Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = pressurized metered-dose inhaler

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 557 KB  
Article
Pressurized Metered-Dose Inhaler Versus Dry Powder Inhaler Adherence Among Individuals with Asthma and COPD
by Dekel Shlomi, Bernice Oberman, Yehonatan Halevy, Shiri Kushnir, Hadas Meir and Yael Reichenberg
Adv. Respir. Med. 2025, 93(5), 44; https://doi.org/10.3390/arm93050044 - 11 Oct 2025
Viewed by 2403
Abstract
Background: The core management of most individuals with asthma and COPD is daily treatment with inhalers such as inhaled corticosteroids (ICS) and long-acting bronchodilators. The two main types of inhalers used are pressurized metered-dose inhalers (pMDIs) and dry powder inhalers (DPIs). Different studies [...] Read more.
Background: The core management of most individuals with asthma and COPD is daily treatment with inhalers such as inhaled corticosteroids (ICS) and long-acting bronchodilators. The two main types of inhalers used are pressurized metered-dose inhalers (pMDIs) and dry powder inhalers (DPIs). Different studies have shown low adherence to inhaler treatments among subjects with asthma and COPD. In this study, we explored the differences in adherence between pMDIs and DPIs of combined ICS and long-acting β2-agonist inhalers (ICS + LABA) in a large cohort, free from commercial biases. Methods: In this historical prospective study, we included all adult subjects with asthma and/or COPD who acquired at least one ICS + LABA inhaler between 2016 and 2019. We carried out propensity score matching and then compared the maximal number of pMDIs and DPIs purchased in any continuous 12 months during the study period. We also compared once-a-day DPIs with twice-a-day DPIs. Results: Of the 36,998 matched subjects, 5897 (15.9%) purchased pMDIs. The overall median [IQR] inhalers purchased for pMDIs and DPIs were 1 [1, 4] and 3 [1, 8], respectively; for subjects with asthma, 1 [1, 3] and 2 [1, 6]; for subjects with COPD, 1 [1, 3] and 3 [1, 10]; and for subjects with asthma–COPD overlap, 2 [1, 7] and 6 [2, 12]. For all the comparisons, p < 0.001. The once-a-day DPI group had a slight but significantly better adherence than the twice-a-day DPI group. Conclusions: For ICS + LABA therapy, the number of DPIs purchased was significantly greater than the number of pMDIs purchased, as well as the once-a-day DPI relative to the other DPIs. Overall, subjects with asthma and/or COPD had low adherence to all inhalers, with the highest adherence observed among subjects with asthma–COPD overlap. Full article
Show Figures

Figure 1

10 pages, 389 KB  
Article
Effects of Short-Term Exposure to High-Dose Inhaled Corticosteroids on Appetite, Dietary Intake, Leptin Levels, and Body Weight in Adults with Asthma—A Prospective Pilot Study
by Sotirios Kakavas and Dimitrios Karayiannis
J. Pers. Med. 2025, 15(7), 326; https://doi.org/10.3390/jpm15070326 - 20 Jul 2025
Viewed by 1516
Abstract
Background: Inhaled corticosteroids (ICSs) are a cornerstone in asthma management, particularly during exacerbations, when high doses are often prescribed. However, patient concerns about potential side effects such as increased appetite, weight gain, and metabolic disturbances may reduce adherence, compromising treatment outcomes. While oral [...] Read more.
Background: Inhaled corticosteroids (ICSs) are a cornerstone in asthma management, particularly during exacerbations, when high doses are often prescribed. However, patient concerns about potential side effects such as increased appetite, weight gain, and metabolic disturbances may reduce adherence, compromising treatment outcomes. While oral corticosteroids (OCSs) are well known to induce such effects, the metabolic impact of short-term high-dose ICSs remains poorly studied. Objective: This prospective pilot study aimed to assess whether a 14-day course of high-dose ICSs in adults with stable asthma induces changes in appetite, dietary intake, leptin levels, or body weight. Methods: Thirty-five adults (19 males, 16 females; mean age 48.7 ± 15.1 years) with stable mild asthma received ≥400 µg/day extrafine beclomethasone dipropionate/formoterol via pressurized metered-dose inhaler for 14 days. Participants underwent assessments at baseline and after 14 days, including body weight, BMI, fasting serum leptin levels, dietary intake (evaluated using 24 h dietary recalls), and appetite (measured via a visual analogue scale). Results: No significant changes were observed in body weight (mean change: −0.38 kg; 95% CI: −0.81 to 0.05; p = 0.083) or BMI (p = 0.912) following high-dose ICS use. Similarly, serum leptin levels (mean change: 0.13 ng/mL; 95% CI: −3.47 to 3.72; p = 0.945), subjective appetite scores (mean change: −4.93 mm; 95% CI: −13.64 to 3.79; p = 0.267), and dietary energy intake (mean change: +255 kJ/day; 95% CI: −380 to 891; p = 0.431) did not differ significantly post-intervention. Conclusions: Short-term high-dose ICS therapy in adults with mild asthma may not significantly affect appetite, dietary intake, leptin levels, or body weight. These findings support the metabolic safety of short-term high-dose ICSs and may help alleviate patient concerns, improving adherence during exacerbation management. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

39 pages, 4547 KB  
Review
Inhalable Nanotechnology-Based Drug Delivery Systems for the Treatment of Inflammatory Lung Diseases
by Doaa Elsayed Mahmoud, Seyedeh Hanieh Hosseini, Hassaan Anwer Rathore, Alaaldin M. Alkilany, Andreas Heise and Abdelbary Elhissi
Pharmaceutics 2025, 17(7), 893; https://doi.org/10.3390/pharmaceutics17070893 - 9 Jul 2025
Cited by 5 | Viewed by 6145
Abstract
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to [...] Read more.
This review explores recent advancements in inhaled nanoparticle formulations and inhalation devices, with a focus on various types of nanoparticles used for inhalation to treat inflammatory lung diseases and the types of devices used in their delivery. Medical nebulizers have been found to be the most appropriate type of inhalation devices for the pulmonary delivery of nanoparticles, since formulations can be prepared using straightforward techniques, with no need for liquefied propellants as in the case of pressurized metered dose inhalers (pMDIs), or complicated preparation procedures as in the case of dry powder inhalers (DPIs). We demonstrated examples of how formulations should be designed considering the operation mechanism of nebulizers, and how an interplay of factors can affect the aerosol characteristics of nanoparticle formulations. Overall, nanoparticle-based formulations offer promising potential for the treatment of inflammatory lung diseases due to their unique physicochemical properties and ability to provide localized drug delivery in the lung following inhalation. Full article
(This article belongs to the Special Issue Recent Advances in Pulmonary Inhalation of Nanoformulations)
Show Figures

Figure 1

18 pages, 390 KB  
Review
Contributions of Medical Greenhouse Gases to Climate Change and Their Possible Alternatives
by Joyce Wang and Shiladitya DasSarma
Int. J. Environ. Res. Public Health 2024, 21(12), 1548; https://doi.org/10.3390/ijerph21121548 - 22 Nov 2024
Cited by 2 | Viewed by 2604
Abstract
Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental [...] Read more.
Considerable attention has recently been given to the contribution of the greenhouse gas (GHG) emissions of the healthcare sector to climate change. GHGs used in medical practice are regularly released into the atmosphere and contribute to elevations in global temperatures that produce detrimental effects on the environment and human health. Consequently, a comprehensive assessment of their global warming potential over 100 years (GWP) characteristics, and clinical uses, many of which have evaded scrutiny from policy makers due to their medical necessity, is needed. Of major interest are volatile anesthetics, analgesics, and inhalers, as well as fluorinated gases used as tamponades in retinal detachment surgery. In this review, we conducted a literature search from July to September 2024 on medical greenhouse gases and calculated estimates of these gases’ GHG emissions in metric tons CO2 equivalent (MTCO2e) and their relative GWP. Notably, the anesthetics desflurane and nitrous oxide contribute the most emissions out of the major medical GHGs, equivalent to driving 12 million gasoline-powered cars annually in the US. Retinal tamponade gases have markedly high GWP up to 23,500 times compared to CO2 and long atmospheric lifetimes up to 10,000 years, thus bearing the potential to contribute to climate change in the long term. This review provides the basis for discussions on examining the environmental impacts of medical gases with high GWP, determining whether alternatives may be available, and reducing emissions while maintaining or even improving patient care. Full article
(This article belongs to the Special Issue Climate Change and Medical Responses)
23 pages, 7853 KB  
Article
Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery
by Aida Maaz, Ian S. Blagbrough and Paul A. De Bank
Pharmaceutics 2024, 16(5), 669; https://doi.org/10.3390/pharmaceutics16050669 - 16 May 2024
Cited by 4 | Viewed by 2510
Abstract
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of [...] Read more.
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of the prepared gold urchins as an aqueous suspension in a nasal pressurized metered dose inhaler (pMDI) formulation and the investigation of their potential for olfactory targeting for direct nose-to-brain drug delivery (NTBDD). The developed pMDI formulation was composed of 0.025% w/w GNUs, 2% w/w Milli-Q water, and 2% w/w EtOH, with the balance of the formulation being HFA134a propellant. Particle integrity and aerosolization performance were examined using an aerosol exposure system, whereas the nasal deposition profile was tested in a sectioned anatomical replica of human nasal airways. The compatibility of the gold dispersion with the nasal epithelial cell line RPMI 2650 was also investigated in this study. Colloidal gold was found to be stable following six-month storage at 4 °C and during the lyophilization process utilizing a pectin matrix for complete re-dispersibility in water. The GNUs were intact and discrete following atomization via a pMDI, and 13% of the delivered particles were detected beyond the nasal valve, the narrowest region in the nasal cavity, out of which 5.6% was recovered from the olfactory region. Moreover, the formulation was found to be compatible with the human nasal epithelium cell line RPMI 2650 and excellent cell viability was observed. The formulated GNU-HFA-based pMDI is a promising approach for intranasal drug delivery, including deposition in the olfactory region, which could be employed for NTBDD applications. Full article
Show Figures

Graphical abstract

28 pages, 6588 KB  
Review
Overcoming the Low-Stability Bottleneck in the Clinical Translation of Liposomal Pressurized Metered-Dose Inhalers: A Shell Stabilization Strategy Inspired by Biomineralization
by Yeqi Huang, Ziyao Chang, Yue Gao, Chuanyu Ren, Yuxin Lin, Xuejuan Zhang, Chuanbin Wu, Xin Pan and Zhengwei Huang
Int. J. Mol. Sci. 2024, 25(6), 3261; https://doi.org/10.3390/ijms25063261 - 13 Mar 2024
Cited by 3 | Viewed by 4087
Abstract
Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, [...] Read more.
Currently, several types of inhalable liposomes have been developed. Among them, liposomal pressurized metered-dose inhalers (pMDIs) have gained much attention due to their cost-effectiveness, patient compliance, and accurate dosages. However, the clinical application of liposomal pMDIs has been hindered by the low stability, i.e., the tendency of the aggregation of the liposome lipid bilayer in hydrophobic propellant medium and brittleness under high mechanical forces. Biomineralization is an evolutionary mechanism that organisms use to resist harsh external environments in nature, providing mechanical support and protection effects. Inspired by such a concept, this paper proposes a shell stabilization strategy (SSS) to solve the problem of the low stability of liposomal pMDIs. Depending on the shell material used, the SSS can be classified into biomineralization (biomineralized using calcium, silicon, manganese, titanium, gadolinium, etc.) biomineralization-like (composite with protein), and layer-by-layer (LbL) assembly (multiple shells structured with diverse materials). This work evaluated the potential of this strategy by reviewing studies on the formation of shells deposited on liposomes or similar structures. It also covered useful synthesis strategies and active molecules/functional groups for modification. We aimed to put forward new insights to promote the stability of liposomal pMDIs and shed some light on the clinical translation of relevant products. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1634 KB  
Article
Development of a Novel Bronchodilator Vaping Drug Delivery System Based on Thermal Degradation Properties
by Mariam Chaoui, Emmanuelle Fischer, Sophie Perinel-Ragey, Nathalie Prévôt, Lara Leclerc and Jérémie Pourchez
Pharmaceuticals 2023, 16(12), 1730; https://doi.org/10.3390/ph16121730 - 15 Dec 2023
Cited by 3 | Viewed by 3285
Abstract
This work aims to investigate bronchodilator delivery with the use of different vaping drug delivery systems (VDDS) by determining the dose equivalence delivered in relation to different references: a clinical jet nebulizer, a pMDI (pressurized metered dose inhaler) and a DPI (dry powder [...] Read more.
This work aims to investigate bronchodilator delivery with the use of different vaping drug delivery systems (VDDS) by determining the dose equivalence delivered in relation to different references: a clinical jet nebulizer, a pMDI (pressurized metered dose inhaler) and a DPI (dry powder inhaler). Three different bronchodilators were used (terbutaline, salbutamol hemisulfate, ipratropium bromide). The e-liquids contained the active pharmaceutical ingredient (API) in powder form. Two different VDDS were tested (JUUL and a GS AIR 2 atomizer paired with a variable lithium-ion battery (i-stick TC 40 W), 1.5 ohm resistance, and 15 W power). Samples were collected using a glass twin impinger (GTI). High-performance liquid chromatography (HPLC) was used to quantify the drugs. A next-generation impactor (NGI) was used to measure the particle size distribution. Terbutaline emerged as the optimal API for bronchodilator delivery in both VDDS devices. It achieved the delivery of a respirable dose of 20.05 ± 4.2 µg/puff for GS AIR 2 and 2.98 ± 0.52 µg/puff for JUUL. With these delivered doses, it is possible to achieve a dose equivalence similar to that of a jet nebulizer and DPI, all while maintaining a reasonable duration, particularly with the GS AIR 2. This study is the first to provide evidence that vaping bronchodilators work only with appropriate formulation, vaping technology, and specific drugs, depending on their thermal degradation properties. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

14 pages, 555 KB  
Review
Delivery of Topical Drugs to the Olfactory Cleft
by Andreas Espehana, Liam Lee, Elizabeth Mairenn Garden, Gabija Klyvyte, Shyam Gokani, Lavandan Jegatheeswaran, Jeremy Jonathan Wong and Carl Philpott
J. Clin. Med. 2023, 12(23), 7387; https://doi.org/10.3390/jcm12237387 - 29 Nov 2023
Cited by 6 | Viewed by 5204
Abstract
Olfactory dysfunction affects approximately 20% of the population globally, with incidence increasing over the age of 60. The pathophysiology is complex, not yet fully understood, and depends on many factors, including the underlying cause. Despite this, the present literature on olfaction is limited [...] Read more.
Olfactory dysfunction affects approximately 20% of the population globally, with incidence increasing over the age of 60. The pathophysiology is complex, not yet fully understood, and depends on many factors, including the underlying cause. Despite this, the present literature on olfaction is limited due to significant heterogeneity in methodological approaches. This has resulted in limited effective treatments available for olfactory dysfunction. Medications for olfactory dysfunction can be administered locally (directly to the olfactory epithelium) or systemically (orally or intravenously). Currently, there are various methods for local drug delivery to the olfactory epithelium (nasal drops, nasal sprays, atomisers, pressured meter-dosed inhalers, rinses, and exhalation delivery systems). The aims of this review are to summarise the different methods of drug delivery to the olfactory cleft, evaluate the current literature to assess which method is the most effective in delivering drugs to the olfactory epithelium, and review the medications currently available to treat olfactory dysfunction topically. Going forward, further research is required to better establish effective methods of drug delivery to the olfactory epithelium to treat smell disorders. Full article
Show Figures

Figure 1

14 pages, 723 KB  
Article
Prevalence and Factors Affecting Appropriate Inhaler Use in Elderly Patients with Chronic Obstructive Pulmonary Disease: A Prospective Study
by Le Khac Bao, Nguyen Dang Khoa, Le Thi Kim Chi and Nguyen Tuan Anh
J. Clin. Med. 2023, 12(13), 4420; https://doi.org/10.3390/jcm12134420 - 30 Jun 2023
Cited by 12 | Viewed by 4638
Abstract
Background: Chronic obstructive pulmonary disease (COPD) mainly affects individuals aged 60 and older. The proper use of inhalers is crucial for managing COPD. This study aimed to evaluate the prevalence and factors affecting the appropriate use of inhalers among elderly patients with COPD. [...] Read more.
Background: Chronic obstructive pulmonary disease (COPD) mainly affects individuals aged 60 and older. The proper use of inhalers is crucial for managing COPD. This study aimed to evaluate the prevalence and factors affecting the appropriate use of inhalers among elderly patients with COPD. Methods: We enrolled 91 elderly patients with COPD admitted to the Department of Respiratory, University Medical Center HCMC between October 2020 and May 2021. Patients who were capable of using the inhaler would have their inhaler usage recorded through video footage. Two respiratory experts carefully analyzed 133 video-recorded demonstrations for evaluation purposes. Results: 18.7% of the patients demonstrated the correct inhaler technique. Pressurized metered dose inhaler (pMDI) and Turbuhaler had the lowest documented correct usage rates (11.9% and 10.0%, respectively). Two critical steps, namely “holding breath for about five seconds or as long as comfortable” and “breathing out gently,” were commonly performed incorrectly when using pMDI, Respimat, Breezhaler, or Turbuhaler. Multivariable logistic regression analysis showed that lower mMRC scores (AOR = 5.3, CI 1.1–25.5, p = 0.037) and receiving inhaler instruction within the past three months (AOR = 5.2, CI 1.3–20.1, p = 0.017) were associated with increased odds of using the inhaler correctly. Conclusions: Our study found that less than 20% of elderly patients with COPD use inhalers correctly. Common errors include inadequate breath-holding and gentle exhalation. mMRC scores and recent inhaler instruction were predictors of proper use. These findings can aid clinicians in improving inhaler management for elderly patients with COPD. Full article
Show Figures

Figure 1

9 pages, 250 KB  
Article
Assessing Inhaler Techniques of Asthma Patients Using Aerosol Inhalation Monitors (AIM): A Cross-Sectional Study
by Mansour M. Alotaibi, Louise Hughes and William R. Ford
Healthcare 2023, 11(8), 1125; https://doi.org/10.3390/healthcare11081125 - 13 Apr 2023
Cited by 7 | Viewed by 4685
Abstract
A high percentage of asthma patients have symptoms that are not well controlled, despite effective drugs being available. One potential reason for this may be that poor inhaler technique limits the dose delivered to the lungs, thereby reducing the therapeutic efficacy. The aim [...] Read more.
A high percentage of asthma patients have symptoms that are not well controlled, despite effective drugs being available. One potential reason for this may be that poor inhaler technique limits the dose delivered to the lungs, thereby reducing the therapeutic efficacy. The aim of this study was to assess the prevalence of poor inhaler technique in an asthma patient population and to probe the impact of various demographic parameters on technique quality. This study was conducted at community pharmacies across Wales, UK. Patients diagnosed with asthma and 12 years or older were invited to participate. An aerosol inhalation monitor (AIM, Vitalograph®) was used to measure the quality of patient inhaler technique. A total of 295 AIM assessments were carried out. There were significant differences in the quality of inhaler technique across the different inhaler types (p < 0.001, Chi squared). The best technique was associated with dry-powder inhalers (DPI devices, 58% of 72 having good technique), compared with pressurized metered-dose inhalers (pMDI) or pMDIs with a spacer device (18% of 174 and 47% of 49 AIM assessments, respectively). There were some significant associations between gender, age, and quality of inhaler technique, as determined with adjusted odds ratios. It seems that the majority of asthmatic patients were not using their inhalers appropriately. We recommend that healthcare professionals place more emphasis on assessing and correcting inhaler technique, as poor inhaler technique might be responsible for the observed lack of symptom control in the asthma patient population. Full article
(This article belongs to the Collection Current Nursing Practice and Education)
22 pages, 4894 KB  
Article
A CFD Investigation on the Aerosol Drug Delivery in the Mouth–Throat Airway Using a Pressurized Metered-Dose Inhaler Device
by Farnia Dastoorian, Leila Pakzad, Janusz Kozinski and Ehsan Behzadfar
Processes 2022, 10(7), 1230; https://doi.org/10.3390/pr10071230 - 21 Jun 2022
Cited by 13 | Viewed by 5089
Abstract
Inhalation therapy involving a pressurized metered-dose inhaler (pMDI) is one of the most commonly used and effective treatment methods for patients with asthma. The purpose of this study was to develop a computational fluid dynamics (CFD) model to characterize aerosol flow issued from [...] Read more.
Inhalation therapy involving a pressurized metered-dose inhaler (pMDI) is one of the most commonly used and effective treatment methods for patients with asthma. The purpose of this study was to develop a computational fluid dynamics (CFD) model to characterize aerosol flow issued from a pMDI into a simulated mouth–throat geometry. The effects of air flow rate and cone angle were analyzed in detail. The behaviour of the multiphase flow initiated at the inhaler actuation nozzle and extended through the mouth–throat airway was simulated based on the Eulerian-Lagrangian discrete phase model, with the k-ω model applied for turbulency. We validated our model against published experimental measurements and cover the hydrodynamic aspect of the study. The recirculation we observed at the 90° bend inside the mouth–throat airway resulted in the selective retention of larger diameter particles, and the fluid flow patterns were correlated with drug deposition behaviour. Enhancing air flow rates up to three times reduced the aerodynamic particle diameters to 20%. We also observed that, as cone angle increased, mouth deposition increased; an 8° cone angle was the best angle for the lowest mouth–throat deposition. Full article
(This article belongs to the Special Issue Complex Fluid Dynamics Modeling and Simulation)
Show Figures

Figure 1

13 pages, 880 KB  
Review
Carbon Footprints and Life Cycle Assessments of Inhalers: A Review of Published Evidence
by Brett Fulford, Karen Mezzi, Simon Aumônier and Matthias Finkbeiner
Sustainability 2022, 14(12), 7106; https://doi.org/10.3390/su14127106 - 10 Jun 2022
Cited by 19 | Viewed by 8429
Abstract
Respiratory inhalers have a substantial impact on the carbon footprint of the healthcare sector. Environmental factors, including carbon footprints, are gaining importance in choosing inhalers once medical considerations have been addressed. This paper provides a review of the carbon footprint (CFP) and life [...] Read more.
Respiratory inhalers have a substantial impact on the carbon footprint of the healthcare sector. Environmental factors, including carbon footprints, are gaining importance in choosing inhalers once medical considerations have been addressed. This paper provides a review of the carbon footprint (CFP) and life cycle assessment (LCA) environmental profile of dry powder inhalers (DPIs) and pressurized metered-dose inhalers (pMDIs). Despite methodological challenges, our analysis reveals that the CFP varies between DPIs ranging from 359 gCO2e per inhaler (Enerzair Breezhaler® DPI without digital companion 30-day pack) to 1250 gCO2e per inhaler (Seretide Accuhaler® 50/500) and from 6.13 gCO2e per dose (Enerzair Breezhaler® without digital companion 90-day pack) to 27 gCO2e per dose (Relvar Elipta 92/22). The breakdown of inhaler CFP by life cycle stage reveals that, although the use and end-of-life stages together contribute to most of the CFP of the MDIs, the largest contributions to the CFP of the DPI/SMI are made by the API and manufacturing stages of the life cycle. Although from a climate perspective our review aligns with the findings of Jeswani and Azapagic that DPIs have a lower CFP than pMDIs, we conclude that the performance against other environment impact categories depends on the design, choice of material and manufacturing process of the DPIs. The challenge of comparing the CFP of different inhalers can be made easier by the standardization of study boundaries and methods. Full article
Show Figures

Figure 1

15 pages, 1178 KB  
Review
Understanding the Importance of Capsules in Dry Powder Inhalers
by Francesca Buttini, Eride Quarta, Chiara Allegrini and Federico Lavorini
Pharmaceutics 2021, 13(11), 1936; https://doi.org/10.3390/pharmaceutics13111936 - 16 Nov 2021
Cited by 32 | Viewed by 16023
Abstract
Pulmonary drug delivery is currently the focus of research and development because of its potential to produce maximum therapeutic benefit to patients by directing the drug straight to the lung disease site. Among all the available delivery options, one popular, proven and convenient [...] Read more.
Pulmonary drug delivery is currently the focus of research and development because of its potential to produce maximum therapeutic benefit to patients by directing the drug straight to the lung disease site. Among all the available delivery options, one popular, proven and convenient inhaler device is the capsule-based dry powder inhaler (cDPI) for the treatment of an increasingly diverse range of diseases. cDPIs use a hard capsule that contains a powder formulation which consists of a mixture of a micronized drug and a carrier usually the lactose, known for its good lung tolerance. The capsule is either inserted into the device during manufacturer or by the patient prior to use. After perforating, opening or cut the capsule in the device, patients take a deep and rapid breath to inhale the powder, using air as the vector of drug displacement. The system is simple, relatively cheap and characterized by a lower carbon footprint than that of pressurized metered dose inhalers. This article reviews cDPI technology, focusing particularly on the importance of capsule characteristics and their function as a drug reservoir in cDPIs. Full article
(This article belongs to the Special Issue Special Issue in Honor of Professor Carla Caramella)
Show Figures

Figure 1

12 pages, 318 KB  
Review
Impact of Inhalers Used in the Treatment of Respiratory Diseases on Global Warming
by Andrzej Emeryk, Tomasz R. Sosnowski, Maciej Kupczyk, Paweł Śliwiński, Justyna Zajdel-Całkowska, Tadeusz M. Zielonka and Agnieszka Mastalerz-Migas
Adv. Respir. Med. 2021, 89(4), 427-438; https://doi.org/10.5603/ARM.a2021.0092 - 2 Sep 2021
Cited by 19 | Viewed by 2637
Abstract
The term “carbon footprint” describes the emission of greenhouse gases into the environment as a result of human activities. The healthcare sector is responsible for 5–8% of the value of global greenhouse gas emissions, of which medical aerosols account for only 0.03% of [...] Read more.
The term “carbon footprint” describes the emission of greenhouse gases into the environment as a result of human activities. The healthcare sector is responsible for 5–8% of the value of global greenhouse gas emissions, of which medical aerosols account for only 0.03% of the total emissions. The reduction of greenhouse gases, including those used for the production and use of medicinal products and medical devices, is part of the responsibilities that Poland and the respective countries should undertake in order to implement the assumptions of international law. At the level of medical law, this obligation correlates with the need to exercise due diligence in the process of providing health services, including the selection of low-emission medical products and devices (inhalers) and providing patients with information on how to handle used products and devices, with particular emphasis on those that imply greenhouse gas emissions. Pressurized metered dose inhalers (pMDI) containing the hydrofluoroalkane 134a demonstrate the largest carbon footprint, followed by a metered dose liquid inhaler and dry powder inhalers (DPI). The carbon footprint of DPI with a given drug is 13–32 times lower than it is in the case of the corresponding pMDI. Replacement of pMDI by DPI is one of the effective methods to reduce the carbon footprint of inhalers, and the replacement should be based on current medical knowledge. A recycling system for all types of inhalers must be urgently implemented. Full article
20 pages, 3448 KB  
Article
Salbutamol Transport and Deposition in the Upper and Lower Airway with Different Devices in Cats: A Computational Fluid Dynamics Approach
by Rocio Fernández-Parra, Pascaline Pey, Carol Reinero and Mauro Malvè
Animals 2021, 11(8), 2431; https://doi.org/10.3390/ani11082431 - 18 Aug 2021
Cited by 8 | Viewed by 5628
Abstract
Pressurized metered-dose inhalers (pMDI) with or without spacers are commonly used for the treatment of feline inflammatory airway disease. During traditional airways treatments, a substantial amount of drugs are wasted upstream of their target. To study the efficiency of commonly used devices in [...] Read more.
Pressurized metered-dose inhalers (pMDI) with or without spacers are commonly used for the treatment of feline inflammatory airway disease. During traditional airways treatments, a substantial amount of drugs are wasted upstream of their target. To study the efficiency of commonly used devices in the transport of inhaled salbutamol, different computational models based on two healthy adult client-owned cats were developed. Computed tomographic images from one cat were used to generate a three-dimensional geometry, and two masks (spherical and conical shapes) and two spacers (10 and 20 cm) completed the models. A second cat was used to generate a second model having an endotracheal tube (ETT) with and without the same spacers. Airflow, droplet spray transport, and deposition were simulated and studied using computational fluid dynamics techniques. Four regions were evaluated: device, upper airways, primary bronchi, and downstream lower airways/parenchyma (“lung”). Regardless of the model, most salbutamol is deposited in devices and/or upper airways. In general, particles reaching the lung varied between 5.8 and 25.8%. Compared with the first model, pMDI application through the ETT with or without a spacer had significantly higher percentages of particles reaching the lung (p = 0.006). Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

Back to TopTop