Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = preservation of green leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 303
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

23 pages, 1410 KiB  
Article
Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus
by Xinyuan Liu, Lirui Liang, Peiran Chen, Wenjun Peng, Kexin Guo, Xiaole Huang, Chi Qin, Zijing Luo, Kewen Ouyang, Chengyao Jiang, Mengyao Li, Tonghua Pan, Yangxia Zheng and Wei Lu
Agriculture 2025, 15(13), 1416; https://doi.org/10.3390/agriculture15131416 - 30 Jun 2025
Viewed by 433
Abstract
Asparagus (Asparagus officinalis L.) is a highly nutritious vegetable rich in various bioactive compounds. Ensuring both yield improvement and quality preservation is a shared goal for producers and researchers. As novel green yield-enhancing technologies in facility agriculture, electrostatic fields and elevated CO [...] Read more.
Asparagus (Asparagus officinalis L.) is a highly nutritious vegetable rich in various bioactive compounds. Ensuring both yield improvement and quality preservation is a shared goal for producers and researchers. As novel green yield-enhancing technologies in facility agriculture, electrostatic fields and elevated CO2 application hold significant potential. This study investigated the effects of the interaction between electrostatic fields and elevated CO2 on the growth and physiological characteristics of asparagus. The results demonstrated that the combined treatment of electrostatic fields and elevated CO2 significantly increased total yield, tender stem number, and single tender stem weight of asparagus, while also shortening the harvesting period and promoting rapid shoot growth. Additionally, the treatment markedly enhanced the total chlorophyll content in asparagus leaves, improving photosynthetic capacity. By boosting antioxidant enzyme activities (e.g., SOD, APX) and reducing malondialdehyde (MDA) levels, the treatment maintained the redox homeostasis of asparagus shoots, effectively mitigating oxidative damage. In terms of nutrient accumulation, the interaction between electrostatic fields and elevated CO2 significantly promoted the synthesis and accumulation of key nutrients, including soluble sugars, reducing sugars, soluble proteins, total phenolics, total flavonoids, and ascorbic acid, thereby substantially improving the nutritional quality of asparagus. Comprehensive analysis using fuzzy membership functions revealed that the combined treatment of electrostatic fields and elevated CO2 outperformed individual treatments in enhancing asparagus growth and physiological characteristics. This study provides important theoretical insights and technical support for the efficient and sustainable cultivation of asparagus in facility agriculture. Full article
(This article belongs to the Special Issue Research on Plant Production in Greenhouse and Plant Factory Systems)
Show Figures

Figure 1

18 pages, 3851 KiB  
Article
Protective Effects of Extracts from Green Leaves and Rhizomes of Posidonia oceanica (L.) Delile on an In Vitro Model of the Human Blood–Brain Barrier
by Giulia Abruscato, Manuela Mauro, Marie-Christine Boucau, Vincenzo Arizza, Mirella Vazzana, Lucie Dehouck, Fabien Gosselet, Claudio Luparello and Pietra Candela
Biology 2025, 14(6), 699; https://doi.org/10.3390/biology14060699 - 14 Jun 2025
Viewed by 2604
Abstract
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood–brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts [...] Read more.
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood–brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts from its green leaves (GLEs) and rhizomes (REs) to protect the BBB using a human in vitro model consisting of brain-like endothelial cells co-cultured with brain pericytes. The model was exposed to TNFα, with or without GLEs or REs. We assessed NO production, endothelial permeability, expression of IL-6, NLRP3, ICAM-1, VCAM-1, CLAUDIN-5, and VE-CADHERIN, and the localization of junctional proteins. TNFα increased NO and IL-6 release, upregulated ICAM-1, VCAM-1, and NLRP3, and impaired BBB integrity by altering junctional protein levels and distribution. Co-treatment with GLEs or REs reduced the production of NO, the expression of NLRP3 and adhesion molecules and restored tight and adherens junction integrity. IL-6 levels remained unaffected. These findings suggest that P. oceanica’s extracts may help preserve BBB function and mitigate inflammation-induced damage. While further studies are needed to assess their bioavailability and in vivo efficacy, these natural compounds represent promising candidates for developing preventive strategies against neuroinflammatory disorders. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Figure 1

16 pages, 3996 KiB  
Article
Exploring the Combination of Microgels and Nanostructured Fluids for the Cleaning of Works of Art
by Jacopo Vialetto, David Chelazzi, Marco Laurati and Giovanna Poggi
Gels 2025, 11(6), 382; https://doi.org/10.3390/gels11060382 - 23 May 2025
Viewed by 343
Abstract
Cultural Heritage is a vital socioeconomic driver that must contend with works of art continuously exposed to degradation processes, which are further exacerbated by climate change. Aged coatings, varnishes, and soil can compromise the appearance of artworks, preventing their preservation and valorization. In [...] Read more.
Cultural Heritage is a vital socioeconomic driver that must contend with works of art continuously exposed to degradation processes, which are further exacerbated by climate change. Aged coatings, varnishes, and soil can compromise the appearance of artworks, preventing their preservation and valorization. In response, soft matter and colloidal systems, such as nanostructured cleaning fluids (NCFs), have proved to be valuable solutions for safely and effectively cleaning works of art. Here, a novel cleaning system is proposed, for the first time employing microgels of poly(N-isopropylacrylamide) (PNIPAM) with surface chains of oligoethylene glycol methyl ether methacrylate (OEGMA) to favor shear deformation by lubrication. These microgels are loaded with NCFs featuring “green” solvents and different kinds of bio-derived or petroleum-based surfactants (non-ionic, zwitterionic). Rheological characterization of the combined systems highlighted a sharp transition from solid to liquid-like state in the 21–24 °C range when the zwitterionic surfactant dodecyldimethylamine oxide was used; the system displays a solid-like behavior at rest but flows easily at intermediate strains. At slightly higher temperature (>24 °C), an inversion of the G′, G″ values was observed, leading to a system that behaves as a liquid. Such control of rheological behavior is significant for feasible and complete removal of soiled polymer coatings from textured ceramic surfaces, which are difficult to clean with conventional gels, without leaving residues. These results position the PNIPAM-OEGMA microgels as promising cleaning materials for the conservation of Cultural Heritage, with possible applications also in fields where gelled systems are of interest (pharmaceutics, cosmetics, detergency, etc.). Full article
(This article belongs to the Special Issue Gel Materials for Heritage Conservation)
Show Figures

Figure 1

20 pages, 8981 KiB  
Article
Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential
by Georgia Vlachou and Maria Papafotiou
Horticulturae 2025, 11(4), 390; https://doi.org/10.3390/horticulturae11040390 - 6 Apr 2025
Viewed by 613
Abstract
Ballota acetabulosa (L.) Benth. (syn. Pseudodictamnus acetabulosus (L.) Salmaki and Siadati), f. Lamiaceae, the Greek horehound, is a compact evergreen small shrub native to Greece, with hairy grey-green leaves, that bears small pink-purple flowers with green conical calyxes along its erect stems in [...] Read more.
Ballota acetabulosa (L.) Benth. (syn. Pseudodictamnus acetabulosus (L.) Salmaki and Siadati), f. Lamiaceae, the Greek horehound, is a compact evergreen small shrub native to Greece, with hairy grey-green leaves, that bears small pink-purple flowers with green conical calyxes along its erect stems in late spring. The species stands out for its high resistance in xerothermic conditions and therefore it is advisable to promote its use in xeriscaping. The aim of this study was to develop an efficient protocol for in vitro propagation of B. acetabulosa for introduction into the horticultural and pharmaceutical industries. Shoot tip and single node explants derived from in vitro seedlings were cultured on MS medium with various cytokinin types and concentrations. Explants responded at almost 100% to produce high number of shoots on a medium with 1.0 mg L−1 zeatin or 6-benzyladenine. However, there was intense hyperhydricity in the cultures, which was addressed in further experiments by increasing agar concentration from 8 to 12 g L−1, preserving high multiplication indices (92% response, 10.2 shoots per explant). Microcuttings with 2–3 visible nodes, either from the apical part, including the apical meristem, or from the basal part of microshoots, as well as microshoot clusters, rooted 100% on full- or half-strength MS medium, respectively, regardless of the addition of indole-3-butyric acid (ΙΒA, 0.5–4.0 mg L−1) in the rooting medium. However, middle level concentrations of IBA increased the number and length of roots produced, while the higher its concentration, the more and longer axillary shoots developed in the microcuttings during the rooting period. The acclimatization of all plantlets was completely successful (100%) in ex vitro conditions on peat/perlite substrate (1:1, v/v). Thus, efficient methods of producing propagation material to promote Ballota acetabulosa as a horticultural and medicinal plant were developed. In particular, rooting of microshoot clusters or microcuttings without the shoot tip, in the presence of 1.0 mg L−1 IBA, leads to a plant of suitable shape for the floricultural market, without the need for further manipulation (pruning) in the nursery. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

20 pages, 7066 KiB  
Brief Report
Managing the Microbiome on the Surface of Tomato Fruit by Treatment of Tomato Plants with Non-Thermal Atmospheric-Pressure Plasma During Cultivation
by Hideki Takahashi, Keisuke Takashima, Shuhei Miyashita, Shota Sasaki, Abebe Alemu Derib, Kazuhisa Kato, Yoshinori Kanayama and Toshiro Kaneko
Horticulturae 2025, 11(3), 276; https://doi.org/10.3390/horticulturae11030276 - 4 Mar 2025
Cited by 1 | Viewed by 852
Abstract
The treatment of plants with non-thermal atmospheric-pressure plasma impacts several aspects of plant life. However, the effects of long-term plasma irradiation on crop cultivation are not enough investigated. The purpose of the current study is to address this subject. The growth of tomato [...] Read more.
The treatment of plants with non-thermal atmospheric-pressure plasma impacts several aspects of plant life. However, the effects of long-term plasma irradiation on crop cultivation are not enough investigated. The purpose of the current study is to address this subject. The growth of tomato plants, the preservation status of harvested tomato fruits, and the microbial community on the surface of harvested tomato fruits were compared between 12 long-term plasma-irradiated plants and 12 air-irradiated plants with statistical analyses. The growth parameters (plant height, number of leaves and fruit bunches, SPAD value, and plant dry weight) of the plants that were periodically irradiated with plasma from the three-leaf stage to the green-enlarged-fruit stage, were the same as those of the air-irradiated controls. However, the preservation status of the tomato fruits harvested from the plasma-irradiated plants was improved in comparison with that of the fruits from the air-irradiated controls. Analysis of the microbiome on the surface of the fruit indicated that long-term plasma irradiation during cultivation promoted an increased bacterial diversity on the fruit surface. Thus, the effect of plasma irradiation on the diversification of microbial population dynamics on tomato fruit may be associated with an improved preservation status of harvested tomato fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

11 pages, 1209 KiB  
Article
Association of Escherichia coli O157:H7 Density Change with Hydrogen Peroxide but Not Carbohydrate Concentration in the Leaf Content of Different Lettuce Types and Spinach
by Maria T. Brandl, Sui S. T. Hua and Siov B. L. Sarreal
Foods 2025, 14(4), 709; https://doi.org/10.3390/foods14040709 - 19 Feb 2025
Cited by 1 | Viewed by 623
Abstract
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents [...] Read more.
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents of different leafy greens on the multiplication of the important pathogen Escherichia coli O157:H7 (EcO157) under temperature abuse was investigated. Leafy greens consisted of spinach and different lettuce types (romaine, iceberg, butterhead, green leaf, and red leaf). Fructose, glucose, and sucrose concentrations in the leaves were quantified by HPLC. H2O2 concentration was measured via a peroxidase-based assay. Young leaves of iceberg, romaine, and green leaf lettuce held significantly greater total amounts of the three carbohydrates than middle-aged leaves. Except for iceberg and red leaf lettuce, all middle-aged leaves contained greater H2O2 than young leaves. EcO157 density change in leaf contents over 5 h incubation related neither to individual nor total carbohydrate concentration but was negatively associated with H2O2 concentration (regression analysis; p < 0.05). Given the common use of antioxidants to maintain the organoleptic aspects of homogenized produce beverages and certain fresh-cut produce, the antimicrobial effect of reactive oxygen species may be important to preserve in ensuring their microbial safety. Full article
Show Figures

Figure 1

23 pages, 1557 KiB  
Article
Nutritional Profile and Chlorophyll Intake of Collard Green as a Convenience Food
by Elisa Canazza, Paolo Tessari, Christine Mayr Marangon and Anna Lante
Nutrients 2024, 16(23), 4015; https://doi.org/10.3390/nu16234015 - 23 Nov 2024
Cited by 5 | Viewed by 2816
Abstract
Background/Objectives: Collard green (Brassica oleracea var. viridis) is widely cultivated for its adaptability and nutritional benefits. This study examines the nutritional composition and chlorophyll content of the “Couve-Manteiga” cultivar grown in Italy, emphasizing its potential application in convenience foods, such as [...] Read more.
Background/Objectives: Collard green (Brassica oleracea var. viridis) is widely cultivated for its adaptability and nutritional benefits. This study examines the nutritional composition and chlorophyll content of the “Couve-Manteiga” cultivar grown in Italy, emphasizing its potential application in convenience foods, such as fresh-cut, fifth-range, and freeze-dried products, to enhance chlorophyll intake in the population. Methods: The leaves of collard greens were analyzed for proximate composition, mineral content, amino acid and fatty acid profiles, and chlorophyll levels. Chlorophyll retention was measured after sous vide cooking and freeze-drying to assess the efficacy of these preservation methods. The chlorophyll content of different product formats was quantified, and potential dietary contributions were estimated based on consumption data. Results: Collard greens exhibited a low caloric value (30.66 kcal/100 g), with high levels of dietary fiber (3.39 g/100 g), protein (3.01 g/100 g), calcium (333.09 mg/100 g), and potassium (215.53 mg/100 g). The amino acid profile revealed an essential to non-essential amino acid ratio of 0.72. Chlorophyll retention was notably high in both freeze-dried (97.66%) and sous-vide cooked products (83.5%), indicating the effectiveness of these methods in preserving chlorophyll content compared to fresh-cut leaves. Conclusions: The results suggest that convenience foods made from collard green leaves provide an accessible means to boost chlorophyll intake and enhance daily nutrition, offering a practical solution for increasing the consumption of this nutrient-rich vegetable. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Figure 1

13 pages, 1317 KiB  
Article
Light Intensity Effects on Productivity and Post-Harvest Quality in Perilla frutescens Cultivated in CEA
by Akvilė Viršilė, Ieva Gudžinskaitė, Kristina Laužikė, Gediminas Kudirka, Audrius Pukalskas and Giedrė Samuolienė
Agriculture 2024, 14(11), 2079; https://doi.org/10.3390/agriculture14112079 - 19 Nov 2024
Cited by 1 | Viewed by 1606
Abstract
Leafy vegetables, mainly lettuces, are currently the main crop cultivated in controlled environment agriculture (CEA), including vertical farming and plant factories. There is a rising demand to expand this portfolio with a wider variety of underutilized edible plants containing various bioactive compounds and [...] Read more.
Leafy vegetables, mainly lettuces, are currently the main crop cultivated in controlled environment agriculture (CEA), including vertical farming and plant factories. There is a rising demand to expand this portfolio with a wider variety of underutilized edible plants containing various bioactive compounds and sensory properties seeking to enrich human diets. However, the optimal cultivation conditions for these underutilized plants significantly differ from those optimized for lettuce, basil, and other popular CEA crops. Therefore, this study aims to explore the impacts of light-emitting diode (LED) lighting intensity (photosynthetic photon flux density, PPFD) on green leaf Perilla frutescens cultivated in CEA. Plants were grown under four levels of LED lighting PPFDs from 150 to 300 µmol m−2s−1 for 4 weeks. Plant biomass productivity, soluble sugar contents, antioxidant properties (DPPH, ABTS free radical scavenging activities, FRAP antioxidant power), and total contents of phenolic compounds in leaves were evaluated at harvesting time. Further, harvested plant material was stored in the dark, at +6 °C, and the water content, water loss and transpiration rate, leaf sugar contents, and antioxidant properties were monitored 1, 3, and 5 days after harvesting. The summarized data suggest that higher cultivation lighting PPFD results in better harvest quality preservation during post-harvest storage. Full article
(This article belongs to the Special Issue Impact of Light on Horticultural Crops—2nd Edition)
Show Figures

Graphical abstract

33 pages, 1871 KiB  
Article
Packaging Matters: Preservation of Antioxidant Compounds of Fresh Stinging Nettle Leaves (Urtica dioica L.)
by Mia Dujmović, Mia Kurek, Zdenko Mlinar, Sanja Radman, Nevena Opačić, Petra Pišonić, Sandra Voća and Jana Šic Žlabur
Appl. Sci. 2024, 14(15), 6563; https://doi.org/10.3390/app14156563 - 26 Jul 2024
Cited by 2 | Viewed by 1330
Abstract
Green leafy vegetables are very challenging in terms of storage and preservation, while packaging in controlled conditions with the selection of appropriate polymer material is crucial for maintaining their nutritional value and quality. Various packaging materials have different gas and water vapor permeability [...] Read more.
Green leafy vegetables are very challenging in terms of storage and preservation, while packaging in controlled conditions with the selection of appropriate polymer material is crucial for maintaining their nutritional value and quality. Various packaging materials have different gas and water vapor permeability as well as physicochemical properties that can create a specific environment inside the package, therefore affecting the chemical composition, sensory characteristics, and overall quality of packed leafy vegetables. Stinging nettle is an edible plant with a high antioxidant content, making it a valuable leafy vegetable. Therefore, this study aimed to evaluate the influence of four packaging materials (biaxially oriented polypropylene (BOPP), low-density polyethylene (LDPE), polyamide/polyethylene (PA/PE), and polylactic acid (PLA)) on the antioxidant content of packed fresh nettle leaves during 14-day storage. Ascorbic acid content was the highest after 6 days of storage, equally well preserved in all tested films, with an average of 86.74 mg/100 g fm (fresh mass). After 14 days of storage, the total phenolic content was best preserved when packed in LDPE. The content of caffeoylmalic and chlorogenic acids was the highest in LDPE after 6 days. In addition, leaves packed in LDPE after 6 days of storage had the highest content of all photosynthetic pigments. According to FRAP analysis, the antioxidant capacity was best maintained in LDPE (at the 14th day, the measured capacity was 43.61 µmol TE/g). This study shows that the type of packaging material (BOPP, LDPE, PA/PE, and PLA) and storage duration (6 and 14 days) have a great impact on the level of antioxidant compounds in the nettle leaves, where LDPE and BOPP can be highlighted as the most favorable for the preservation of total and individual phenolic compounds, photosynthetic pigments, and antioxidant capacity. Full article
(This article belongs to the Special Issue Antioxidant Compounds in Food Processing)
Show Figures

Figure 1

25 pages, 2344 KiB  
Review
Vitis vinifera L. Leaf Extract, a Microbiota Green Ally against Infectious and Inflammatory Skin and Scalp Diseases: An In-Depth Update
by Marta Armari, Elisa Zavattaro, Cesar Francisco Trejo, Alice Galeazzi, Alessia Grossetti, Federica Veronese, Paola Savoia and Barbara Azzimonti
Antibiotics 2024, 13(8), 697; https://doi.org/10.3390/antibiotics13080697 - 26 Jul 2024
Cited by 5 | Viewed by 3393
Abstract
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont [...] Read more.
The skin microbiota, with its millions of bacteria, fungi, and viruses, plays a key role in balancing the health of the skin and scalp. Its continuous exposure to potentially harmful stressors can lead to abnormalities such as local dysbiosis, altered barrier function, pathobiont overabundance, and infections often sustained by multidrug-resistant bacteria. These factors contribute to skin impairment, deregulation of immune response, and chronic inflammation, with local and systemic consequences. In this scenario, according to the needs of the bio-circular-green economy model, novel harmless strategies, both for regulating the diverse epidermal infectious and inflammatory processes and for preserving or restoring the host skin eubiosis and barrier selectivity, are requested. Vitis vinifera L. leaves and their derived extracts are rich in plant secondary metabolites, such as polyphenols, with antioxidant, anti-inflammatory, antimicrobial, and immunomodulatory properties that can be further exploited through microbe-driven fermentation processes. On this premise, this literature review aims to provide an informative summary of the most updated evidence on their interactions with skin commensals and pathogens and on their ability to manage inflammatory conditions and restore microbial biodiversity. The emerging research showcases the potential novel beneficial ingredients for addressing various skincare concerns and advancing the cosmeceutics field as well. Full article
Show Figures

Graphical abstract

21 pages, 10213 KiB  
Article
Low-Temperature Regulates the Cell Structure and Chlorophyll in Addition to Cellulose Metabolism of Postharvest Red Toona sinensis Buds across Different Seasons
by Qian Zhao, Fu Wang, Yifei Wang, Xiulai Zhong, Shunhua Zhu, Xinqi Zhang, Shuyao Li, Xiujuan Lei, Zhenyuan Zang, Guofei Tan and Jian Zhang
Int. J. Mol. Sci. 2024, 25(14), 7719; https://doi.org/10.3390/ijms25147719 - 14 Jul 2024
Cited by 1 | Viewed by 1590
Abstract
Postharvest fibrosis and greening of Toona sinensis buds significantly affect their quality during storage. This study aimed to clarify the effects of low-temperature storage on postharvest red TSB quality harvested in different seasons. Red TSB samples were collected from Guizhou province, China, 21 [...] Read more.
Postharvest fibrosis and greening of Toona sinensis buds significantly affect their quality during storage. This study aimed to clarify the effects of low-temperature storage on postharvest red TSB quality harvested in different seasons. Red TSB samples were collected from Guizhou province, China, 21 days after the beginning of spring (Lichun), summer (Lixia), and autumn (Liqiu), and stored at 4 °C in dark conditions. We compared and analyzed the appearance, microstructure, chlorophyll and cellulose content, and expression levels of related genes across different seasons. The results indicated that TSB harvested in spring had a bright, purple-red color, whereas those harvested in summer and autumn were green. All samples lost water and darkened after 1 day of storage. Severe greening occurred in spring-harvested TSB within 3 days, a phenomenon not observed in summer and autumn samples. Microstructural analysis revealed that the cells in the palisade and spongy tissues of spring and autumn TSB settled closely during storage, while summer TSB cells remained loosely aligned. Xylem cells were smallest in spring-harvested TSB and largest in autumn. Prolonged storage led to thickening of the secondary cell walls and pith cell autolysis in the petioles, enlarging the cavity area. Chlorophyll content was higher in leaves than in petioles, while cellulose content was lower in petioles across all seasons. Both chlorophyll and cellulose content increased with storage time. Gene expression analysis showed season-dependent variations and significant increases in the expression of over half of the chlorophyll-related and cellulose-related genes during refrigeration, correlating with the observed changes in chlorophyll and cellulose content. This research provides valuable insights for improving postharvest storage and freshness preservation strategies for red TSB across different seasons. Full article
(This article belongs to the Special Issue New Insights into Environmental Stresses and Plants)
Show Figures

Figure 1

14 pages, 2845 KiB  
Article
Haematococcus lacustris Carotenogensis: A Historical Event of Primary to Secondary Adaptations to Earth’s Oxygenation
by Cui Lan Qu, Hui Jin, Bing Zhang, Wei Jian Chen, Yang Zhang, Yuan Yuan Xu, Rui Wang and Yong Min Lao
Life 2024, 14(5), 576; https://doi.org/10.3390/life14050576 - 30 Apr 2024
Viewed by 1361
Abstract
(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth’s history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth’s oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount [...] Read more.
(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth’s history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth’s oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and β-cyclase (LCYB), which leave an important trace in Earth’s oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth’s oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial β-bicyclases evolved from β-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/β-monocyclase to β-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth’s oxygenation. Full article
(This article belongs to the Special Issue Evolutionary and Conservation Genetics: 2nd Edition)
Show Figures

Figure 1

12 pages, 3825 KiB  
Article
Sweet Pepper Leaf Area Estimation Using Semantic 3D Point Clouds Based on Semantic Segmentation Neural Network
by Truong Thi Huong Giang and Young-Jae Ryoo
AgriEngineering 2024, 6(1), 645-656; https://doi.org/10.3390/agriengineering6010038 - 4 Mar 2024
Cited by 2 | Viewed by 1823
Abstract
In the field of agriculture, measuring the leaf area is crucial for the management of crops. Various techniques exist for this measurement, ranging from direct to indirect approaches and destructive to non-destructive techniques. The non-destructive approach is favored because it preserves the plant’s [...] Read more.
In the field of agriculture, measuring the leaf area is crucial for the management of crops. Various techniques exist for this measurement, ranging from direct to indirect approaches and destructive to non-destructive techniques. The non-destructive approach is favored because it preserves the plant’s integrity. Among these, several methods utilize leaf dimensions, such as width and length, to estimate leaf areas based on specific models that consider the unique shapes of leaves. Although this approach does not damage plants, it is labor-intensive, requiring manual measurements of leaf dimensions. In contrast, some indirect non-destructive techniques leveraging convolutional neural networks can predict leaf areas more swiftly and autonomously. In this paper, we propose a new direct method using 3D point clouds constructed by semantic RGB-D (Red Green Blue and Depth) images generated by a semantic segmentation neural network and RGB-D images. The key idea is that the leaf area is quantified by the count of points depicting the leaves. This method demonstrates high accuracy, with an R2 value of 0.98 and a RMSE (Root Mean Square Error) value of 3.05 cm2. Here, the neural network’s role is to segregate leaves from other plant parts to accurately measure the leaf area represented by the point clouds, rather than predicting the total leaf area of the plant. This method is direct, precise, and non-invasive to sweet pepper plants, offering easy leaf area calculation. It can be implemented on laptops for manual use or integrated into robots for automated periodic leaf area assessments. This innovative method holds promise for advancing our understanding of plant responses to environmental changes. We verified the method’s reliability and superior performance through experiments on individual leaves and whole plants. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

13 pages, 1505 KiB  
Article
Vinegar-Preserved Sea Fennel: Chemistry, Color, Texture, Aroma, and Taste
by Sanja Radman, Petra Brzović, Mira Radunić, Ante Rako, Mladenka Šarolić, Tonka Ninčević Runjić, Branimir Urlić and Ivana Generalić Mekinić
Foods 2023, 12(20), 3812; https://doi.org/10.3390/foods12203812 - 17 Oct 2023
Cited by 7 | Viewed by 2820
Abstract
The aim of this study was to produce non-fermented preserved sea fennel leaves in different pickle juices prepared with apple cider vinegar, wine vinegar and alcoholic vinegar, and to compare their chemical parameters (pH, titratable acidity and salt content), organoleptic properties (color and [...] Read more.
The aim of this study was to produce non-fermented preserved sea fennel leaves in different pickle juices prepared with apple cider vinegar, wine vinegar and alcoholic vinegar, and to compare their chemical parameters (pH, titratable acidity and salt content), organoleptic properties (color and texture parameters; volatile aromatic compound profiles) and sensory attributes. The pH of the samples ranged from 3.49 to 3.64, the lowest being in the alcoholic vinegar sample and the highest being in the wine vinegar sample, while the titratable acidity and salinity were higher in the alcoholic vinegar pickle juice than those in the other two samples. The volatile aromatic compounds of the samples were also detected. The reddish color of the wine vinegar negatively affected the sea fennel color parameters (L* and b*), and was also negatively evaluated by the panelists, while the alcoholic vinegar maximally preserved the green tones of the leaf (a*). Firmness influences the quality perceived by consumers and was therefore also tested as one of the most important parameters for evaluating the textural and mechanical properties of the different products. All sensory parameters of the sea fennel preserved in alcoholic vinegar, namely color, texture, taste, aroma and overall impression, were given the highest scores, while the sample preserved in wine vinegar received the lowest scores. The intense aroma of the wine vinegar was described as a negative characteristic (off-flavor) of the sample. Full article
Show Figures

Figure 1

Back to TopTop