Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (520)

Search Parameters:
Keywords = prevention and control zoning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5995 KiB  
Article
Integrated Remote Sensing Evaluation of Grassland Degradation Using Multi-Criteria GDCI in Ili Prefecture, Xinjiang, China
by Liwei Xing, Dongyan Jin, Chen Shen, Mengshuai Zhu and Jianzhai Wu
Land 2025, 14(8), 1592; https://doi.org/10.3390/land14081592 - 4 Aug 2025
Abstract
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. [...] Read more.
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. However, in recent years, driven by climate change and human activities, grassland degradation has become increasingly serious. In view of the lack of comprehensive evaluation indicators and the inconsistency of grassland evaluation grade standards in remote sensing monitoring of grassland resource degradation, this study takes the current situation of grassland degradation in Ili Prefecture in the past 20 years as the research object and constructs a comprehensive evaluation index system covering three criteria layers of vegetation characteristics, environmental characteristics, and utilization characteristics. Net primary productivity (NPP), vegetation coverage, temperature, precipitation, soil erosion modulus, and grazing intensity were selected as multi-source indicators. Combined with data sources such as remote sensing inversion, sample survey, meteorological data, and farmer survey, the factor weight coefficient was determined by analytic hierarchy process. The Grassland Degeneration Comprehensive Index (GDCI) model was constructed to carry out remote sensing monitoring and evaluation of grassland degradation in Yili Prefecture. With reference to the classification threshold of the national standard for grassland degradation, the GDCI grassland degradation evaluation grade threshold (GDCI reduction rate) was determined by the method of weighted average of coefficients: non-degradation (0–10%), mild degradation (10–20%), moderate degradation (20–37.66%) and severe degradation (more than 37.66%). According to the results, between 2000 and 2022, non-degraded grasslands in Ili Prefecture covered an area of 27,200 km2, representing 90.19% of the total grassland area. Slight, moderate, and severe degradation accounted for 4.34%, 3.33%, and 2.15%, respectively. Moderately and severely degraded areas are primarily distributed in agro-pastoral transition zones and economically developed urban regions, respectively. The results revealed the spatial and temporal distribution characteristics of grassland degradation in Yili Prefecture and provided data basis and technical support for regional grassland resource management, degradation prevention and control and ecological restoration. Full article
Show Figures

Figure 1

25 pages, 9193 KiB  
Article
Antibiotic-Loaded Bioglass 45S5 for the Treatment and Prevention of Staphylococcus aureus Infections in Orthopaedic Surgery: A Novel Strategy Against Antimicrobial Resistance
by Humera Sarwar, Richard A. Martin, Heather M. Coleman, Aaron Courtenay and Deborah Lowry
Pathogens 2025, 14(8), 760; https://doi.org/10.3390/pathogens14080760 (registering DOI) - 1 Aug 2025
Viewed by 227
Abstract
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded [...] Read more.
This study explores the potential of biodegradable Bioglass 45S5 formulations as a dual-function approach for preventing and treating Staphylococcus aureus infections in orthopaedic surgery while addressing the growing concern of antimicrobial resistance (AMR). The research focuses on the development and characterisation of antibiotic-loaded BG45S5 formulations, assessing parameters such as drug loading efficiency, release kinetics, antimicrobial efficacy, and dissolution behaviour. Key findings indicate that the F2l-BG45S5-T-T-1.5 and F2l-BG45S5-T-V-1.5 formulations demonstrated controlled antibiotic release for up to seven days, with size distributions of D(10): 7.11 ± 0.806 µm, 4.96 ± 0.007 µm; D(50): 25.34 ± 1.730 µm, 25.20.7 ± 0.425 µm; and D(90): 53.7 ± 7.95 µm, 56.10 ± 0.579 µm, respectively. These formulations facilitated hydroxyapatite formation on their surfaces, indicative of osteogenic potential. The antimicrobial assessments revealed zones of inhibition against methicillin-susceptible Staphylococcus aureus (MSSA, ATCC-6538) measuring 20.3 ± 1.44 mm and 24.6 ± 1.32 mm, while for methicillin-resistant Staphylococcus aureus (MRSA, ATCC-43300), the inhibition zones were 21.6 ± 1.89 mm and 22 ± 0.28 mm, respectively. Time-kill assay results showed complete bacterial eradication within eight hours. Additionally, biocompatibility testing via MTT assay confirmed cell viability of >75%. In conclusion, these findings highlight the promise of antibiotic-loaded BG45S5 as a multifunctional biomaterial capable of both combating bone infections and supporting bone regeneration. These promising results suggest that in vivo studies should be undertaken to expedite these materials into clinical applications. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in the Post-COVID Era: A Silent Pandemic)
Show Figures

Figure 1

24 pages, 20005 KiB  
Article
Zoning Method for Groundwater Pollution Risk Control in Typical Industrial–Urban Integration Areas in the Middle Reaches of the Yangtze River
by Xiongbiao Qiao, Tianwei Cheng, Liming Zhang, Ning Sun, Zhenyu Ding, Zheming Shi, Guangcai Wang and Zongwen Zhang
Water 2025, 17(15), 2249; https://doi.org/10.3390/w17152249 - 28 Jul 2025
Viewed by 359
Abstract
With increasing urban economic development, some industrial parks and residential areas are being situated adjacent to each other, creating a potential risk of soil and groundwater contamination from the wastewater and solid waste produced by enterprises. This contamination poses a threat to the [...] Read more.
With increasing urban economic development, some industrial parks and residential areas are being situated adjacent to each other, creating a potential risk of soil and groundwater contamination from the wastewater and solid waste produced by enterprises. This contamination poses a threat to the health of nearby residents. Currently, groundwater pollution prevention and control zoning in China primarily targets groundwater environmental pollution risks and does not consider the health risks associated with groundwater exposure in industry–city integration areas. Therefore, a scientific assessment of environmental risks in industry–city integration areas is essential for effectively managing groundwater pollution. This study focuses on the high frequency and rapid pace of human activities in industry–city integration areas. It combines health risk assessment and groundwater pollution simulation results with traditional groundwater pollution control classification outcomes to develop a groundwater pollution risk zoning framework specifically suited to these integrated areas. Using this framework, we systematically assessed groundwater pollution risks in a representative industry–city integration area in the middle reaches of the Yangtze River in China and delineated groundwater pollution risk zones to provide a scientific basis for local groundwater environmental management. The assessment results indicate that the total area of groundwater pollution risk control zones is 30.37 km2, accounting for 19.06% of the total study area. The first-level control zone covers 5.38 km2 (3.38% of the total area), while the secondary control zone spans 24.99 km2 (15.68% of the total area). The first-level control zone is concentrated within industrial clusters, whereas the secondary control zone is widely distributed throughout the region. In comparison to traditional assessment methods, the zoning results derived from this study are more suitable for industry–city integration areas. This study also provides groundwater management recommendations for such areas, offering valuable insights for groundwater control in integrated industrial–residential zones. Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 216
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

19 pages, 8699 KiB  
Article
Study on the Spatio-Temporal Characteristics and Driving Factors of PM2.5 in the Inter-Provincial Border Region of Eastern China (Jiangsu, Anhui, Shandong, Henan) from 2022 to 2024
by Xiaoli Xia, Shangpeng Sun, Xinru Wang and Feifei Shen
Atmosphere 2025, 16(8), 895; https://doi.org/10.3390/atmos16080895 - 22 Jul 2025
Viewed by 249
Abstract
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the [...] Read more.
The inter-provincial border region in eastern China, encompassing the junction of Jiangsu, Anhui, Shandong, and Henan provinces, serves as a crucial zone that connects the important economic zones of Beijing–Tianjin–Hebei and the Yangtze River Delta. It is of great significance to study the temporal variation characteristics, spatial distribution patterns, and driving factors of PM2.5 concentrations in this region. Based on the PM2.5 concentration observation data, ground meteorological data, environmental data, and socio-economic data from 2022 to 2024, this study conducted in-depth and systematic research by using advanced methods, such as spatial autocorrelation analysis and geographical detectors. The research results show that the concentration of PM2.5 rose from 2022 to 2023, but decreased from 2023 to 2024. From the perspective of seasonal variations, the concentration of PM2.5 shows a distinct characteristic of being “high in winter and low in summer”. The monthly variation shows a “U”-shaped distribution pattern. In terms of spatial changes, the PM2.5 concentration in the inter-provincial border region of eastern China (Jiangsu, Anhui, Shandong, Henan) forms a gradient difference of “higher in the west and lower in the east”. The high-concentration agglomeration areas are mainly concentrated in the Henan part of the study region, while the low-concentration agglomeration areas are distributed in the eastern coastal parts of the study region. The analysis of the driving factors of the PM2.5 concentration based on geographical detectors reveals that the average temperature is the main factor affecting the PM2.5 concentration. The interaction among the factors contributing to the spatial differentiation of the PM2.5 concentration is very obvious. Temperature and population density (q = 0.92), temperature and precipitation (q = 0.95), slope and precipitation (q = 0.97), as well as DEM and population density (q = 0.96), are the main combinations of factors that have continuously affected the spatial differentiation of the PM2.5 concentration for many years. The research results from this study provide a scientific basis and decision support for the prevention, control, and governance of PM2.5 pollution. Full article
(This article belongs to the Special Issue Atmospheric Pollution Dynamics in China)
Show Figures

Figure 1

15 pages, 1570 KiB  
Article
Benzalkonium Chloride Significantly Improves Environmental DNA Detection from Schistosomiasis Snail Vectors in Freshwater Samples
by Raquel Sánchez-Marqués, Pablo Fernando Cuervo, Alejandra De Elías-Escribano, Alberto Martínez-Ortí, Patricio Artigas, Maria Cecilia Fantozzi, Santiago Mas-Coma and Maria Dolores Bargues
Trop. Med. Infect. Dis. 2025, 10(8), 201; https://doi.org/10.3390/tropicalmed10080201 - 22 Jul 2025
Viewed by 221
Abstract
Urogenital schistosomiasis, caused by Schistosoma haematobium and transmitted by Bulinus snails, affects approximately 190 million individuals globally and remains a major public health concern. Effective surveillance of snail vectors is critical for disease control, but traditional identification methods are time-intensive and require specialized [...] Read more.
Urogenital schistosomiasis, caused by Schistosoma haematobium and transmitted by Bulinus snails, affects approximately 190 million individuals globally and remains a major public health concern. Effective surveillance of snail vectors is critical for disease control, but traditional identification methods are time-intensive and require specialized expertise. Environmental DNA (eDNA) detection using qPCR has emerged as a promising alternative for large-scale vector surveillance. To prevent eDNA degradation, benzalkonium chloride (BAC) has been proposed as a preservative, though its efficacy with schistosomiasis snail vectors has not been evaluated. This study tested the impact of BAC (0.01%) on the stability of Bulinus truncatus eDNA under simulated field conditions. Water samples from aquaria with varying snail densities (0.5–30 snails/L) were stored up to 42 days with BAC. eDNA detection via qPCR and multivariable linear mixed regression analysis revealed that BAC enhanced eDNA stability. eDNA was detectable up to 42 days in samples with ≥1 snail/L and up to 35 days at 0.5 snails/L. Additionally, a positive correlation between snail density and eDNA concentration was observed. These findings support the development of robust eDNA sampling protocols for field surveillance, enabling effective monitoring in remote areas and potentially distinguishing between low- and high-risk schistosomiasis transmission zones. Full article
Show Figures

Figure 1

22 pages, 3860 KiB  
Article
Spatiotemporal Dynamics of Emerging Foot-and-Mouth Disease, Bluetongue, and Peste Des Petits Ruminants in Algeria
by Ilhem Zouyed, Sabrina Boussena, Nacira Ramdani, Houssem Eddine Damerdji, Julio A. Benavides and Hacène Medkour
Viruses 2025, 17(7), 1008; https://doi.org/10.3390/v17071008 - 17 Jul 2025
Viewed by 511
Abstract
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly [...] Read more.
Foot-and-mouth disease (FMD), bluetongue (BT), and Peste des Petits Ruminants (PPR) are major emerging and re-emerging viral infections affecting ruminants. These diseases can threaten livestock health, food security, and economic stability in low- and middle-income countries, including Algeria. However, their dynamics remain mostly unknown, limiting the implementation of effective preventive and control measures. We analyzed outbreak data reported by Algerian veterinary authorities and the WAHIS database from 2014 to 2022 for FMD; from 2006 to 2020 for BT; and from 2011 to 2022 for PPR to investigate their spatiotemporal patterns and environmental drivers. Over these periods, Algeria reported 1142 FMD outbreaks (10,409 cases; 0.16/1000 incidence), 167 BT outbreaks (602 cases; 0.018/1000), and 222 PPR outbreaks (3597 cases; 0.096/1000). Small ruminants were the most affected across all diseases, although cattle bore the highest burden of FMD. BT primarily impacted sheep, and PPR showed a higher incidence in goats. Disease peaks occurred in 2014 for FMD, 2008 for BT, and 2019 for PPR. Spatial analyses revealed distinct ecological hotspots: sub-humid and semi-arid zones for FMD and BT, and semi-arid/Saharan regions for PPR. These patterns may be influenced by species susceptibility, animal movement, trade, and climatic factors such as temperature and rainfall. The absence of consistent temporal trends and the persistence of outbreaks suggest multiple drivers, including insufficient vaccination coverage, under-reporting, viral evolution, and environmental persistence. Our findings underscore the importance of targeted species- and region-specific control strategies, including improved surveillance, cross-border coordination, and climate-informed risk mapping. Strengthening One Health frameworks will be essential to mitigate the re-emergence and spread of these diseases. Full article
(This article belongs to the Special Issue Emerging Microbes, Infections and Spillovers, 2nd Edition)
Show Figures

Figure 1

13 pages, 1667 KiB  
Article
Isolation and Identification of Pathogenic Bacteria Aeromonas veronii in Ctenopharyngodon idella (Grass Carp) and Chinese Herbal Medicine Antibacterial Experiment
by Yanhua Zhao, Hui Xue, Guoxing Liu, Li Sun and Hucheng Jiang
Bacteria 2025, 4(3), 34; https://doi.org/10.3390/bacteria4030034 - 12 Jul 2025
Viewed by 216
Abstract
Grass carp in aquaculture exhibited symptoms of bacterial infection leading to mortality. To investigate the cause of the disease and control grass carp infections, samples from diseased grass carp were collected, and a bacterial strain named XH-1 was isolated from the internal organs [...] Read more.
Grass carp in aquaculture exhibited symptoms of bacterial infection leading to mortality. To investigate the cause of the disease and control grass carp infections, samples from diseased grass carp were collected, and a bacterial strain named XH-1 was isolated from the internal organs of the infected fish. Artificial infection experiments were conducted to determine whether the isolated strain XH-1 was the pathogenic bacterium. The biological characteristics of the isolated strain were studied through a 16S rRNA sequence analysis, physiological and biochemical identification, and phylogenetic tree construction. Extracts from 14 traditional Chinese herbs were tested to evaluate their bacteriostatic and bactericidal effects on the isolated strain. The regression infection experiment confirmed that the isolated strain XH-1 was the pathogenic bacterium causing the grass carp disease. Biological characterization studies identified the bacterium as Aeromonas veronii, which is clustered with A. veronii MW116767.1 on the phylogenetic tree. Among the 14 Chinese herbal extracts, Lignum sappa, Pericarpium granna, Artemisia argyi, Scutellaria baicalensis Georgi, Coptis chinensis, and Artemisiacapillaris thunb exhibited significant bacteriostatic effects on XH-1. Lignum sappa showed the highest sensitivity to A. veronii, with the largest inhibition zone diameter, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 7.813 mg/mL and 15.625 mg/mL, respectively. As the concentration of Lignum sappa extract increased, its bacteriostatic and bactericidal effects strengthened. When the concentration exceeded 14 mg/mL, it maintained strong bactericidal activity over 32 h. This study on A. veronii XH-1 provides theoretical insights for the prevention of grass carp aquaculture diseases and the use of traditional Chinese herbs for treatment. Full article
Show Figures

Figure 1

16 pages, 3611 KiB  
Article
Study on the Effectiveness of Multi-Dimensional Approaches to Urban Flood Risk Assessment
by Hyung Jun Park, Su Min Song, Dong Hyun Kim and Seung Oh Lee
Appl. Sci. 2025, 15(14), 7777; https://doi.org/10.3390/app15147777 - 11 Jul 2025
Viewed by 326
Abstract
Increasing frequency and severity of urban flooding, driven by climate change and urban population growth, present major challenges. Traditional flood control infrastructure alone cannot fully prevent flood damage, highlighting the need for a comprehensive and multi-dimensional disaster management approach. This study proposes the [...] Read more.
Increasing frequency and severity of urban flooding, driven by climate change and urban population growth, present major challenges. Traditional flood control infrastructure alone cannot fully prevent flood damage, highlighting the need for a comprehensive and multi-dimensional disaster management approach. This study proposes the Flood Risk Index for Building (FRIB)—a building-level assessment framework that integrates vulnerability, hazard, and exposure. FRIB assigns customized risk levels to individual buildings and evaluates the effectiveness of a multi-dimensional method. Compared to traditional indicators like flood depth, FRIB more accurately identifies high-risk areas by incorporating diverse risk factors. It also enables efficient resource allocation by excluding low-risk buildings, focusing efforts on high-risk zones. For example, in a case where 5124 buildings were targeted based on 1 m flood depth, applying FRIB excluded 24 buildings with “low” risk and up to 530 with “high” risk, reducing unnecessary interventions. Moreover, quantitative metrics like entropy and variance showed that as FRIB levels rise, flood depth distributions become more balanced—demonstrating that depth alone does not determine risk. In conclusion, while qualitative labels such as “very low” to “very high” aid intuitive understanding, FRIB’s quantitative, multi-dimensional approach enhances precision in urban flood management. Future research may expand FRIB’s application to varied regions, supporting tailored flood response strategies. Full article
Show Figures

Figure 1

26 pages, 4626 KiB  
Article
Analysis and Application of Dual-Control Single-Exponential Water Inrush Prediction Mechanism for Excavation Roadways Based on Peridynamics
by Xiaoning Liu, Xinqiu Fang, Minfu Liang, Gang Wu, Ningning Chen and Yang Song
Appl. Sci. 2025, 15(13), 7621; https://doi.org/10.3390/app15137621 - 7 Jul 2025
Viewed by 287
Abstract
Roof water inrush accidents in coal mine driving roadways occur frequently in China, accounting for a high proportion of major coal mine water hazard accidents and causing serious losses. Aiming at the lack of research on the mechanism of roof water inrush in [...] Read more.
Roof water inrush accidents in coal mine driving roadways occur frequently in China, accounting for a high proportion of major coal mine water hazard accidents and causing serious losses. Aiming at the lack of research on the mechanism of roof water inrush in driving roadways and the difficulty of predicting water inrush accidents, this paper constructs a local damage criterion for coal–rock mass and a seepage–fracture coupling model based on peridynamics (PD) bond theory. It identifies three zones of water-conducting channels in roadway surrounding rock, the water fracture zone, the driving fracture zone, and the water-resisting zone, revealing that the damage degree of the water-resisting zone dominates the transformation mechanism between delayed and instantaneous water inrush. A discriminant function for the effectiveness of water-conducting channels is established, and a single-index prediction and evaluation system based on damage critical values is proposed. A “geometry damage” dual-control water inrush prediction model within the PD framework is constructed, along with a non-local action mechanism model and quantitative prediction method for water inrush. Case studies verify the threshold for delayed water inrush and criteria for instantaneous water inrush. The research results provide theoretical tools for roadway water exploration design and water hazard prevention and control. Full article
Show Figures

Figure 1

23 pages, 5365 KiB  
Article
Impact of Post-Fire Rehabilitation Treatments on Forest Soil Infiltration in Mediterranean Landscapes: A Two-Year Study
by Nikolaos D. Proutsos, Stefanos P. Stefanidis, Alexandra D. Solomou, Panagiotis Michopoulos, Athanasios Bourletsikas and Panagiotis Lattas
Fire 2025, 8(7), 269; https://doi.org/10.3390/fire8070269 - 6 Jul 2025
Viewed by 662
Abstract
In the Mediterranean region, the high frequency of fire events is combined with climatic conditions that hinder vegetation recovery. This underscores the urgent need for a post-fire restoration of natural ecosystems and implementation of emergency rehabilitation measures to prevent further degradation. In this [...] Read more.
In the Mediterranean region, the high frequency of fire events is combined with climatic conditions that hinder vegetation recovery. This underscores the urgent need for a post-fire restoration of natural ecosystems and implementation of emergency rehabilitation measures to prevent further degradation. In this study, we investigated the performance of three types of erosion control structures (log dams, log barriers, and wattles), two years after fire, in three Mediterranean areas that were burnt by severe forest fires in 2021. The wooden structures’ ability to infiltrate precipitation was evaluated by 100 infiltration experiments in 25 plots, one and two years after the wildfires. The unsaturated hydraulic conductivity K was determined at two zones formed between consecutive wooden structures, i.e., the erosion zone (EZ) where soil erosion occurs, and the deposition zone (DZ) where the soil sediment is accumulated. These zones showed significant differences concerning their hydraulic behavior, with DZ presenting enhanced infiltration ability by 130 to 300% higher compared to EZ, during both years of measurements. The findings suggest that the implementation of emergency restoration actions after a wildfire can highly affect the burned forest soils’ ability to infiltrate water, preventing surface runoff and erosion, whereas specific structures such as the log dams can be even more effective. Full article
Show Figures

Figure 1

20 pages, 4992 KiB  
Article
Spatial Heterogeneity and Controlling Factors of Heavy Metals in Groundwater in a Typical Industrial Area in Southern China
by Jiaxu Du, Fu Liao, Ziwen Zhang, Aoao Du and Jiale Qian
Water 2025, 17(13), 2012; https://doi.org/10.3390/w17132012 - 4 Jul 2025
Viewed by 572
Abstract
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling [...] Read more.
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling factors of heavy metals is crucial for pollution prevention and water resource management in industrial regions. This study applied spatial autocorrelation analysis and self-organizing maps (SOM) coupled with K-means clustering to investigate the spatial distribution and key influencing factors of nine heavy metals (Cr, Fe, Mn, Ni, Cu, Zn, As, Ba, and Pb) in a typical industrial area in southern China. Heavy metals show significant spatial heterogeneity in concentrations. Cr, Mn, Fe, and Cu form local hotspots near urban and peripheral zones; Ni and As present downstream enrichment along the river pathway with longitudinal increase trends; Zn, Ba, and Pb exhibit a fluctuating pattern from west to east in the piedmont region. Local Moran’s I analysis further revealed spatial clustering in the northwest, riverine zones, and coastal outlet areas, providing insight into potential source regions. SOM clustering identified three types of groundwater: Cluster 1 (characterized by Cr, Mn, Fe, and Ni) is primarily influenced by industrial pollution and present spatially scattered distribution; Cluster 2 (dominated by As, NO3, Ca2+, and K+) is associated with domestic sewage and distributes following river flow; Cluster 3 (enriched in Zn, Ba, Pb, and NO3) is shaped by agricultural activities and natural mineral dissolution, with a lateral distribution along the piedmont zone. The findings of this study provide a scientific foundation for groundwater pollution prevention and environmental management in industrialized areas. Full article
Show Figures

Figure 1

19 pages, 3270 KiB  
Article
Spatial Risk Prediction of Coal Seam Gas Using Kriging Under Complex Geological Conditions
by Qingsong Li, Yanjun Wei, Weidong Luo, Xun Zhao, Hongsheng Li and Zhengpeng Duan
Processes 2025, 13(7), 2110; https://doi.org/10.3390/pr13072110 - 3 Jul 2025
Viewed by 313
Abstract
Coal and gas outbursts are one of the major hidden hazards in coal mine production safety. To achieve the effective prevention and control of this type of disaster, detailed measurements of relevant parameters are conducted based on the No. 9 coal seam in [...] Read more.
Coal and gas outbursts are one of the major hidden hazards in coal mine production safety. To achieve the effective prevention and control of this type of disaster, detailed measurements of relevant parameters are conducted based on the No. 9 coal seam in Longfeng Coal Mine, Guizhou Province. Using the obtained data and combining it with the Kriging algorithm, the gas content in the coal seam is accurately predicted and analyzed, taking into account the spatial location of the prediction points and the prediction level. This investigation reveals the regional occurrence characteristics of gas under complex geological conditions and enables the early identification of regional gas hazards. The main findings are as follows: (i) There is a significant relationship between gas content, elevation, and burial depth in the studied coal seam. The relationship between gas content and elevation can be expressed by the following formula: y = −0.0406x + 54.845, R2 = 0.9202. The relationship between gas content and burial depth can be expressed by the following formula: y = 0.0269x + 5.1801, R2 = 0.8925. (ii) The gas content reaches a critical value of 8 m/t when the coal seam burial depth reaches 105 m, and the area below 105 m is identified as the outburst hazard zone. (iii) The gas content prediction function formula for coal seam No. 9 based on the Kriging algorithm is derived as y = 0.84x + 1.840, with an average prediction accuracy of 90.44%. Full article
Show Figures

Figure 1

17 pages, 6884 KiB  
Article
A Study of the Global Buckling Response and Control Measures for Snake-Laid Pipelines Under Uneven Soil Resistances
by Runnan Miao, Xiang Sun, Chengfeng Li, Run Liu, Xiangning Du and Yinuo Liu
J. Mar. Sci. Eng. 2025, 13(7), 1258; https://doi.org/10.3390/jmse13071258 - 28 Jun 2025
Viewed by 291
Abstract
The snake-laying method is widely employed as an effective strategy for global buckling mitigation in submarine pipelines. The uneven distribution of soil resistance along pipeline routes significantly amplifies the complexity of global buckling responses in snake-laid pipelines and challenges their control mechanisms. This [...] Read more.
The snake-laying method is widely employed as an effective strategy for global buckling mitigation in submarine pipelines. The uneven distribution of soil resistance along pipeline routes significantly amplifies the complexity of global buckling responses in snake-laid pipelines and challenges their control mechanisms. This study establishes a finite element computational model to investigate the effects of soil resistance distribution gradients and patterns along pipeline routes, alongside their coupling with critical snake-laying parameters (spacing, offset, curvature). The research revealed that an uneven distribution of soil resistance can induce the global buckling submersion phenomenon in snake-laid pipelines. Among the critical snake-laying parameters, curvature enhancement proves to be the most effective mitigation strategy against the global buckling submersion phenomenon. Additionally, an improvement in the conventional uniform-laying scheme is proposed for uneven soil resistance distribution: the originally planned snake-laid section can be replaced by a straight pipeline section in the high-resistance zone. This study provides enhanced technical solutions for global buckling prevention in pipelines traversing uneven seabeds. Full article
(This article belongs to the Special Issue Safety Evaluation and Protection in Deep-Sea Resource Exploitation)
Show Figures

Figure 1

20 pages, 3731 KiB  
Article
Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China?
by Huijuan Li, Sumei Zhang, Xugang Lian, Yuan Zhang and Fengfeng Zhao
Fire 2025, 8(7), 254; https://doi.org/10.3390/fire8070254 - 28 Jun 2025
Viewed by 282
Abstract
Fire regime (FR) is a key element in the study of ecosystem dynamics, supporting natural resource management planning by identifying gaps in fire patterns in time and space and planning to assess ecological conditions. Due to the insufficient consideration of integrated characterization factors, [...] Read more.
Fire regime (FR) is a key element in the study of ecosystem dynamics, supporting natural resource management planning by identifying gaps in fire patterns in time and space and planning to assess ecological conditions. Due to the insufficient consideration of integrated characterization factors, especially the insufficient research on fire season types (FST), the current understanding of the spatial heterogeneity of fire patterns in China is still limited, and it is necessary to use FST as a key dimension to classify FR zones more accurately. This study extracted 13 fire characteristic variables based on Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data (MCD64A1), active fire data (MODIS Collection 6), and land cover data (MCD12Q1) from 2001 to 2023. The study systematically analyzed the frequency, intensity, spatial distribution and seasonal characteristics of fires across China. By using data normalization and the k-means clustering algorithm, the study area was divided into five types of FR zones (FR 1–5) with significant differences. The burned areas of the five FR zones account for 67.76%, 13.88%, 4.87%, 12.94%, and 0.55% of the total burned area across the country over the 23-year study period, respectively. Among them, fires in the Northeast China Plain and North China Plain cropland areas (FR 1) exhibit a bimodal distribution, with the peak period concentrated in April and June, respectively; the southern forest and savanna region (FR 2) is dominated by high-frequency, small-scale, unimodal fires, peaking in February; the central grassland region (FR 3) experiences high-intensity, low-frequency fires, with a peak in April; the east central forest region (FR 4) is characterized by low-frequency, high-intensity fires; and the western grassland region (FR 5) experiences low-frequency fires with significant inter-annual fluctuations. Among the five zones, FST consistently ranks within the top five contributors, with contribution rates of 0.39, 0.31, 0.44, 0.27, and 0.55, respectively, confirming that the inclusion of FST is a reasonable and necessary choice when constructing FR zones. By integrating multi-source remote sensing data, this study has established a novel FR classification system that encompasses fire frequency, intensity, and particularly FST. This approach transcends the traditional single-factor classification, demonstrating that seasonal characteristics are indispensable for accurately delineating fire conditions. The resultant zoning system effectively overcomes the limitations of traditional methods, providing a scientific basis for localized fire risk warning and differentiated prevention and control strategies. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Burned Area Mapping)
Show Figures

Figure 1

Back to TopTop