Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = pressure-sensitive paint (PSP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4389 KB  
Article
Integrated Hardware and Algorithmic Decoupling of Light-Noise-Attenuation Coupled Errors: A Path to 50 Pa Precision in Micro-Pressure PSP Measurements
by Kun Cao, Qiang Liu, Chunhua Wei, Yunmao Bai and Lei Liang
Aerospace 2025, 12(10), 929; https://doi.org/10.3390/aerospace12100929 - 15 Oct 2025
Viewed by 444
Abstract
In low-speed flow (Ma < 0.3), pressure-sensitive paint (PSP) technology encounters a significant bottleneck in micro-pressure measurements due to the coupled interference of light source instability, camera noise, and paint photodegradation. This study introduces a hardware–algorithm collaborative decoupling framework to address the light [...] Read more.
In low-speed flow (Ma < 0.3), pressure-sensitive paint (PSP) technology encounters a significant bottleneck in micro-pressure measurements due to the coupled interference of light source instability, camera noise, and paint photodegradation. This study introduces a hardware–algorithm collaborative decoupling framework to address the light noise–degradation coupling issue. The framework integrates real-time light source fluctuation monitoring using a photomultiplier tube (PMT), a combined histogram–wavelet denoising algorithm, and a dynamic photodegradation compensation model. A high-precision static calibration system with a pressure control error of 3.4 Pa was constructed to validate the proposed framework. The experimental results indicate that light source fluctuations contribute an error of 42.61 Pa, accounting for 33% of the total error. After collaborative optimization, the PSP measurement error was reduced to below 50 Pa, representing a 50% improvement compared to previous results (100 Pa). This study provides reliable technical support for micro-pressure measurement applications, such as low-speed wind tunnel testing of aerospace vehicles and microfluidic diagnostics. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 3502 KB  
Article
Improvements to Unsteady Pressure-Sensitive Paint Formulations
by Sarah M. Peak, Daniel T. Reese, Kyle Z. Goodman and A. Neal Watkins
Sensors 2025, 25(18), 5892; https://doi.org/10.3390/s25185892 - 20 Sep 2025
Cited by 1 | Viewed by 802
Abstract
Improvements to unsteady pressure-sensitive paint (uPSP) formulations have been realized by judicious selection of titanium dioxide (TiO2) particles and dispersant. Traditionally, uPSP formulations based on polymer/ceramic coating have been used in many wind tunnel test campaigns but suffer from photodegradation and [...] Read more.
Improvements to unsteady pressure-sensitive paint (uPSP) formulations have been realized by judicious selection of titanium dioxide (TiO2) particles and dispersant. Traditionally, uPSP formulations based on polymer/ceramic coating have been used in many wind tunnel test campaigns but suffer from photodegradation and changes in pressure sensitivity during the testing window. As such, this paper details the investigation of employing different grades of TiO2 particles and dispersants to achieve desirable characteristics such as coating properties, pressure sensitivity, frequency response and overall degradation. Employing hydrophobic TiO2 particles along with a high-molecular-weight acrylic co-polymer generated uPSP coatings with many desirable features, including smoothness, thickness, and pressure sensitivity. In addition, the pressure sensitivity of the coatings exhibited linear behavior, having very little dependence on temperature. Finally, the frequency response was characterized qualitatively, and all uPSP formulations tested exhibited response to pressure fluctuations up to 12 kHz. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

14 pages, 1334 KB  
Article
Optimisation of an nIR-Emitting Benzoporphyrin Pressure-Sensitive Paint Formulation
by Elliott J. Nunn, Louise S. Natrajan and Mark K. Quinn
Sensors 2025, 25(15), 4560; https://doi.org/10.3390/s25154560 - 23 Jul 2025
Viewed by 901
Abstract
The use of pressure-sensitive paints (PSPs), an optical oxygen sensing technique, to visualise and measure the surface pressure on vehicle models in wind tunnel testing is becoming increasingly prevalent. Porphyrins have long been the standard luminophore for PSP formulations, with the majority employing [...] Read more.
The use of pressure-sensitive paints (PSPs), an optical oxygen sensing technique, to visualise and measure the surface pressure on vehicle models in wind tunnel testing is becoming increasingly prevalent. Porphyrins have long been the standard luminophore for PSP formulations, with the majority employing the red-emitting platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin. nIR-emitting luminophores, such as Pt(II) tetraphenyl tetrabenzoporphyrins, possess distinct advantages over visible emitting luminophores. In particular, they have wider spectrally useful ‘windows’, facilitating the insertion of a secondary visible emitting temperature-sensitive luminophore to be used for internal calibration without spectral crosstalk that detrimentally impacts PSP performance. In this work, we explore the effect of changing the loading quantity of an nIR-emitting para-CF3 Pt(II) benzoporphyrin luminophore on the performance of PSP formulations. An optimal luminophore loading of 1.28% wt/wt benzoporphyrin luminophore to polystyrene binder was identified, resulting in a low temperature sensitivity at 100 kPa of 0.61%/K and a large pressure sensitivity at 293 K of 0.740%/kPa. These strong performance metrics, for a polystyrene-based PSP, demonstrate the efficacy of benzoporphyrin luminophores as an attractive luminophore option for the development of a new generation of high-performance PSP formulations that outperform current commercially available ones. Full article
(This article belongs to the Special Issue Colorimetric and Fluorescent Sensors and Their Application)
Show Figures

Figure 1

22 pages, 5581 KB  
Article
Film Cooling Performance and Superposition Method of an Actual Turbine Vane at High Freestream Turbulence
by Peng Chu, Yongfeng Sui, Bin Dai, Jibing Lan, Wenyang Shao, Binbin Xue, Xiliang Xu and Zhenping Feng
Aerospace 2025, 12(6), 533; https://doi.org/10.3390/aerospace12060533 - 12 Jun 2025
Viewed by 1058
Abstract
This study aims to enhance the understanding of film cooling performance in an actual turbine vane by investigating influencing factors and developing more precise numerical prediction methods. Pressure sensitive paint (PSP) testing and Reynolds-Averaged Navier–Stokes (RANS) simulations were conducted. The findings indicate that [...] Read more.
This study aims to enhance the understanding of film cooling performance in an actual turbine vane by investigating influencing factors and developing more precise numerical prediction methods. Pressure sensitive paint (PSP) testing and Reynolds-Averaged Navier–Stokes (RANS) simulations were conducted. The findings indicate that the current design blowing ratio of S1 holes (0.89) is too high, resulting in poor film cooling effectiveness. However, the blowing ratios of P3 (0.78) and P4 (0.69) holes are relatively low, suggesting that increasing the coolant flow could improve the film cooling effectiveness. It is not recommended to design an excessively low blowing ratio on the suction surface, as this can lead to poor wall adherence downstream of the film holes. A slight increase in turbulence intensity enhances the film covering effect, particularly on the suction surface. Additionally, a novel superposition method for multirow fan-shaped film cooling holes on an actual turbine vane is proposed, exhibiting better agreement with experimental data. Compared with experimental results, the numerical predictions tend to underestimate the film cooling effectiveness with the examined k-ε-based viscosity turbulence models and Reynolds stress turbulence models, while the SST demonstrates relatively higher accuracy owing to its hybrid k-ω/k-ε formulation that better resolves near-wall physics and separation flows characteristic of turbine cooling configurations. This study contributes to the advancement of turbine vane thermal analysis and design in engineering applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

14 pages, 4662 KB  
Article
Experimental Investigation on Temperature Effects of Cryogenic Pressure-Sensitive Paint
by Peng Qiao, Jifei Wu, Hui Huang, Guoshuai Li, Da Li and Hai Du
Aerospace 2025, 12(4), 329; https://doi.org/10.3390/aerospace12040329 - 11 Apr 2025
Cited by 2 | Viewed by 954
Abstract
Pressure-sensitive paint (PSP) is an important wind tunnel testing technology. Compared with conventional PSP, the performance and test accuracy of cryogenic PSP are still immature. Therefore, investigating how to improve the pressure sensitivity of cryogenic PSP and reduce the interference of temperature effect [...] Read more.
Pressure-sensitive paint (PSP) is an important wind tunnel testing technology. Compared with conventional PSP, the performance and test accuracy of cryogenic PSP are still immature. Therefore, investigating how to improve the pressure sensitivity of cryogenic PSP and reduce the interference of temperature effect is of great significance. By studying the PSP luminescence characteristics at different time points, temperatures, and pressures, some interesting phenomena have been discovered. When the temperature reaches 323 K, PSP can accelerate aging, leading to significant and irreversible changes in coating performance. Additionally, the effect of temperature on the luminescence characteristics of PSP shows significant differences over time. This unusual phenomenon may be related to the microstructure change in PTMSP (PtTFPP) coatings over time. In the beginning, PTMSP coating has high activity and spacing between PtTFPP luminescence centers, which change significantly with the microstructure as the temperature decreases. This might result in a stronger concentration quenching of PtTFPP, which counteracts the expected enhancement of luminescence efficiency typically caused by the temperature decrease. After 72 h, the microstructure of the coating tends to be stable, and the effect of temperature on the fluorescence characteristics of PSP becomes a thermal quenching law similar to that of traditional PSP. This discovery can provide a more precise basis for correcting the temperature effect for cryogenic PSP coatings with varying service lives. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 12503 KB  
Article
Screen-Printed PVDF Piezoelectric Pressure Transducer for Unsteadiness Study of Oblique Shock Wave Boundary Layer Interaction
by Bei Wang, Cosimo Corsi, Thomas Weiland, Zhenyu Wang, Thomas Grund, Olaf Pohl, Johannes Max Bienia, Julien Weiss and Ha Duong Ngo
Micromachines 2024, 15(12), 1423; https://doi.org/10.3390/mi15121423 - 27 Nov 2024
Cited by 3 | Viewed by 3441
Abstract
Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive [...] Read more.
Shock wave boundary/layer interactions (SWBLIs) are critical in high-speed aerodynamic flows, particularly within supersonic regimes, where unsteady dynamics can induce structural fatigue and degrade vehicle performance. Conventional measurement techniques, such as pressure-sensitive paint (PSP), face limitations in frequency response, calibration complexity, and intrusive instrumentation. Similarly, MEMS-based sensors, like Kulite® sensors, present challenges in terms of intrusiveness, cost, and integration complexity. This study presents a flexible, lightweight polyvinylidene fluoride (PVDF) piezoelectric sensor array designed for high-resolution wall-pressure measurements in SWBLI research. The primary objective is to optimize low-frequency pressure fluctuation detection, addressing SWBLI’s need for accurate, real-time measurements of low-frequency unsteadiness. Fabricated using a double-sided screen-printing technique, this sensor array is low-cost, flexible, and provides stable, high-sensitivity data. Finite Element Method (FEM) simulations indicate that the sensor structure also has potential for high-frequency responses, behaving as a high-pass filter with minimal signal attenuation up to 300 kHz, although the current study’s experimental testing is focused on low-frequency calibration and validation. A custom low-frequency sound pressure setup was used to calibrate the PVDF sensor array, ensuring uniform pressure distribution across sensor elements. Wind tunnel tests at Mach 2 verified the PVDF sensor’s ability to capture pressure fluctuations and unsteady behaviors consistent with those recorded by Kulite sensors. The findings suggest that PVDF sensors are promising alternatives for capturing low-frequency disturbances and intricate flow structures in advanced aerodynamic research, with high-frequency performance to be further explored in future work. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 5484 KB  
Article
Comparison of Lifetime-Based Pressure-Sensitive Paint Measurements in a Wind Tunnel Using Model Pitch–Traverse and Pitch–Pause Modes
by Christian Klein, Daisuke Yorita and Ulrich Henne
Photonics 2024, 11(6), 546; https://doi.org/10.3390/photonics11060546 - 7 Jun 2024
Cited by 4 | Viewed by 2482
Abstract
In order to improve the data productivity of a wind tunnel test, the model under investigation in the wind tunnel is moved continuously with a predetermined constant angular speed in the so-called pitch–traverse mode. Alternatively, the wind tunnel model can be moved in [...] Read more.
In order to improve the data productivity of a wind tunnel test, the model under investigation in the wind tunnel is moved continuously with a predetermined constant angular speed in the so-called pitch–traverse mode. Alternatively, the wind tunnel model can be moved in the so-called pitch–pause mode, in which it keeps its position for a certain (measurement) time at a fixed pitch position, after which it is moved to the next pitch position. The latter procedure is more time-consuming, so, for the same time interval, the number of measured data points taken in the pitch–pause mode is less than that for the pitch–traverse mode. Since wind tunnel test time can be quite expensive, in most wind tunnel tests where only conventional forces and pressures are recorded with conventional measuring systems, the wind tunnel model is moved in the pitch–traverse mode in order to obtain as much aerodynamic data as possible during the tunnel runtime. The application of the Pressure-Sensitive Paint (PSP) technique has been widely used in wind tunnel testing for the purpose of providing pressure data on wind tunnel models with high spatial resolution. The lifetime-based PSP method has several advantages over the intensity-based method since it often has higher accuracy. Up until now, the lifetime-based PSP technique has mainly been used for wind tunnel testing, where the test model has been moved to the pitch–pause mode. The traditional lifetime method using on-chip accumulation requires multiple (~1000) excitation light pulses to accumulate enough luminescence (fluorescence or phosphorescence) photons on the camera sensor to provide acceptable signal-to-noise ratios and, therefore, it may seem to be not compatible with a continuously moving wind tunnel model. Nevertheless, the present study verifies the application of lifetime-based PSP utilizing on-chip accumulation with a continuously moving wind tunnel model which would make the entire PSP data acquisition compatible with that of the conventional measurements (forces and pressures), as mentioned above. In this paper, the applicability of the lifetime-based PSP technique to a continuously moving wind tunnel model (in pitch–traverse mode) is investigated with the help of measurements in the transonic wind tunnel in Göttingen (TWG). For this investigation, PSP was applied on the delta-wing model DLR-F22, which is to be tested in TWG. The pressure distribution on the wind tunnel model was measured using the PSP lifetime method for both model movement modes (pitch–pause and pitch–traverse mode) so that the corresponding PSP results could be directly compared with each other. In addition, an error analysis of the PSP results was carried out and compared with the conventional pressure measurement results, hence providing an assessment of the accuracy of the PSP results; finally, a recommendation for future PSP measurements could be given. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

16 pages, 7843 KB  
Article
Characterization of the Endwall Flow in a Low-Pressure Turbine Cascade Perturbed by Periodically Incoming Wakes, Part 2: Unsteady Blade Surface Measurements Using Pressure-Sensitive Paint
by Tobias Schubert, Dragan Kožulović and Martin Bitter
Aerospace 2024, 11(5), 404; https://doi.org/10.3390/aerospace11050404 - 16 May 2024
Cited by 4 | Viewed by 1972
Abstract
Unsteady pressure-sensitive paint (i-PSP) measurements were performed at a sampling rate of 30 kHz to investigate the near-endwall blade suction surface flow inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions. The investigation focuses on the interaction of periodically incoming [...] Read more.
Unsteady pressure-sensitive paint (i-PSP) measurements were performed at a sampling rate of 30 kHz to investigate the near-endwall blade suction surface flow inside a low-pressure turbine cascade operating at engine-relevant high-speed and low-Re conditions. The investigation focuses on the interaction of periodically incoming bar wakes at 500 Hz with the secondary flow and the blade suction surface. The results build on extensive PIV measurements presented in the first part of this two-part publication, which captured the ’negative-jet-effect’ of the wakes throughout the blade passage. The surface pressure distributions are combined with CFD to analyze the flow topology, such as the passage vortex separation line. By analyzing data from phase-locked PIV and PSP measurements, a wake-induced moving pressure gradient negative in space and positive in time is found, which is intensified in the secondary flow region by 33% with respect to midspan. Furthermore, two methods of frequency-filtering based on FFT and SPOD are compared and utilized to associate a pressure fluctuation peak around 678 Hz with separation bubble oscillation. Full article
(This article belongs to the Special Issue Advanced Flow Diagnostic Tools)
Show Figures

Figure 1

17 pages, 4478 KB  
Article
Temperature Dependency Model in Pressure Measurement for the Motion-Capturing Pressure-Sensitive Paint Method
by Daiki Kurihara and Hirotaka Sakaue
Sensors 2023, 23(24), 9714; https://doi.org/10.3390/s23249714 - 8 Dec 2023
Cited by 5 | Viewed by 1859
Abstract
Pressure-sensitive paint (PSP) has received significant attention for capturing surface pressure in recent years. One major source of uncertainty in PSP measurements, temperature dependency, stems from the fundamental photophysical process that allows PSP to extract pressure information. The motion-capturing PSP method, which involves [...] Read more.
Pressure-sensitive paint (PSP) has received significant attention for capturing surface pressure in recent years. One major source of uncertainty in PSP measurements, temperature dependency, stems from the fundamental photophysical process that allows PSP to extract pressure information. The motion-capturing PSP method, which involves two luminophores, is introduced as a method to reduce the measurement uncertainty due to temperature dependency. A theoretical model for the pressure uncertainty due to temperature dependency is proposed and demonstrated using a static pressure measurement with an applied temperature gradient. The experimental validation of the proposed model shows that the motion-capturing PSP method reduces the temperature dependency by 37.7% compared to the conventional PSP method. The proposed model also proves that a PSP with zero temperature dependency is theoretically possible. Full article
(This article belongs to the Special Issue Optical Sensors for Flow Diagnostics II)
Show Figures

Figure 1

14 pages, 8420 KB  
Article
Experimental Study on the Improvement of the Film Cooling Effectiveness of Various Modified Configurations Based on a Fan-Shaped Film Cooling Hole on a Flat Plate
by Seokmin Kim, DongEun Lee, Young Seok Kang and Dong-Ho Rhee
Energies 2023, 16(23), 7752; https://doi.org/10.3390/en16237752 - 24 Nov 2023
Cited by 3 | Viewed by 2700
Abstract
Modern gas turbines have evolved by increasing the turbine inlet temperature (TIT) to improve performance. This development has led to a demand for cooling techniques. Among these, the film cooling, which involves injecting compressed air through holes on the turbine surface, is a [...] Read more.
Modern gas turbines have evolved by increasing the turbine inlet temperature (TIT) to improve performance. This development has led to a demand for cooling techniques. Among these, the film cooling, which involves injecting compressed air through holes on the turbine surface, is a prominent cooling technique used to protect the turbine surface. In this study, a comparative analysis is conducted between the conventional fan-shaped film cooling hole, primarily used in film cooling techniques, and modified shapes achieved by altering the geometry of the film cooling hole based on a fan-shaped hole to assess and compare the cooling performance on a flat plate surface. The adiabatic film cooling effectiveness was measured for three film cooling holes, the Baseline of a 7-7-7 fan-shaped film cooling hole, namely, Staircase, which had a double-step at the hole exit, and Compound Expansion, which had an additional expanded flow path at the hole leading edge. The used measurement technique was the pressure-sensitive paint (PSP) technique, using nitrogen gas as the foreign gas, and experiments were conducted at a density ratio of 1.0 and blowing ratios ranging from 0.5 to 2.0. The results reveal that the modified holes featured wider lateral expansion at the hole exits, resulting in a broader distribution of the cooling effectiveness in the lateral direction compared to the Baseline. The Staircase shows a better performance, although an overall cooling effectiveness trend similar to that of the Baseline. Furthermore, the Compound Expansion demonstrates an enhancement in the cooling performance with an increased blowing ratio, notably achieving nearly double the cooling effectiveness compared to that of the Baseline at a blowing ratio of 2.0. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 10878 KB  
Article
Experimental Study on the Improvement of Film Cooling Effectiveness of Various Modified Configurations Based on a Fan-Shaped Film Cooling Hole on an Endwall
by Seokmin Kim, DongEun Lee, Young Seok Kang and Dong-Ho Rhee
Energies 2023, 16(23), 7733; https://doi.org/10.3390/en16237733 - 23 Nov 2023
Cited by 10 | Viewed by 2143
Abstract
Several studies have previously been conducted to improve the cooling performance of film cooling. However, most of the research has conducted experiments with film cooling holes on flat plates, and thus, the results of these studies do not encompass the influence of the [...] Read more.
Several studies have previously been conducted to improve the cooling performance of film cooling. However, most of the research has conducted experiments with film cooling holes on flat plates, and thus, the results of these studies do not encompass the influence of the complex mainstream behavior within the turbine passage on film cooling. In this study, three different film cooling hole configurations were installed on the endwall of a turbine linear cascade to measure adiabatic film cooling effectiveness and evaluate cooling performance. The film cooling holes compared in the experiment for film cooling effectiveness were a 7-7-7 fan-shaped hole (Baseline), a Baseline with a double-step structure at the hole exit (Staircase), and a Baseline with an additional expanded passage at the hole leading edge (Compound Expansion). A total of nine holes were manufactured on the turbine endwall to assess film cooling performance, as various factors, such as mainstream acceleration, secondary flow within the turbine passage, and so on, can influence film cooling. Adiabatic film cooling effectiveness was measured using the pressure-sensitive paint (PSP) technique. Mass flow ratios ranging from 0.25% to 1.25% of the mass flow rate of a single turbine passage were supplied to the plenum chamber within the test rig. As a result, all experimental results confirmed the impact of secondary flow within the turbine passage on film cooling. In the case of the Staircase, it exhibits an overall cooling trend similar to the Baseline. It shows small cooling performance degradation compared with Baseline due to lift-off, and its double-step structure laterally expanding results in better cooling performance at high mass flow ratio (MFR) conditions. For the Compound Expansion, at low MFR, the momentum of the coolant is lower compared with other configurations, leading to lower cooling performance due to the influence of secondary flow. However, at high MFR, the Compound Expansion provides wider protection compared with other hole geometries and shows high cooling performance. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

22 pages, 9006 KB  
Article
Fast-Responding Pressure-Sensitive Paint Measurements of the IC3X at Mach 7.2
by Valeria Delgado Elizondo, Abinayaa Dhanagopal and Christopher S. Combs
Aerospace 2023, 10(10), 890; https://doi.org/10.3390/aerospace10100890 - 18 Oct 2023
Cited by 7 | Viewed by 3471
Abstract
Global surface pressure measurements of a 5.7% scale AFRL Initial Concept 3.X vehicle (IC3X) were obtained using a fast-responding ruthenium-based pressure-sensitive paint (PSP) at the UTSA Mach 7 Ludwieg Tube Wind Tunnel at two different angles of attack, 0° and 2.5°. Static calibration [...] Read more.
Global surface pressure measurements of a 5.7% scale AFRL Initial Concept 3.X vehicle (IC3X) were obtained using a fast-responding ruthenium-based pressure-sensitive paint (PSP) at the UTSA Mach 7 Ludwieg Tube Wind Tunnel at two different angles of attack, 0° and 2.5°. Static calibration of the paint was performed over a range of 0.386 kPa to 82.7 kPa to relate luminescent intensity to pressure. Details on the facility, paint preparation, application, calibration, and image processing techniques are provided in the manuscript. The results from statistical, spectral, and proper orthogonal decomposition (POD) analyses are presented to characterize the pressure field observed on the model. The experimental results qualitatively follow the expected trends and correspond to the occurrence of shock waves and expansion fans, which were visualized via Schlieren imaging. The theoretical pressure range obtained from conical shock analysis for 0° agrees with the experimentally derived pressure range for the model, and the outliers are attributed to errors in image registration. This study presents preliminary pressure measurements that pave the way for obtaining time-resolved global PSP measurements to train and validate aerothermodynamic machine learning models. Full article
Show Figures

Figure 1

15 pages, 7945 KB  
Article
The Development and Application of Two-Color Pressure-Sensitive Paint in Jet Impingement Experiments
by Wei-Chieh Chen, Chih-Yung Huang, Kui-Thong Tan and Hirotaka Sakaue
Aerospace 2023, 10(9), 805; https://doi.org/10.3390/aerospace10090805 - 15 Sep 2023
Cited by 6 | Viewed by 2160
Abstract
This study aimed to develop a two-color pressure-sensitive paint (PSP) that has both high pressure sensitivity and high temperature sensitivity. Different nitrobenzoxadiazole (NBD) derivatives were used as the temperature probe. Among them, NBD-ZY37 demonstrated favorable stability against photodegradation, and its temperature sensitivity in [...] Read more.
This study aimed to develop a two-color pressure-sensitive paint (PSP) that has both high pressure sensitivity and high temperature sensitivity. Different nitrobenzoxadiazole (NBD) derivatives were used as the temperature probe. Among them, NBD-ZY37 demonstrated favorable stability against photodegradation, and its temperature sensitivity in an RTV118-based two-color PSP was −1.4%/°C. Moreover, temperature sensitivity was independent of pressure in the tested temperature range. PtTFPP was used, and its pressure sensitivity was measured to be 0.5% per kPa. The two-color PSP paint underwent further examination in jet impingement experiments. The experimental results indicated that the pressure fluctuation introduced by the shock waves occurred earlier at higher impingement angles. Specifically, when the pressure ratio was 2.38, increasing the impinging angle from 15° to 30° caused the location of the pressure wave to move from s/D at 0.8 to the exit of the nozzle. Simultaneously, the shape of the maximum pressure zone changed from a fan shape to a round shape. Additionally, the jet region expanded when the pressure ratio was increased. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 4423 KB  
Article
Effective Distance for Vortex Generators in High Subsonic Flows
by Ping-Han Chung, Yi-Xuan Huang, Kung-Ming Chung, Chih-Yung Huang and Sergey Isaev
Aerospace 2023, 10(4), 369; https://doi.org/10.3390/aerospace10040369 - 12 Apr 2023
Cited by 3 | Viewed by 3931
Abstract
Vortex generators (VGs) are a passive method by which to alleviate boundary layer separation (BLS). The device-induced streamwise vortices propagate downstream. There is then lift-off from the surface and the vortex decays. The effectiveness of VGs depends on their geometrical configuration, spacing, and [...] Read more.
Vortex generators (VGs) are a passive method by which to alleviate boundary layer separation (BLS). The device-induced streamwise vortices propagate downstream. There is then lift-off from the surface and the vortex decays. The effectiveness of VGs depends on their geometrical configuration, spacing, and flow characteristics. In a high-speed flow regime, the VGs must be properly positioned upstream of the BLS region. Measurements using discrete pressure taps and pressure-sensitive paint (PSP) show that there is an increase in the upstream surface pressure and the downstream favorable pressure gradient. The effective distance for a flat plate in the presence of three VG configurations is determined, as is the height of the device (conventional and micro VGs). Full article
(This article belongs to the Special Issue Flow Control and Drag Reduction)
Show Figures

Figure 1

17 pages, 5392 KB  
Article
Pressure Sensitivity Prediction and Pressure Measurement of Fast Response Pressure-Sensitive Paint Based on Artificial Neural Network
by Xianhui Liao, Chunhua Wei, Chenglin Zuo, Zhisheng Gao, Hailin Jiang, Lei Liang and Zhaoyan Li
Appl. Sci. 2023, 13(6), 3504; https://doi.org/10.3390/app13063504 - 9 Mar 2023
Cited by 2 | Viewed by 2317
Abstract
The characterization of pressure-sensitive paint (PSP) is affected by many physical and chemical factors, making it is difficult to analyze the relationship between characterization and influencing factors. An artificial neural network (ANN)-based method for predicting pressure sensitivity using paint thickness and roughness was [...] Read more.
The characterization of pressure-sensitive paint (PSP) is affected by many physical and chemical factors, making it is difficult to analyze the relationship between characterization and influencing factors. An artificial neural network (ANN)-based method for predicting pressure sensitivity using paint thickness and roughness was proposed in this paper. The mean absolute percentage error (MAPE) for predicting pressure sensitivity is 6.5088%. The difference of paint thickness and roughness between sample and model surface may be a source of experimental error in PSP pressure measurement tests. The Stern-Volmer coefficients A and B are strongly linked. Pressure sensitivity is approximately equal to coefficient B, so coefficient A is predicted using pressure sensitivity based on the same ANN, and the MAPE of predicting A is 2.1315%. Then, we try to calculate the pressure by using the thickness and roughness on a model to predict pressure sensitivity and Stern-Volmer coefficient A. The PSP pressure measurement test was carried out at the China Aerodynamic Research and Development Center. Using the Stern-Volmer coefficient calculated by the in situ method, the method in this paper, and the sample calibration experiment, the root mean square errors (RMSE) of the pressure are 47.4431 Pa, 63.4736 Pa, and 73.0223 Pa, respectively. Full article
(This article belongs to the Special Issue Applications of Deep Learning and Artificial Intelligence Methods)
Show Figures

Figure 1

Back to TopTop