 15, 1245–1263.e10. [Google Scholar] [CrossRef]
- Weber, R.; Vasella, F.; Klimko, A.; Silginer, M.; Lamfers, M.; Neidert, M.C.; Regli, L.; Schwank, G.; Weller, M. Targeting the IDH1R132H mutation in gliomas by CRISPR/Cas precision base editing. Neuro-Oncol. Adv. 2024, 6, vdae182. [Google Scholar] [CrossRef]
- Amirmahani, F.; Kumar, S.; Muthukrishnan, S.D. Epigenetic mechanisms of plasticity and resistance in glioblastoma: Therapeutic targets and implications. Front. Epigenet. Epigenom. 2025, 3, 1519449. [Google Scholar] [CrossRef]
- Song, J.; Yang, P.; Chen, C.; Ding, W.; Tillement, O.; Bai, H.; Zhang, S. Targeting epigenetic regulators as a promising avenue to overcome cancer therapy resistance. Signal Transduct. Target. Ther. 2025, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Vallieri, N.; Datsi, A. Immune Cell Interplay in the Fight Against GBM. Cancers 2025, 17, 817. [Google Scholar] [CrossRef] [PubMed]
- Pouyan, A.; Ghorbanlo, M.; Eslami, M.; Jahanshahi, M.; Ziaei, E.; Salami, A.; Mokhtari, K.; Shahpasand, K.; Farahani, N.; Meybodi, T.E.; et al. Glioblastoma multiforme: Insights into pathogenesis, key signaling pathways, and therapeutic strategies. Mol. Cancer 2025, 24, 58. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Xu, J.; Liu, S. Cancer Stem Cells and Neovascularization. Cells 2021, 10, 1070. [Google Scholar] [CrossRef]
- Richiardone, E.; Al Roumi, R.; Lardinois, F.; Giolito, M.V.; Ambroise, J.; Boidot, R.; Drotleff, B.; Ghesquière, B.; Bellahcène, A.; Bardelli, A.; et al. MCT1-dependent lactate recycling is a metabolic vulnerability in colorectal cancer cells upon acquired resistance to anti-EGFR targeted therapy. Cancer Lett. 2024, 598, 217091. [Google Scholar] [CrossRef]
- Hua, T.; Shi, H.; Zhu, M.; Chen, C.; Su, Y.; Wen, S.; Zhang, X.; Chen, J.; Huang, Q.; Wang, H. Glioma-neuronal interactions in tumor progression: Mechanism, therapeutic strategies and perspectives (Review). Int. J. Oncol. 2022, 61, 104. [Google Scholar] [CrossRef]
- Zhang, Y.; Rabinovsky, R.; Deforzh, E.; Kobayashi, A.; Kuzkina, A.; Varghese, J.F.; Rai, D.; Korecka, J.A.; Khurana, V.; Murugaiyan, G.; et al. Lipid nanoparticle formulation for gene editing and RNA-based therapies for glioblastoma. Neuro-Oncology 2025, noaf162. [Google Scholar] [CrossRef]
- Rojas Cala, E.F.; Béjar, R.; Mateu, C.; Borri, E.; Cabeza, L.F. Artificial Intelligence Applied to Computational Fluid Dynamics and Its Application in Thermal Energy Storage: A Bibliometric Analysis. Appl. Sci. 2025, 15, 7199. [Google Scholar] [CrossRef]
- Premchandani, T.; Tatode, A.; Taksande, J.; Umekar, M.; Qutub, M.; Hussain, U.M.; Singanwad, P. Engineered Exosomes as Smart Drug Carriers: Overcoming Biological Barriers in CNS and Cancer Therapy. Drugs Drug Candidates 2025, 4, 19. [Google Scholar] [CrossRef]
- Sporn, K.; Kumar, R.; Marla, K.; Ravi, P.; Vaja, S.; Paladugu, P.; Zaman, N.; Tavakkoli, A. Epigenetic Profiling of Cell-Free DNA in Cerebrospinal Fluid: A Novel Biomarker Approach for Metabolic Brain Diseases. Life 2025, 15, 1181. [Google Scholar] [CrossRef]
- Heidt, C.M.; Bohn, J.R.; Stollmayer, R.; von Stackelberg, O.; Rheinheimer, S.; Bozorgmehr, F.; Senghas, K.; Schlamp, K.; Weinheimer, O.; Giesel, F.L.; et al. Delta-radiomics features of ADC maps as early predictors of treatment response in lung cancer. Insights Imaging 2024, 15, 218. [Google Scholar] [CrossRef]
- Logun, M.; Wang, X.; Sun, Y.; Bagley, S.J.; Li, N.; Desai, A.; Zhang, D.Y.; Nasrallah, M.P.; Pai, E.L.-L.; Oner, B.S.; et al. Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy. Cell Stem Cell 2025, 32, 181–190.e4. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, T.; Jiang, X.; Li, M.; He, X.; Ma, Y.; Li, X.; Jin, W.; Jiao, Z. Integrating neuroscience and oncology: Neuroimmune crosstalk in the initiation and progression of digestive system tumors. Mol. Cancer 2025, 24, 215. [Google Scholar] [CrossRef] [PubMed]
- Aussel, C.; Cathomen, T.; Fuster-García, C. The hidden risks of CRISPR/Cas: Structural variations and genome integrity. Nat. Commun. 2025, 16, 7208. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef]
- Beall, J.; Elm, J.; Semler, M.W.; Wang, L.; Rice, T.; Kamel, H.; Mack, W.; Mistry, A.M. Design considerations for Factorial Adaptive Multi-Arm Multi-Stage (FAST) clinical trials. Trials 2024, 25, 608. [Google Scholar] [CrossRef]
- Mikołajewska, E.; Masiak, J.; Mikołajewski, D. Applications of Artificial Intelligence-Based Patient Digital Twins in Decision Support in Rehabilitation and Physical Therapy. Electronics 2024, 13, 4994. [Google Scholar] [CrossRef]
- Perez, J.; Fierro, J.; Aguilar, R.; Dou, H. OTME-18. Targeted CRISPR/Cas9 gene-editing regulates the brain tumor environment. Neuro-Oncol. Adv. 2021, 3, ii17. [Google Scholar] [CrossRef]
- Serrano, D.R.; Luciano, F.C.; Anaya, B.J.; Ongoren, B.; Kara, A.; Molina, G.; Ramirez, B.I.; Sánchez-Guirales, S.A.; Simon, J.A.; Tomietto, G.; et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024, 16, 1328. [Google Scholar] [CrossRef]
- Lochhead, J.J.; Ronaldson, P.T.; Davis, T.P. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem. Pharmacol. 2024, 228, 116186. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Greene, C.; Munnich, A.; Campbell, M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023, 20, 22. [Google Scholar] [CrossRef]
- Manu, D.R.; Slevin, M.; Barcutean, L.; Forro, T.; Boghitoiu, T.; Balasa, R. Astrocyte Involvement in Blood–Brain Barrier Function: A Critical Update Highlighting Novel, Complex, Neurovascular Interactions. Int. J. Mol. Sci. 2023, 24, 17146. [Google Scholar] [CrossRef]
- Tang, N.; Wu, J.; Zhu, H.; Yan, H.; Guo, Y.; Cai, Y.; Yan, H.; Shi, Y.; Shu, S.; Pei, L.; et al. Genetic Mutation of GluN2B Protects Brain Cells Against Stroke Damages. Mol. Neurobiol. 2018, 55, 2979–2990. [Google Scholar] [CrossRef] [PubMed]
- Puls, B.; Ding, Y.; Zhang, F.; Pan, M.; Lei, Z.; Pei, Z.; Jiang, M.; Bai, Y.; Forsyth, C.; Metzger, M.; et al. Regeneration of Functional Neurons After Spinal Cord Injury via in situ NeuroD1-Mediated Astrocyte-to-Neuron Conversion. Front. Cell Dev. Biol. 2020, 8, 591883. [Google Scholar] [CrossRef] [PubMed]
- Salloum-Asfar, S.; Ltaief, S.M.; Taha, R.Z.; Nour-Eldine, W.; Abdulla, S.A.; Al-Shammari, A.R. MicroRNA Profiling Identifies Age-Associated MicroRNAs and Potential Biomarkers for Early Diagnosis of Autism. Int. J. Mol. Sci. 2025, 26, 2044. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.A.; Nisar, S.; Mukherjee, S.; Saha, N.; Yarravarapu, N.; Lone, S.N.; Masoodi, T.; Chauhan, R.; Maacha, S.; Bagga, P.; et al. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J. Transl. Med. 2022, 20, 534. [Google Scholar] [CrossRef]
- Das, B.; Yan, R. A Close Look at BACE1 Inhibitors for Alzheimer’s Disease Treatment. CNS Drugs 2019, 33, 251–263. [Google Scholar] [CrossRef]
- Sah, A.K.; Elshaikh, R.H.; Shalabi, M.G.; Abbas, A.M.; Prabhakar, P.K.; Babker, A.M.A.; Choudhary, R.K.; Gaur, V.; Choudhary, A.S.; Agarwal, S. Role of Artificial Intelligence and Personalized Medicine in Enhancing HIV Management and Treatment Outcomes. Life 2025, 15, 745. [Google Scholar] [CrossRef]
- Srinivasan, E.; Chandrasekhar, G.; Chandrasekar, P.; Anbarasu, K.; Vickram, A.S.; Karunakaran, R.; Rajasekaran, R.; Srikumar, P.S. Alpha-Synuclein Aggregation in Parkinson’s Disease. Front. Med. 2021, 8, 736978. [Google Scholar] [CrossRef]
- Birla, M.; Rajan; Roy, P.G.; Gupta, I.; Malik, P.S. Integrating Artificial Intelligence-Driven Wearable Technology in Oncology Decision-Making: A Narrative Review. Oncology 2025, 103, 69–82. [Google Scholar] [CrossRef]
- Olson, G.; Hansmann-Canas, I.; Karimi, Z.; Yazdkhasti, A.; Shabestanipour, G.; Ghaednia, H.; Schwab, J.H. The Impact of AI on the Development of Multimodal Wearable Devices in Musculoskeletal Medicine. HSS J. Musculoskelet. J. Hosp. Spec. Surg. 2025, 21, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Cabré-Romans, J.-J.; Cuella-Martin, R. CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders. Front. Genome Ed. 2025, 7, 1553590. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Li, J.; Cui, B.; Wu, J.; Toischer, K.; Hasenfuß, G.; Xu, X. CRISPR/Cas13-Based Anti-RNA Viral Approaches. Genes 2025, 16, 875. [Google Scholar] [CrossRef]
- Abe, S.; Tago, S.; Yokoyama, K.; Ogawa, M.; Takei, T.; Imoto, S.; Fuji, M. Explainable AI for Estimating Pathogenicity of Genetic Variants Using Large-Scale Knowledge Graphs. Cancers 2023, 15, 1118. [Google Scholar] [CrossRef]
- Freire, M.A.M.; Rocha, G.S.; Bittencourt, L.O.; Falcao, D.; Lima, R.R.; Cavalcanti, J.R.L.P. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? Biology 2023, 12, 1139. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 484040. [Google Scholar] [CrossRef]
- De Luca, A.; Kuijf, H.; Exalto, L.; Thiebaut de Schotten, M.; Biessels, G.-J. Multimodal tract-based MRI metrics outperform whole brain markers in determining cognitive impact of small vessel disease-related brain injury. Brain Struct. Funct. 2022, 227, 2553–2567. [Google Scholar] [CrossRef]
- Huang, W.; Shu, N. AI-powered integration of multimodal imaging in precision medicine for neuropsychiatric disorders. Cell Rep. Med. 2025, 6, 102132. [Google Scholar] [CrossRef]
- Yuan, T.; Tang, H.; Xu, X.; Shao, J.; Wu, G.; Cho, Y.-C.; Ping, Y.; Liang, G. Inflammation conditional genome editing mediated by the CRISPR-Cas9 system. iScience 2023, 26, 106872, Erratum in iScience 2023, 26, 107251. [Google Scholar] [CrossRef]
- Wen, J.; Li, Y.; Deng, W.; Li, Z. Central nervous system and immune cells interactions in cancer: Unveiling new therapeutic avenues. Front. Immunol. 2025, 16, 1528363. [Google Scholar] [CrossRef]
- Jin, J.B.; Robinson, A.; Soukup, T.; Black, E.; Abit, A.; Hammer, S.M.; Han, A.; Lucas, E.; Kim, Y.; Bae, J. Metabolic and molecular regulation in skeletal muscle dysfunction and regeneration. Front. Cell Dev. Biol. 2025, 13, 1651553. [Google Scholar] [CrossRef]
- Guo, Y.; Sun, L.; Zhong, W.; Zhang, N.; Zhao, Z.; Tian, W. Artificial intelligence-assisted repair of peripheral nerve injury: A new research hotspot and associated challenges. Neural Regen. Res. 2024, 19, 663. [Google Scholar]
- de Koning, L.A.; Vazquez-Matias, D.A.; Beaino, W.; Vugts, D.J.; van Dongen, G.A.M.S.; van der Flier, W.M.; Ries, M.; van Vuurden, D.G.; Vijverberg, E.G.B.; van de Giessen, E. Drug delivery strategies to cross the blood-brain barrier in Alzheimer’s disease: A comprehensive review on three promising strategies. J. Prev. Alzheimers Dis. 2025, 12, 100204. [Google Scholar] [CrossRef]
- Gandhi, S.; Shastri, D.H.; Shah, J.; Nair, A.B.; Jacob, S. Nasal Delivery to the Brain: Harnessing Nanoparticles for Effective Drug Transport. Pharmaceutics 2024, 16, 481. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.K.; Mostafavi, E. Biomaterials-mediated CRISPR/Cas9 delivery: Recent challenges and opportunities in gene therapy. Front. Chem. 2023, 11, 1259435. [Google Scholar] [CrossRef] [PubMed]
- Deneault, E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr. Issues Mol. Biol. 2024, 46, 4147–4185. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Parkinson’s Disease: Bridging Gaps, Building Biomarkers, and Reimagining Clinical Translation. Cells 2025, 14, 1161. [Google Scholar] [CrossRef]
- Cross, J.L.; Choma, M.A.; Onofrey, J.A. Bias in medical AI: Implications for clinical decision-making. PLoS Digit. Health 2024, 3, e0000651. [Google Scholar] [CrossRef]
- Kantaros, A.; Ganetsos, T.; Pallis, E.; Papoutsidakis, M. From Mathematical Modeling and Simulation to Digital Twins: Bridging Theory and Digital Realities in Industry and Emerging Technologies. Appl. Sci. 2025, 15, 9213. [Google Scholar] [CrossRef]
- Zaretsky, T.G.; Jagodnik, K.M.; Barsic, R.; Antonio, J.H.; Bonanno, P.A.; MacLeod, C.; Pierce, C.; Carney, H.; Morrison, M.T.; Saylor, C.; et al. The Psychedelic Future of Post-Traumatic Stress Disorder Treatment. Curr. Neuropharmacol. 2024, 22, 636–735. [Google Scholar] [CrossRef]
- Artsi, Y.; Sorin, V.; Glicksberg, B.S.; Nadkarni, G.N.; Klang, E. Advancing Clinical Practice: The Potential of Multimodal Technology in Modern Medicine. J. Clin. Med. 2024, 13, 6246. [Google Scholar] [CrossRef]
- He, B.; Sohrabpour, A.; Brown, E.; Liu, Z. Electrophysiological Source Imaging: A Noninvasive Window to Brain Dynamics. Annu. Rev. Biomed. Eng. 2018, 20, 171–196. [Google Scholar] [CrossRef]
- Sarfraz, I.; Wang, Y.; Shastry, A.; Teh, W.K.; Sokolov, A.; Herb, B.R.; Creasy, H.H.; Virshup, I.; Dries, R.; Degatano, K.; et al. MAMS: Matrix and analysis metadata standards to facilitate harmonization and reproducibility of single-cell data. Genome Biol. 2024, 25, 205. [Google Scholar] [CrossRef]
- Bamodu, O.A.; Chung, C.-C.; Pisanic, T.R. Harnessing liquid biopsies: Exosomes and ctDNA as minimally invasive biomarkers for precision cancer medicine. J. Liq. Biopsy 2023, 2, 100126. [Google Scholar] [CrossRef]
- Onciul, R.; Tataru, C.-I.; Dumitru, A.V.; Crivoi, C.; Serban, M.; Covache-Busuioc, R.-A.; Radoi, M.P.; Toader, C. Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. J. Clin. Med. 2025, 14, 550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.L.; Guruvayurappan, K.; Toneyan, S.; Chen, H.V.; Chen, A.R.; Koo, P.; McVicker, G. Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively. Cell Genom. 2024, 4, 100672. [Google Scholar] [CrossRef] [PubMed]
- Ehmsen, K.T.; Knuesel, M.T.; Martinez, D.; Asahina, M.; Aridomi, H.; Yamamoto, K.R. Computational resources to define alleles and altered regulatory motifs at genomically edited candidate response elements. Nucleic Acids Res. 2021, 49, 9117–9131. [Google Scholar] [CrossRef]
- Del Veliz, S.; Coughlan, L. Viral platform engineering for targeted gene delivery to human hematopoietic stem cells. Mol. Ther. 2024, 32, 6–8. [Google Scholar] [CrossRef]
- Borea, R.; Reduzzi, C. The growing field of liquid biopsy and its Snowball effect on reshaping cancer management. J. Liq. Biopsy 2025, 8, 100293. [Google Scholar] [CrossRef]
- Li, C.; Fleck, J.S.; Martins-Costa, C.; Burkard, T.R.; Themann, J.; Stuempflen, M.; Peer, A.M.; Vertesy, Á.; Littleboy, J.B.; Esk, C.; et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 2023, 621, 373–380, Correction in Nature 2023, 623, E20. [Google Scholar] [CrossRef]
- Kaizer, A.M.; Belli, H.M.; Ma, Z.; Nicklawsky, A.G.; Roberts, S.C.; Wild, J.; Wogu, A.F.; Xiao, M.; Sabo, R.T. Recent innovations in adaptive trial designs: A review of design opportunities in translational research. J. Clin. Transl. Sci. 2024, 7, e125. [Google Scholar] [CrossRef] [PubMed]
- Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS. Int. J. Mol. Sci. 2025, 26, 8072. [Google Scholar] [CrossRef] [PubMed]
- Cetin, B.; Erendor, F.; Eksi, Y.E.; Sanlioglu, A.D.; Sanlioglu, S. Advancing CRISPR genome editing into gene therapy clinical trials: Progress and future prospects. Expert Rev. Mol. Med. 2025, 27, e16. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, L.; Yang, S.; Li, H.; Jiang, X.; Feng, J.; Zou, S.; Xu, Q.; Gu, J.; Wang, X.; et al. Brain–computer interfaces: The innovative key to unlocking neurological conditions. Int. J. Surg. Lond. Engl. 2024, 110, 5745–5762. [Google Scholar] [CrossRef]
- Chiappalone, M.; Cota, V.R.; Carè, M.; Di Florio, M.; Beaubois, R.; Buccelli, S.; Barban, F.; Brofiga, M.; Averna, A.; Bonacini, F.; et al. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sci. 2022, 12, 1578. [Google Scholar] [CrossRef]
- Subica, A.M. CRISPR in Public Health: The Health Equity Implications and Role of Community in Gene-Editing Research and Applications. Am. J. Public Health 2023, 113, 874–882. [Google Scholar] [CrossRef]
- Wheeler, N.E. Responsible AI in biotechnology: Balancing discovery, innovation and biosecurity risks. Front. Bioeng. Biotechnol. 2025, 13, 1537471. [Google Scholar] [CrossRef]
- Betz, U.A.K.; Arora, L.; Assal, R.A.; Azevedo, H.; Baldwin, J.; Becker, M.S.; Bostock, S.; Cheng, V.; Egle, T.; Ferrari, N.; et al. Game changers in science and technology—Now and beyond. Technol. Forecast. Soc. Change 2023, 193, 122588. [Google Scholar] [CrossRef]
- Parvin, N.; Joo, S.W.; Jung, J.H.; Mandal, T.K. Multimodal AI in Biomedicine: Pioneering the Future of Biomaterials, Diagnostics, and Personalized Healthcare. Nanomaterials 2025, 15, 895. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.M.D.R.; Ramu Krishnan, N. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 2024, 11, 1335901. [Google Scholar] [CrossRef]
- Zeng, C.-W.; Zhang, C.-L. Neuronal regeneration after injury: A new perspective on gene therapy. Front. Neurosci. 2023, 17, 1181816. [Google Scholar] [CrossRef] [PubMed]
- Waldvogel, S.M.; Posey, J.E.; Goodell, M.A. Human embryonic genetic mosaicism and its effects on development and disease. Nat. Rev. Genet. 2024, 25, 698–714. [Google Scholar] [CrossRef] [PubMed]
- Luís, M.A.; Goes, M.A.D.; Santos, F.M.; Mesquita, J.; Tavares-Ratado, P.; Tomaz, C.T. Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives. Pharmaceutics 2025, 17, 104. [Google Scholar] [CrossRef] [PubMed]
- Ghobashi, A.; Ma, Q. Perspectives on integrating artificial intelligence and single-cell omics for cellular plasticity research. Quant. Biol. 2025, 13, e70004. [Google Scholar] [CrossRef]
- de Lima, R.C.; Sinclair, L.; Megger, R.; Maciel, M.A.G.; Vasconcelos, P.F.D.C.; Quaresma, J.A.S. Artificial intelligence challenges in the face of biological threats: Emerging catastrophic risks for public health. Front. Artif. Intell. 2024, 7, 1382356. [Google Scholar] [CrossRef]
- Thurzo, A.; Thurzo, V. Embedding Fear in Medical AI: A Risk-Averse Framework for Safety and Ethics. AI 2025, 6, 101. [Google Scholar] [CrossRef]
- Rudd, J.; Igbrude, C. A global perspective on data powering responsible AI solutions in health applications. AI Ethics 2023, 4, 1039–1049. [Google Scholar] [CrossRef]
- Iqbal, J.D.; Krauthammer, M.; Witt, C.M.; Biller-Andorno, N.; Christen, M. A consensus statement on the use of digital twins in medicine. NPJ Digit. Med. 2025, 8, 484. [Google Scholar] [CrossRef]
- Modell, A.E.; Lim, D.; Nguyen, T.M.; Sreekanth, V.; Choudhary, A. CRISPR-based therapeutics: Current challenges and future applications. Trends Pharmacol. Sci. 2022, 43, 151–161. [Google Scholar] [CrossRef]
- Cheng, H.; Deng, H.; Ma, D.; Gao, M.; Zhou, Z.; Li, H.; Liu, S.; Teng, T. Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system. Heliyon 2024, 10, e39538. [Google Scholar] [CrossRef]
- Hut-Mossel, L.; Ahaus, K.; Welker, G.; Gans, R. Understanding how and why audits work in improving the quality of hospital care: A systematic realist review. PLoS ONE 2021, 16, e0248677. [Google Scholar] [CrossRef]
- Crisafulli, S.; Bate, A.; Brown, J.S.; Candore, G.; Chandler, R.E.; Hammad, T.A.; Lane, S.; Maro, J.C.; Norén, G.N.; Pariente, A.; et al. Interplay of Spontaneous Reporting and Longitudinal Healthcare Databases for Signal Management: Position Statement from the Real-World Evidence and Big Data Special Interest Group of the International Society of Pharmacovigilance. Drug Saf. 2025, 48, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Qureshi, N.; Khan, R.; Son, Y.-O.; Maqbool, T. CRISPR/Cas9-Based therapeutics as a promising strategy for management of Alzheimer’s disease: Progress and prospects. Front. Cell. Neurosci. 2025, 19, 1578138. [Google Scholar] [CrossRef] [PubMed]
- Paik, K.E.; Hicklen, R.; Kaggwa, F.; Puyat, C.V.; Nakayama, L.F.; Ong, B.A.; Shropshire, J.N.I.; Villanueva, C. Digital Determinants of Health: Health data poverty amplifies existing health disparities—A scoping review. PLoS Digit. Health 2023, 2, e0000313. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-Y.; Gao, Y.-M.; Feng, T.; Rao, J.-S.; Zhao, C. Enhancing Functional Recovery After Spinal Cord Injury Through Neuroplasticity: A Comprehensive Review. Int. J. Mol. Sci. 2025, 26, 6596. [Google Scholar] [CrossRef]
- Marciano, S.; Ionescu, T.M.; Saw, R.S.; Cheong, R.Y.; Kirik, D.; Maurer, A.; Pichler, B.J.; Herfert, K. Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc. Natl. Acad. Sci. USA 2022, 119, e2122552119. [Google Scholar] [CrossRef]
- Mohawesh, R.; Ottom, M.A.; Salameh, H.B. A data-driven risk assessment of cybersecurity challenges posed by generative AI. Decis. Anal. J. 2025, 15, 100580. [Google Scholar] [CrossRef]
- Ayanoğlu, F.B.; Elçin, A.E.; Elçin, Y.M. Bioethical issues in genome editing by CRISPR-Cas9 technology. Turk. J. Biol. 2020, 44, 110–120. [Google Scholar] [CrossRef]
- Bachtarzi, H. Genome Editing: Moving Toward a New Era of Innovation, Development, and Approval. Hum. Gene Ther. 2023, 34, 171–176. [Google Scholar] [CrossRef]
- Donà, D.; Barbieri, E.; Brigadoi, G.; Liberati, C.; Bosis, S.; Castagnola, E.; Colomba, C.; Galli, L.; Lancella, L.; Lo Vecchio, A.; et al. State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics 2025, 14, 132. [Google Scholar] [CrossRef]
- Laurenzi, C.A.; Mamutse, S.; Marlow, M.; Mawoyo, T.; Stansert Katzen, L.; Carvajal-Velez, L.; Lai, J.; Luitel, N.; Servili, C.; Sinha, M.; et al. Critical life course interventions for children and adolescents to promote mental health. Camb. Prisms Glob. Ment. Health 2022, 10, e4. [Google Scholar] [CrossRef]
- Bendl, J.; Fullard, J.F.; Girdhar, K.; Dong, P.; Kosoy, R.; Zeng, B.; Hoffman, G.E.; Roussos, P. Chromatin accessibility provides a window into the genetic etiology of human brain disease. Trends Genet. TIG 2025, 41, 601–616. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Su, J.; Hu, X.; Zhou, C.; Li, H.; Chen, Z.; Xiao, Q.; Wang, B.; Wu, W.; Sun, Y.; et al. Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020, 181, 590–603.e16. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, F.J.; Calafato, G.; Piccaluga, P.P.; Tallini, G.; Rhoden, K.J. Patient-Derived Organoid Biobanks for Translational Research and Precision Medicine: Challenges and Future Perspectives. J. Pers. Med. 2025, 15, 394. [Google Scholar] [CrossRef] [PubMed]
- Wysoczański, B.; Świątek, M.; Wójcik-Gładysz, A. Organ-on-a-Chip Models—New Possibilities in Experimental Science and Disease Modeling. Biomolecules 2024, 14, 1569. [Google Scholar] [CrossRef]
- Pham, T. Ethical and legal considerations in healthcare AI: Innovation and policy for safe and fair use. R. Soc. Open Sci. 2025, 12, 241873. [Google Scholar] [CrossRef]
- Jorfi, M.; Maaser-Hecker, A.; Tanzi, R.E. The neuroimmune axis of Alzheimer’s disease. Genome Med. 2023, 15, 6. [Google Scholar] [CrossRef]
- Motori, E.; Atanassov, I.; Kochan, S.M.V.; Folz-Donahue, K.; Sakthivelu, V.; Giavalisco, P.; Toni, N.; Puyal, J.; Larsson, N.-G. Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. Sci. Adv. 2020, 6, eaba8271. [Google Scholar] [CrossRef]
- Tay, L.S.; Palmer, N.; Panwala, R.; Chew, W.L.; Mali, P. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR J. 2020, 3, 253–275. [Google Scholar] [CrossRef]
- Thorisdottir, T.S.; Johannsdottir, L. Corporate Social Responsibility Influencing Sustainability within the Fashion Industry. A Systematic Review. Sustainability 2020, 12, 9167. [Google Scholar] [CrossRef]
- Liu, W.; Li, L.; Jiang, J.; Wu, M.; Lin, P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precis. Clin. Med. 2021, 4, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Ng, D.; Lan, X.; Yao, M.M.-S.; Chan, W.P.; Feng, M. Federated learning: A collaborative effort to achieve better medical imaging models for individual sites that have small labelled datasets. Quant. Imaging Med. Surg. 2021, 11, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Khan, W.U.; Bai, G.; Dong, C.; Wang, J.; Zhang, Y.; Wang, C.; Zhang, H.; Wang, W.; Luo, M.; et al. From Code to Life: The AI-Driven Revolution in Genome Editing. Adv. Sci. 2025, 12, e17029. [Google Scholar] [CrossRef]
- Watters, K.E.; Kirkpatrick, J.; Palmer, M.J.; Koblentz, G.D. The CRISPR revolution and its potential impact on global health security. Pathog. Glob. Health 2021, 115, 80–92. [Google Scholar] [CrossRef]
- Vake, D.; Šinik, B.; Vičič, J.; Tošić, A. Is Open Source the Future of AI? A Data-Driven Approach. Appl. Sci. 2025, 15, 2790. [Google Scholar] [CrossRef]
- Fekonja, L.S.; Schenk, R.; Schröder, E.; Tomasello, R.; Tomšič, S.; Picht, T. The digital twin in neuroscience: From theory to tailored therapy. Front. Neurosci. 2024, 18, 1454856. [Google Scholar] [CrossRef]
- Pak, C.; Sun, Y. Organoids: Expanding Applications Enabled by Emerging Technologies. J. Mol. Biol. 2022, 434, 167411. [Google Scholar] [CrossRef]
Barrier/Node | Cellular Context | Mechanistic Constraint | Key Findings (2024–2025) | Actionable Levers | Biomarkers and Readouts | Evidence Level | References |
---|---|---|---|---|---|---|---|
Nogo-A/NgR1 Axis | Oligodendrocyte myelin → neurons | Myelin-associated inhibition of axonal growth; growth cone collapse | Phase 2b RCT of anti-Nogo-A (NG101) in cervical SCI: motor-incomplete patients showed improved upper-limb function; no effect in complete SCI | CRISPR editing of RTN4 or NgR1; biologics (anti-Nogo-A); rehab-timed dosing | UEMS, SCIM, AIS grades; plasma Nogo-A; diffusion MRI; AI responder profiling | Clinical trial (Phase 2b) | [57] |
CSPGs/Perineuronal Nets | Reactive astrocytes; ECM around PV interneurons and CA2 pyramids | Steric blockade and receptor-mediated inhibition (PTPσ/LAR) | PTPσ blockade restores autophagy flux and synaptic markers; PNNs constrain plasticity in CA2/PV circuits; microglia reduce PNN density | CRISPR targeting of PTPRS or sulfotransferases (CHSTs); ChABC enzymes; biomaterials | CS-GAG sulfation profiles; GAP-43 staining; fMRI plasticity; AI mapping of PNN density | Preclinical (rodent, in vivo) | [58,59,60] |
DREZ Exclusion | Peripheral–CNS interface | Sensory axons fail to enter spinal cord; intrinsic growth ceiling | PTEN deletion + kaBRAF activation enables axons to cross DREZ; SOCS3 deletion alone ineffective | CRISPR combinatorial editing (PTEN↓ + BRAF tuning); neuromodulation | Axon counts past DREZ; pS6/ERK; proprioceptive evoked potentials; AI tracing | Preclinical (rodent) | [61] |
Neuron-Intrinsic Growth Brakes (PTEN, SOCS3, KLFs) | Mature CNS neurons | mTOR/STAT repression; gene silencing | Syt4 inhibition blocks corticospinal sprouting; PTEN+BRAF synergy stronger than SOCS3 deletion | CRISPRi for Syt4; base/prime editing of KLFs; conditional PTEN modulation | CST axon density; ladder rung/gridwalk; calcium imaging; AI kinematic prediction | Preclinical (rodent) | [62,63] |
Reactive Astrocytes/Glial Scar | Astrocytes, perivascular fibroblasts | A1 neurotoxic signaling; ECM deposition | Microglial exosomes suppress A1 astrocytes (murine SCI); small molecules promote A1→A2 shift; NSC-derived astrocytes create pro-regenerative niches | CRISPR editing of C3/Serping1; dCas9-KRAB/VP64 for astrocyte polarization; engineered exosomes | GFAP/vimentin borders; C3/C1q markers; scar topology (3D imaging); AI scar segmentation | Preclinical (rodent, in vitro) | [64,65,66] |
Microglial Activation and Pyroptosis (NLRP3 Axis) | Microglia, infiltrating myeloid cells | Inflammasome-driven pyroptosis; maladaptive pruning | Microglia depletion reduces aberrant sprouting and autonomic reflexes; NLRP3 targeting improves outcomes (2025 reports) | CRISPR disruption of NLRP3, CASP1, RelA; immune-targeted delivery; small-molecule inhibitors | Autonomic reflex testing; IL-1β/IL-18; scRNA-seq microglia states; AI classifiers | Preclinical (rodent) | [67,68] |
PNN-Linked Circuit Closure | PV interneurons, hippocampal CA2 | Restriction of synaptic remodeling | CA2/PV PNNs constrain plasticity; microglia dismantle PNNs and reopen plasticity | CRISPR targeting CHST3/CHSY1; PTPRS modulation; timed remodeling with rehab | WFA-labeled PNNs; PV tuning curves; EEG/MEG plasticity indices; AI image analysis | Preclinical (rodent) | [58,59] |
Integrated Stress Response (ISR/eIF2α) | Neurons, glia | Translational arrest; apoptosis; slow repair | ISRIB attenuates eIF2α-P, reduces neuronal death, improves recovery (rodent SCI) | CRISPR modulation of PERK/GCN2; transient CRISPRi; ISRIB adjunct | p-eIF2α, CHOP/ATF4; NeuN survival; AI recovery scores | Preclinical (rodent) | [69] |
CRISPR Platform/Variant | Mechanistic Principle | Emerging Applications | Representative Evidence (Model → Key Finding) | Source |
---|---|---|---|---|
SpCas9/SaCas9 nuclease | Double-strand breaks for gene knockout | PTEN (axonal growth), NgR1 (myelin inhibition), EGFRvIII/PD-L1 (GBM) | Rodent SCI: PTEN knockout promotes axon regrowth; GBM organoid: Cas9-mediated EGFRvIII + PD-L1 KO reduces invasiveness | [57,100,101] |
Cas12a (Cpf1) | Staggered DNA breaks, flexible PAM targeting | CSPG sulfation enzymes (ECM remodeling); HIF1α (tumor angiogenesis) | Zebrafish SCI: CSPG sulfotransferase KO via Cas12a restores axon extension; Mouse GBM: HIF1α enhancer editing reduces angiogenesis | [60,102] |
Cas13 (RNA-targeting) | Programmable RNA knockdown/editing | NLRP3 (inflammation), MGMT (chemoresistance) | CRISPRi via Cas13 diminishes inflammasome activation in SCI; targeting MGMT mRNA resensitizes GBM cells | [103] |
Base Editors (CBE/ABE) | Precise base conversions without DSBs | SOD1 (ALS), tau splicing (AD), HTT expansions (Huntington’s) | ABE correction of SOD1 mutation preserves motor neurons in mouse ALS model | [104] |
Prime Editors | Search-and-replace precision editing | MECP2 (Rett), SCN1A (Dravet), HTT expansions | Prime editing corrects MECP2 in Rett iPSCs, rescues gene expression and synaptic markers | [105] |
CRISPRa/CRISPRi (dCas9) | Transcriptional modulation (activator/repressor) | STAT3 (axon growth), Ascl1 (glia-to-neuron), astrocyte polarization | CRISPRa-STAT3 accelerates regeneration in mouse SCI model; dCas9-VPR Ascl1 converts astrocytes to neurons | [106] |
High-throughput CRISPR screens | Functional genomics for target discovery | Regeneration regulators; GBM adaptive resistance | Organoid CRISPR-seq pinpoints cortical neuron sprouting genes; GBM screens find resistance mechanisms | [97] |
AI Domain | Method/Model | Function in Neuroregeneration | Specimen Model and Use Case | Key Outputs/Biomarkers | Translational Relevance | References |
---|---|---|---|---|---|---|
Single-cell/spatial omics integration | Graph neural networks + trajectory inference | Identify regenerative subpopulations; define inhibitory microenvironments | Mouse SCI atlas integrating scRNA-seq + spatial transcriptomics | Vsx2+ interneuron emergence; reactive astrocyte states | Identifies repair-competent subtypes; potential CRISPR targets for reprogramming | [132] |
Predictive recovery modeling in SCI | Ensemble ML; random forest; survival analysis | Forecast patient-specific recovery trajectories | Clinical SCI datasets (N > 1500) | AIS grade transition; motor score prediction | Guides individualized rehab and stratifies patients for trials | [133] |
Radiogenomics in GBM | CNN + radiogenomic classifiers | Infer oncogenic pathway activity from imaging | MRI datasets linked to molecular profiling | RTK-RAS, PI3K, TP53 activity inferred | Enables non-invasive biopsy surrogates; aids AI-CRISPR targeting | [134] |
Deep learning radiomics | 3D CNN + radiomic feature extraction | Predict progression and therapy response | Multiparametric MRI in GBM | Tumor growth velocity, invasion index | Improves adaptive treatment planning | [135] |
Multimodal survival prognostication | Integrative AI (clinical + imaging + omics) | Predict OS/PFS in glioma patients | Glioma cohorts (n = 400) | Hazard ratios, individualized survival curves | Precision trial design; long-term prognosis | [136] |
Histopathology image AI | CNN trained on TCGA slides | Grade and molecular marker prediction | Glioma H&E datasets | IDH mutation status; MGMT methylation probability | Digital pathology decision support | [137] |
Nanotheranostic synergy | AI + nanocarrier design; CRISPR payload optimization | Enhance BBB penetration and targeted delivery | GBM nanocarrier studies | Nanoparticle biodistribution; editing efficiency | Improves CRISPR delivery precision | [138] |
Therapy response prediction | Radiomics + ML classifiers | Identify responders early in treatment | GBM/BM imaging datasets | Delta-radiomics signatures | Enables rapid therapeutic switching | [139] |
Research horizon mapping | Scientometric + bibliometric AI | Identify hotspots in AI-SCI research | Global publication datasets (2014–2024) | Keyword co-occurrence, clustering | Anticipates future research shifts (BCI, robotics) | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șerban, M.; Toader, C.; Covache-Busuioc, R.-A. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. Int. J. Mol. Sci. 2025, 26, 9409. https://doi.org/10.3390/ijms26199409
Șerban M, Toader C, Covache-Busuioc R-A. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. International Journal of Molecular Sciences. 2025; 26(19):9409. https://doi.org/10.3390/ijms26199409
Chicago/Turabian StyleȘerban, Matei, Corneliu Toader, and Răzvan-Adrian Covache-Busuioc. 2025. "CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology" International Journal of Molecular Sciences 26, no. 19: 9409. https://doi.org/10.3390/ijms26199409
APA StyleȘerban, M., Toader, C., & Covache-Busuioc, R.-A. (2025). CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. International Journal of Molecular Sciences, 26(19), 9409. https://doi.org/10.3390/ijms26199409