Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = preview control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1105 KiB  
Article
Driver Clustering Based on Individual Curve Path Selection Preference
by Gergo Igneczi, Tamas Dobay, Erno Horvath and Krisztian Nyilas
Appl. Sci. 2025, 15(14), 7718; https://doi.org/10.3390/app15147718 - 9 Jul 2025
Viewed by 156
Abstract
The development of Advanced Driver Assistance Systems (ADASs) has reached a stage where, in addition to the traditional challenges of path planning and control, there is an increasing focus on the behavior of these systems. Assistance functions shall be personalized to deliver a [...] Read more.
The development of Advanced Driver Assistance Systems (ADASs) has reached a stage where, in addition to the traditional challenges of path planning and control, there is an increasing focus on the behavior of these systems. Assistance functions shall be personalized to deliver a full user experience. Therefore, driver modeling is a key area of research for next-generation ADASs. One of the most common tasks in everyday driving is lane keeping. Drivers are assisted by lane-keeping systems to keep their vehicle in the center of the lane. However, human drivers often deviate from the center line. It has been shown that the driver’s choice to deviate from the center line can be modeled by a linear combination of preview curvature information. This model is called the Linear Driver Model. In this paper, we fit the LDM parameters to real driving data. The drivers are then clustered based on the individual parameters. It is shown that clusters are not only formed by the numerical similarity of the driver parameters, but the drivers in a cluster actually have similar behavior in terms of path selection. Finally, an Extended Kalman Filter (EKF) is proposed to learn the model parameters at run-time. Any new driver can be classified into one of the driver type groups. This information can be used to modify the behavior of the lane-keeping system to mimic human driving, resulting in a more personalized driving experience. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

13 pages, 8971 KiB  
Case Report
The Role of Digital Workflow in Creating a New, Esthetic and Functional Smile in a Periodontally Compromised Patient: A Case Report
by Carlotta Cacciò, Marco Tallarico, Aurea Immacolata Lumbau, Francesco Mattia Ceruso and Milena Pisano
Reports 2025, 8(3), 105; https://doi.org/10.3390/reports8030105 - 8 Jul 2025
Viewed by 291
Abstract
Background and Clinical Significance: Prosthetic rehabilitation in the aesthetic zone of periodontally compromised patients presents a complex clinical challenge, requiring a careful coordination of aesthetic, functional, and biological demands. This case highlights the benefits of digital dentistry, interdisciplinary collaboration, and regular maintenance in [...] Read more.
Background and Clinical Significance: Prosthetic rehabilitation in the aesthetic zone of periodontally compromised patients presents a complex clinical challenge, requiring a careful coordination of aesthetic, functional, and biological demands. This case highlights the benefits of digital dentistry, interdisciplinary collaboration, and regular maintenance in achieving long-term success in complex rehabilitations of periodontally compromised patients. Case Presentation: This case report describes the digital minimally invasive rehabilitation of a 39-year-old male patient with Stage III periodontitis, occlusal discrepancies, tooth mobility, and an interincisal diastema. A fully digital workflow—including intraoral scanning, aesthetic previewing, and mandibular motion analysis—was employed to guide diagnosis, treatment planning, and prosthetic execution. Conservative tooth preparations using a biologically oriented approach (BOPT) were combined with customised provisional restorations to support soft tissue conditioning and functional control throughout the provisional phases. Mandibular motion tracking facilitated the design of a personalised anterior guidance to improve occlusion and correct the deep bite. The interincisal diastema was initially maintained then closed during the advanced phase of treatment based on aesthetic simulations and patient preference. One unplanned endodontic treatment was required during the provisional phase, but no other complications occurred. Conclusions: At the four-year follow-up, the patient demonstrated stable periodontal and occlusal conditions, improved clinical indices, and high satisfaction with the aesthetic outcome. Full article
(This article belongs to the Section Dentistry/Oral Medicine)
Show Figures

Figure 1

14 pages, 996 KiB  
Article
The Character Position Encoding of Parafoveal Semantic Previews Is Flexible in Chinese Reading
by Min Chang, Yun Ma, Zhenying Pu, Yanqun Zhu, Jingxuan Li, Lvqing Miao and Xingguo Zhu
Behav. Sci. 2025, 15(7), 907; https://doi.org/10.3390/bs15070907 - 4 Jul 2025
Viewed by 282
Abstract
Extant Chinese studies have documented that transposing characters within two-character words (e.g., 西装 suit) yields greater parafoveal preview benefits for target words compared to replacing the characters with unrelated ones (e.g., 型间 a nonword), i.e., the Chinese character transposition effect. This effect has [...] Read more.
Extant Chinese studies have documented that transposing characters within two-character words (e.g., 西装 suit) yields greater parafoveal preview benefits for target words compared to replacing the characters with unrelated ones (e.g., 型间 a nonword), i.e., the Chinese character transposition effect. This effect has been interpreted as evidence for flexible positional encoding in parafoveal processing, whereby readers tolerate character order disruptions. Alternatively, it has been attributed to morpheme-to-word activation. The present study aims to further clarify the mechanism of the transposition effect. We manipulated four preview conditions of target words in a sentence, identical, semantic, transposed semantic, and control preview, using an eye tracker to record eye movements. Experiment 1 employed reversible word pairs (e.g., 领带 tie-带领 lead) as semantical and transposed previews for targets (e.g., 西装suit). Experiment 2 used non-reversible word pairs (e.g., 衬衫 shirt-衫衬 a nonword). The results revealed comparable processing for both the semantic and transposed semantic preview conditions. Critically, the transposed semantic preview yielded a processing advantage over the unrelated preview. These findings demonstrated that Chinese readers efficiently extract semantic information from the parafoveal region even when character order is disrupted, indicating flexible character position encoding. Full article
(This article belongs to the Section Cognition)
Show Figures

Figure 1

16 pages, 3316 KiB  
Article
Enhancing Wind Turbine Sustainability Through LiDAR Configuration Analysis and Evaluation of Two Reference LiDAR-Assisted Control Strategies
by Cedric D. Steinmann Perez, Alan W. H. Lio and Fanzhong Meng
Sustainability 2025, 17(13), 6083; https://doi.org/10.3390/su17136083 - 2 Jul 2025
Viewed by 223
Abstract
LiDAR-assisted wind turbine control holds strong potential for reducing structural loads and improving rotor speed regulation, thereby contributing to more sustainable wind energy generation. However, key research gaps remain: (i) the practical limitations of commercially available fixed beam LiDARs for large turbines, and [...] Read more.
LiDAR-assisted wind turbine control holds strong potential for reducing structural loads and improving rotor speed regulation, thereby contributing to more sustainable wind energy generation. However, key research gaps remain: (i) the practical limitations of commercially available fixed beam LiDARs for large turbines, and (ii) the performance assessment of commonly used LiDAR assisted feedforward control methods. This study addresses these gaps by (i) analysing how the coherence of LiDAR estimated rotor effective wind speed is influenced by the number of beams, measurement locations, and turbulence box resolution, and (ii) comparing two established control strategies. Numerical simulations show that applying a low cut-off frequency in the low-pass filter can impair preview time compensation. This is particularly critical for large turbines, where reduced coherence due to fewer beams undermines the effectiveness of LiDAR assisted control compared to the smaller turbines. The subsequent evaluation of control strategies shows that the Schlipf method offers greater robustness and consistent load reduction, regardless of the feedback control design. In contrast, the Bossanyi method, which uses the current blade pitch measurements, performs well when paired with carefully tuned baseline controllers. However, using the actual pitch angle in the feedforward pitch rate calculation can lead to increased excitation at certain frequencies, particularly if the feedback controller is not well tuned to avoid dynamics in those ranges. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 1675 KiB  
Article
H Preview Tracking Control of Time-Delay Discrete Systems and Its Application in Nuclear Reactor Problems
by Fucheng Liao, Hao Xie, Xianchun Meng, Jiang Wu, Yucheng Wei and Jiamei Deng
Axioms 2025, 14(7), 505; https://doi.org/10.3390/axioms14070505 - 27 Jun 2025
Viewed by 176
Abstract
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For [...] Read more.
Improving the tracking accuracy and effectiveness of the pressurizer control system with respect to the reference signal is an effective method to enhance the safe and stable operation of nuclear reactors. This paper applies preview tracking control to the pressurizer control system. For the simplified control system model of the pressurizer, we first study its general structure, which can be characterized as a discrete-time system with state delay. Unlike conventional control systems, the system considered in this study features control inputs that are represented as cumulative sums of historical inputs. In order to design a preview tracking controller for such systems, we adopt the difference method and state augmentation technique and introduce an equality containing the reference signal and a discrete integrator to construct an augmented error system. Simultaneously, a performance signal is defined to evaluate the impact of external disturbances on system performance. Thus, the preview tracking control problem of the original system is reformulated as an H control problem for the augmented error system. Subsequently, a memory-based state feedback controller is designed for the augmented error system. Then, by employing the Lyapunov function and linear matrix inequality (LMI), the H preview tracking controller for the original system is derived. Finally, the proposed control strategy is applied to a pressurizer control system model, and numerical simulations are conducted to validate the effectiveness of the proposed controller by using MATLAB (R2023a, MathWorks, Natick, MA, USA). Full article
Show Figures

Figure 1

27 pages, 8144 KiB  
Article
Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems
by Zbigniew Rymarski, Wojciech Oliwa and Grzegorz Wieczorek
Energies 2025, 18(13), 3336; https://doi.org/10.3390/en18133336 - 25 Jun 2025
Viewed by 206
Abstract
Digital control in UPS systems is currently the only reasonable way of controlling a voltage source inverter (VSI). The control frequency range is restricted to up to about 1 kHz owing to the output low-pass LC filter, which should also maintain the output [...] Read more.
Digital control in UPS systems is currently the only reasonable way of controlling a voltage source inverter (VSI). The control frequency range is restricted to up to about 1 kHz owing to the output low-pass LC filter, which should also maintain the output voltage during one switching period for the step unload. The measurement channels in the low-pass frequency range can be modeled as delays equal to some switching periods. A reasonably high (about 50 kHz) switching frequency minimizes the delays of the measurement channels. Two control systems will be compared—the pure discrete control, in this case a one-sample-ahead preview deadbeat control (OSAP), and a discretized passivity-based control (PBC). The OSAP control is easy to realize, is very fast, and enables one to obtain a steady state in a restricted number of steps after disturbance. However, the single-input single-output deadbeat control version is useless because it depends very strongly on the parameters of the inverter. The multi-input single-output OSAP (MISO-OSAP) control is directly based on discrete state equations (we treat the output voltage, output current, and inductor current as the measured state variables) and works perfectly for the nonlinear rectifier RC load (PF = 0.7) in a system without delay. The version of this with a linear prediction of state variables by means of a full-order state Luenberger observer (MISO-OSAP-LO) will be used in systems with different delays and compared with the discretized MISO passivity-based control without prediction for relatively high switching frequency (about 50 kHz). The aim and the novelty of the paper are in enabling a choice between one of these control systems for high switching frequency VSI with delays in the measurement channels. Full article
(This article belongs to the Special Issue Management and Optimization for Renewable Energy and Power Systems)
Show Figures

Figure 1

28 pages, 3651 KiB  
Article
Intelligent Path Tracking for Single-Track Agricultural Machinery Based on Variable Universe Fuzzy Control and PSO-SVR Steering Compensation
by Huanyu Liu, Zhihang Han, Junwei Bao, Jiahao Luo, Hao Yu, Shuang Wang and Xiangnan Liu
Agriculture 2025, 15(11), 1136; https://doi.org/10.3390/agriculture15111136 - 24 May 2025
Viewed by 430
Abstract
Single-track electric agricultural chassis plays a vital role in autonomous navigation and driving operations in hilly and mountainous regions, where its path tracking performance directly affects the operational accuracy and stability. However, in complex farmland environments, traditional methods often suffer from frequent turning [...] Read more.
Single-track electric agricultural chassis plays a vital role in autonomous navigation and driving operations in hilly and mountainous regions, where its path tracking performance directly affects the operational accuracy and stability. However, in complex farmland environments, traditional methods often suffer from frequent turning and large tracking errors due to variable path curvature, uneven terrain, and track slippage. To address these issues, this paper proposes a path tracking algorithm combining a segmented preview model with variable universe fuzzy control, enabling dynamic adjustment of the preview distance for better curvature adaptation. Additionally, a heading deviation prediction model based on Support Vector Regression (SVR) optimized by Particle Swarm Optimization (PSO) is introduced, and a steering angle compensation controller is designed to improve the turning accuracy. Simulation and field experiments show that, compared with fixed preview distance and fixed-universe fuzzy control methods, the proposed algorithm reduces the average number of turns per control cycle by 30.19% and 18.23% and decreases the average lateral error by 34.29% and 46.96%, respectively. These results confirm that the proposed method significantly enhances path tracking stability and accuracy in complex terrains, providing an effective solution for autonomous navigation of agricultural machinery. Full article
Show Figures

Figure 1

27 pages, 10784 KiB  
Article
Design of Static Output Feedback Integrated Path Tracking Controller for Autonomous Vehicles
by Manbok Park and Seongjin Yim
Processes 2025, 13(5), 1335; https://doi.org/10.3390/pr13051335 - 27 Apr 2025
Viewed by 373
Abstract
This paper presents a method for designing a static output feedback integrated path tracking controller for autonomous vehicles. For path tracking, state–space model-based control methods, such as linear quadratic regulator, H control, sliding mode control, and model predictive control, have been selected [...] Read more.
This paper presents a method for designing a static output feedback integrated path tracking controller for autonomous vehicles. For path tracking, state–space model-based control methods, such as linear quadratic regulator, H control, sliding mode control, and model predictive control, have been selected as controller design methodologies. However, these methods adopt full-state feedback. Among the state variables, the lateral velocity, or the side-slip angle, is hard to measure in real vehicles. To cope with this problem, it is desirable to use a state estimator or static output feedback (SOF) control. In this paper, an SOF control is selected as the controller structure. To design the SOF controller, a linear quadratic optimal control and sliding mode control are adopted as controller design methodologies. Front wheel steering (FWS), rear wheel steering (RWS), four-wheel steering (4WS), four-wheel independent braking (4WIB), and driving (4WID) are adopted as actuators for path tracking and integrated as several actuator configurations. For better performance, a lookahead or preview function is introduced into the state–space model built for path tracking. To verify the performance of the SOF path tracking controller, simulations are conducted on vehicle simulation software. From the simulation results, it is shown that the SOF path tracking controller presented in this paper is effective for path tracking with limited sensor outputs. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

21 pages, 1604 KiB  
Article
Affordable Road Obstacle Detection and Active Suspension Control Using Inertial and Motion Sensors
by Andrew Valdivieso-Soto, Gennaro Sorrentino, Giulia Moscone, Renato Galluzzi and Nicola Amati
World Electr. Veh. J. 2025, 16(4), 197; https://doi.org/10.3390/wevj16040197 - 31 Mar 2025
Viewed by 1023
Abstract
The electrification trend characterizing the current automotive industry creates opportunities for the implementation of innovative functionalities, enhancing aspects of energy efficiency and vehicle dynamics. Active vehicle suspensions are an important subsystem in this process. To enable proper suspension control, vehicle sensors can be [...] Read more.
The electrification trend characterizing the current automotive industry creates opportunities for the implementation of innovative functionalities, enhancing aspects of energy efficiency and vehicle dynamics. Active vehicle suspensions are an important subsystem in this process. To enable proper suspension control, vehicle sensors can be used to measure the system’s response and, in some cases, preview the road conditions and the presence of possible obstacles. When assessing the performance of a suspension system, the speed bump crossing represents a challenging maneuver. A suitable trade-off between comfort and road holding must be found through different phases of the profile. The proposed work uses a fixed-gain observer obtained from Kalman filtering to identify road unevenness and adapt the control strategy when the vehicle travels through a bump. To this end, the obstacle is identified through the use of affordable sensors available in high-end vehicles: accelerometers, inertial measurement units, and stroke sensors. The proposed technique is also affordable from the computational point of view, thus enabling its use in common microprocessors tailored for the automotive field. The bump identification technique is validated through experimental data captured in a vehicle demonstrator. Subsequently, numerical results show that the proposed technique is able to enhance comfort while keeping road holding and attenuating the transient after taking the bump. Full article
Show Figures

Figure 1

18 pages, 4666 KiB  
Article
A Novel Lateral Control System for Autonomous Vehicles: A Look-Down Strategy
by Farzad Nadiri and Ahmad B. Rad
Machines 2025, 13(3), 211; https://doi.org/10.3390/machines13030211 - 6 Mar 2025
Viewed by 1171
Abstract
This paper introduces a robust yet straightforward lane detection and lateral control approach via the deployment of a dual camera based on the look-down strategy for autonomous vehicles. Unlike traditional single-camera systems that rely on the look-ahead methodology and a single front-facing preview, [...] Read more.
This paper introduces a robust yet straightforward lane detection and lateral control approach via the deployment of a dual camera based on the look-down strategy for autonomous vehicles. Unlike traditional single-camera systems that rely on the look-ahead methodology and a single front-facing preview, the proposed algorithm leverages two downward-facing cameras mounted beneath the vehicle’s driver and the passenger side mirror, respectively. This configuration captures the road surface, enabling precise detection of the lateral boundaries, particularly during lane changes and in narrow lanes. A Proportional-Integral-Derivative (PID) controller is designed to maintain the vehicle’s position in the center of the road. We compare this system’s accuracy, lateral steadiness, and computational efficiency against (1) a conventional bird’s-eye view lane detection method and (2) a popular deep learning-based lane detection framework. Experiments in the CARLA simulator under varying road geometries, lighting conditions, and lane marking qualities confirm that the proposed look-down system achieves superior real-time performance, comparable lane detection accuracy, and reduced computational overhead relative to both traditional bird’s-eye and advanced neural approaches. These findings underscore the practical benefits of a straightforward, explainable, and resource-efficient solution for robust autonomous vehicle lane-keeping. Full article
(This article belongs to the Special Issue Trajectory Planning for Autonomous Vehicles: State of the Art)
Show Figures

Figure 1

17 pages, 863 KiB  
Article
Digital Diagnostics: The Potential of Large Language Models in Recognizing Symptoms of Common Illnesses
by Gaurav Kumar Gupta, Aditi Singh, Sijo Valayakkad Manikandan and Abul Ehtesham
AI 2025, 6(1), 13; https://doi.org/10.3390/ai6010013 - 16 Jan 2025
Cited by 3 | Viewed by 3651
Abstract
This study aimed to evaluate the potential of Large Language Models (LLMs) in healthcare diagnostics, specifically their ability to analyze symptom-based prompts and provide accurate diagnoses. The study focused on models including GPT-4, GPT-4o, Gemini, o1 Preview, and GPT-3.5, assessing their performance in [...] Read more.
This study aimed to evaluate the potential of Large Language Models (LLMs) in healthcare diagnostics, specifically their ability to analyze symptom-based prompts and provide accurate diagnoses. The study focused on models including GPT-4, GPT-4o, Gemini, o1 Preview, and GPT-3.5, assessing their performance in identifying illnesses based solely on provided symptoms. Symptom-based prompts were curated from reputable medical sources to ensure validity and relevance. Each model was tested under controlled conditions to evaluate their diagnostic accuracy, precision, recall, and decision-making capabilities. Specific scenarios were designed to explore their performance in both general and high-stakes diagnostic tasks. Among the models, GPT-4 achieved the highest diagnostic accuracy, demonstrating strong alignment with medical reasoning. Gemini excelled in high-stakes scenarios requiring precise decision-making. GPT-4o and o1 Preview showed balanced performance, effectively handling real-time diagnostic tasks with a focus on both precision and recall. GPT-3.5, though less advanced, proved dependable for general diagnostic tasks. This study highlights the strengths and limitations of LLMs in healthcare diagnostics. While models such as GPT-4 and Gemini exhibit promise, challenges such as privacy compliance, ethical considerations, and the mitigation of inherent biases must be addressed. The findings suggest pathways for responsibly integrating LLMs into diagnostic processes to enhance healthcare outcomes. Full article
Show Figures

Figure 1

24 pages, 5227 KiB  
Article
Simulation Study of Deep Belief Network-Based Rice Transplanter Navigation Deviation Pattern Identification and Adaptive Control
by Xianhao Duan, Peng Fang, Neng Xiong, Muhua Liu, Xulong Wu, Li Fu and Zhaopeng Liu
Appl. Sci. 2025, 15(2), 790; https://doi.org/10.3390/app15020790 - 15 Jan 2025
Cited by 1 | Viewed by 657
Abstract
The navigation field of agricultural machinery has entered the intelligent stage, but the navigation control performance of paddy field agricultural machinery represented by rice transplanters is not stable in complex environments. Therefore, this study proposes a method to identify navigation deviation patterns based [...] Read more.
The navigation field of agricultural machinery has entered the intelligent stage, but the navigation control performance of paddy field agricultural machinery represented by rice transplanters is not stable in complex environments. Therefore, this study proposes a method to identify navigation deviation patterns based on Deep Belief Network (DBN) and designs an adaptive preview distance control method based on a driver preview model for each deviation pattern. Among them, the deviation pattern identification method is a two-stage algorithm. First, determine whether the current navigation status is abnormal. Then, the classification was refined for different abnormal states. The adaptive control method is divided into two levels. The main regulator calculates the dynamic preview distance according to the current state variable; the sub-regulator calculates the preview distance adjustment value according to the abnormal state degree. In the performance test of the identification method, all the models show excellent stability and accuracy, and the identification speed of the algorithm meets the high frequency of the rice transplanter navigation system. In the performance test of the control algorithm, compared with the static preview distance, the adaptive preview distance control method proposed in this study can effectively suppress the disturbance deviation of the rice transplanter navigation. Full article
Show Figures

Figure 1

20 pages, 2129 KiB  
Article
Design of a Finite-Time Bounded Tracking Controller for Time-Delay Fractional-Order Systems Based on Output Feedback
by Jiang Wu, Hao Xie, Tianyi Li, Wenjian He, Tiancan Xi and Xiaoling Liang
Mathematics 2025, 13(2), 200; https://doi.org/10.3390/math13020200 - 9 Jan 2025
Cited by 1 | Viewed by 606
Abstract
This paper focuses on a class of fractional-order systems with state delays and studies the design problem of the finite-time bounded tracking controller. The error system method in preview control theory is first used. By taking fractional-order derivatives of the state equations and [...] Read more.
This paper focuses on a class of fractional-order systems with state delays and studies the design problem of the finite-time bounded tracking controller. The error system method in preview control theory is first used. By taking fractional-order derivatives of the state equations and error signals, a fractional-order error system is constructed. This transforms the tracking problem of the original system into an input–output finite=time stability problem of the error system. Based on the output equation of the original system and the error signal, an output equation for the error system is constructed, and a memory-based output feedback controller is designed by means of this equation. Using the input–output finite-time stability theory and linear matrix inequality (LMI) techniques, the output feedback gain matrix of the error system is derived by constructing a fractional-order Lyapunov–Krasovskii function. Then, a fractional-order integral of the input to the error system is performed to derive a finite-time bounded tracking controller for the original system. Finally, numerical simulations demonstrate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

19 pages, 3494 KiB  
Article
Autonomous Vehicle Motion Control Considering Path Preview with Adaptive Tire Cornering Stiffness Under High-Speed Conditions
by Guozhu Zhu and Weirong Hong
World Electr. Veh. J. 2024, 15(12), 580; https://doi.org/10.3390/wevj15120580 - 16 Dec 2024
Cited by 1 | Viewed by 1059
Abstract
The field of autonomous vehicle technology has experienced remarkable growth. A pivotal trend in this development is the enhancement of tracking performance and stability under high-speed conditions. Model predictive control (MPC), as a prevalent motion control method, necessitates an extended prediction horizon as [...] Read more.
The field of autonomous vehicle technology has experienced remarkable growth. A pivotal trend in this development is the enhancement of tracking performance and stability under high-speed conditions. Model predictive control (MPC), as a prevalent motion control method, necessitates an extended prediction horizon as vehicle speed increases and will lead to heightened online computational demands. To address this, a path preview strategy is integrated into the MPC framework that temporarily freezes the vehicle state within the prediction horizon. This approach assumes that the vehicle state will remain consistent for a specified preview distance and duration, effectively extending the prediction horizon for the MPC controller. In addition, a stability controller is designed to maintain handling stability under high-speed conditions, in which a square-root cubature Kalman filter (SRCKF) estimator is employed to predict tire forces to facilitate the cornering stiffness estimation of vehicle tires. The double lane change maneuver under high-speed conditions is conducted through the Carsim/Simulink co-simulation. The outcomes demonstrate that the SRCKF estimator could provide a reasonably accurate estimation of lateral tire forces throughout the whole traveling process and facilitates the stability controller to guarantee the handling stability. On the premise of ensuring handling stability, integrating the preview strategy could nearly double the prediction horizon for MPC, resulting in the limited increase of online computation burden brought while maintaining path tracking accuracy. Full article
Show Figures

Figure 1

21 pages, 1565 KiB  
Article
Preview-Based Optimal Control for Trajectory Tracking of Fully-Actuated Marine Vessels
by Xiaoling Liang, Jiang Wu, Hao Xie and Yanrong Lu
Mathematics 2024, 12(24), 3942; https://doi.org/10.3390/math12243942 - 14 Dec 2024
Viewed by 935
Abstract
In this paper, the problem of preview optimal control for second-order nonlinear systems for marine vessels is discussed on a fully actuated dynamic model. First, starting from a kinematic and dynamic model of a three-degrees-of-freedom (DOF) marine vessel, we derive a fully actuated [...] Read more.
In this paper, the problem of preview optimal control for second-order nonlinear systems for marine vessels is discussed on a fully actuated dynamic model. First, starting from a kinematic and dynamic model of a three-degrees-of-freedom (DOF) marine vessel, we derive a fully actuated second-order dynamic model that involves only the ship’s position and yaw angle. Subsequently, through the higher-order systems methodology, the nonlinear terms in the system were eliminated, transforming the system into a one-order parameterized linear system. Next, we designed an internal model compensator for the reference signal and constructed a new augmented error system based on this compensator. Then, using optimal control theory, we designed the optimal preview controller for the parameterized linear system and the corresponding feedback parameter matrices, which led to the preview controller for the original second-order nonlinear system. Finally, a numerical simulation indicates that the controller designed in this paper is highly effective. Full article
(This article belongs to the Special Issue Analysis and Applications of Control Systems Theory)
Show Figures

Figure 1

Back to TopTop