Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effect of Cytokinin Type and Concentration on In Vitro Culture Establishment
2.2. Effect of Explant and Cytokinin Type and Concentration on Shoot Multiplication
2.3. Effect of Agar Concentration on Hyperhydricity
2.4. In Vitro Rooting
2.5. In Vitro Culture Conditions and Data Collection
2.6. Ex Vitro Acclimatization and Establishment
2.7. Statistical Analysis
3. Results
3.1. In Vitro Culture Establishment
3.2. Shoot Multiplication at First Subculture
3.3. Effect of Continuous Subcultures on Shoot Multiplication
3.4. Effect of Agar Concentration on Hyperhydricity
3.5. In Vitro Rooting
3.6. Ex Vitro Acclimatization
4. Discussion
4.1. In Vitro Culture Establishment
4.2. Multiplication Stage and Addressing Hyperhydricity
4.3. In Vitro Rooting
4.4. Ex Vitro Acclimatization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, S.; Tzanoudakis, D. Vascular Plants of Greece: An Annotated Checklist; Botanischer Garten und Botanisches Museum Berlin-Dahlem; Hellenic Botanical Society: Berlin, Germany, 2013; p. 106. [Google Scholar]
- Davis, P.H. Flora of Turkey and the East Aegean Islands; Edinburgh University, Edinburgh Press: Edinburgh, UK, 1982; Volume 7, pp. 156–160. [Google Scholar]
- Huxley, A.; Taylor, W. Flowers of Greece and the Aegean; Chatto & Windus: London, UK, 1977. [Google Scholar]
- Psaras, G.K.; Rhizopoulou, S. Mesophyll structure during leaf development in Ballota acetabulosa. New Phytol. 1995, 131, 303–309. [Google Scholar] [CrossRef]
- Sahpaz, S.; Skaltsounis, A.L.; Bailleul, F. Polyphenols from Ballota acetabulosa. Biochem. Syst. Ecol. 2002, 30, 601–604. [Google Scholar] [CrossRef]
- Petanidou, T.; Vokou, D. Pollination Ecology of Labiatae in a Phryganic (East Mediterranean) Ecosystem. Am. J. Bot. 1993, 80, 892–899. [Google Scholar] [CrossRef]
- Mulas, M. Traditional Uses of Labiatae in the Mediterranean Area. Acta Hortic. 2006, 723, 25–32. [Google Scholar] [CrossRef]
- Dulger, B.; Sener, A. Evaluation of antimicrobial activity of Ballota acetabulosa. Afr. J. Microbiol. Res. 2010, 4, 1235–1238. [Google Scholar]
- Newall, C.A.; Anderson, L.A.; Philipson, J.D. Herbal Medicines, a Guide for Health-Care Professionals; The Pharmaceutical Press: London, UK, 1996; pp. 164–172. [Google Scholar]
- Citoglu, G.; Tanker, M.; Sever, B.; Englert, J.; Anton, R.; Altanlar, N. Antibacterial activities of diterpenoids isolated from Ballota saxatilis subsp. saxatilis. Planta Med. 1998, 64, 484–485. [Google Scholar] [CrossRef]
- Couladis, M.; Tzakou, O.; Verykokidou, E.; Harvala, C. Screening of some Greek aromatic plants for antioxidant activity. Phytother. Res. 2003, 17, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Papafotiou, M.; Bertsouklis, K.; Martini, A.N.; Vlachou, G.; Akoumianaki-Ioannidou, A.; Kanellou, E.; Kartsonas, E. Evaluation of the establishment of native Mediterranean plant species suggested for landscape enhancement in archaeological sites of Greece. Acta Hortic. 2017, 1189, 177–180. [Google Scholar] [CrossRef]
- Egerer, M.; Cecala, J.; Cohen, H. Wild Bee Conservation within Urban Gardens and Nurseries: Effects of Local and Landscape Management. Sustainability 2019, 12, 293. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K.F. In Vitro Propagation of Ballota acetabulosa. Acta Hortic. 2016, 1113, 171–174. [Google Scholar] [CrossRef]
- Chakrabarty, D.; Park, S.Y.; Ali, M.B.; Shin, K.S.; Paek, K.Y. Hyperhydricity in apple: Ultrastuctural and physiological aspects. Tree Physiol. 2006, 26, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Ziv, M. Vitrification: Morphological and physiological disorders of in vitro plants. In Micropropagation: Technology and Application; Debergh, P.C., Zimmerman, R.H., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991; pp. 45–69. [Google Scholar] [CrossRef]
- Hazarika, B.N. Review. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 2006, 108, 105–120. [Google Scholar] [CrossRef]
- Ivanova, M.; Van Staden, J. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Organ Cult. 2011, 104, 13–21. [Google Scholar] [CrossRef]
- Ivanova, M.; Van Staden, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tissue Organ Cult. 2008, 92, 227–231. [Google Scholar] [CrossRef]
- Ivanova, M.; Van Staden, J. Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schönland ex Pillans. Plant Growth Regul. 2010, 60, 143–150. [Google Scholar] [CrossRef]
- Papafotiou, M.; Bertsouklis, K.F.; Trigka, M. Micropropagation of Arbutus unedo, A. andrachne, and their natural hybrid, A. x andrachnoides from seedling explants. J. Hortic. Sci. Biotechnol. 2013, 88, 768–775. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N. In vitro seed and clonal propagation of the Mediterranean aromatic and medicinal plant Teucrium capitatum. HortScience 2016, 51, 403–411. [Google Scholar] [CrossRef]
- Bazanis, A.E.; Papafotiou, M. In Vitro Germination, Micropropagation and Addressing the Hyperhydricity of the Balkan Native Dianthus cruentus, a Plant with High Ornamental and Xeriscaping Potential. Horticulturae 2024, 10, 813. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. In Vitro Seed and Clonal Propagation of the Mediterranean Bee Friendly Plant Anthyllis hermanniae L. Sustainability 2023, 15, 4025. [Google Scholar] [CrossRef]
- Papafotiou, M.; Vlachou, G.; Martini, A.N. Investigation of the Effects of the Explant Type and Different Plant Growth Regulators on Micropropagation of Five Mediterranean Salvia spp. Native to Greece. Horticulturae 2023, 9, 96. [Google Scholar] [CrossRef]
- Sarasan, V.; Kite, G.C.; Sileshi, G.W.; Stevenson, P.C. Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell Rep. 2011, 30, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Çetin, N.; Mansuroğlu, S.; Önaç, A.K. Xeriscaping Feasibility as an Urban Adaptation Method for Global Warming: A Case Study from Turkey. Pol. J. Environ. Stud. 2018, 27, 1009–1018. [Google Scholar] [CrossRef]
- Caneva, G.; Kumbaric, A.; Savo, V.; Casalini, R. Ecological Approach in Selecting Extensive Green Roof Plants: A Data-Set of Mediterranean Plants. Plant Biosyst. 2013, 149, 374–383. [Google Scholar] [CrossRef]
- Ondoño, S.; Martínez-Sánchez, J.J.; Moreno, J.L. Evaluating the growth of several Mediterranean endemic species in artificial substrates: Are these species suitable for their future use in green roofs? Ecol. Eng. 2015, 81, 405–417. [Google Scholar] [CrossRef]
- Papafotiou, M.; Martini, A.N.; Tassoula, L.; Stylias, E.G.; Kalantzis, A.; Dariotis, E. Acclimatization of Mediterranean Native Sages (Salvia spp.) and Interspecific Hybrids in an Urban Green Roof under Regular and Reduced Irrigation. Sustainability 2022, 14, 4978. [Google Scholar] [CrossRef]
- Azeñas, V.; Janner, I.; Medrano, H.; Gulías, J. Performance Evaluation of Five Mediterranean Species to Optimize Ecosystem Services of Green Roofs under Water-Limited Conditions. J. Environ. Manag. 2018, 212, 236–247. [Google Scholar] [CrossRef]
- Tassoula, L.; Papafotiou, M.; Liakopoulos, G.; Kargas, G. Water use efficiency, growth and anatomic-physiological parameters of Mediterranean xerophytes as affected by substrate and irrigation on a green roof. Not. Bot. Hortic. Agrobot. Cluj-Napoca 2021, 49, 12283. [Google Scholar] [CrossRef]
- Kumar, M.; Prasad, Y.; Yadav, A.; Kumar, A. Effects of two different surface sterilization (Sodium Hypochlorite and Mercuric Chloride) agents under in-vitro leaf explant in Gerbera (Gerbera jamesonii Bolus). J. Pharm. Innov. 2021, 10, 1346–1349. Available online: https://www.researchgate.net/publication/361902680 (accessed on 20 January 2025).
- Martini, A.N.; Vlachou, G.; Papafotiou, M. Effect of Explant Origin and Medium Plant Growth Regulators on In Vitro Shoot Proliferation and Rooting of Salvia tomentosa, a Native Sage of the Northeastern Mediterranean Basin. Agronomy 2022, 12, 1889. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K.F. Studies on Seed Germination and Micropropagation of Clinopodium nepeta: A Medicinal and Aromatic Plant. HortScience 2019, 54, 1558–1564. [Google Scholar] [CrossRef]
- Papafotiou, M.; Kalantzis, A. Seed germination and in vitro propagation of Sideritis athoa. Acta Hortic. 2009, 813, 471–476. [Google Scholar] [CrossRef]
- Papafotiou, M.; Stragas, J. Seed Germination and in Vitro Propagation of Dianthus fruticosus. Acta Hortic. 2009, 813, 481–484. [Google Scholar] [CrossRef]
- Ivanovic, S.; Markovic, M.; Milutinovic, M.; Skocajic, D.; Dunisijevic-Bojovic, D. In Vitro Propagation of Dianthus cruentus and Acclimatization in Hydroponic Culture. Phyton 2023, 62–63, 107–114. [Google Scholar]
- Papafotiou, M.; Kalantzis, A. Studies on in vitro propagation of Lithodora zahnii. Acta Hortic. 2009, 813, 465–470. [Google Scholar] [CrossRef]
- Bertsouklis, K.F.; Vazaka-Vodena, D.; Bazanis, A.E.; Papafotiou, M. Studies on Seed Germination and Micropropagation of Ebenus sibthorpii, an Endemic Shrub of Greece with Potential Ornamental Use. Horticulturae 2023, 9, 1300. [Google Scholar] [CrossRef]
- Máthé, A.; Hassan, F.; Abdul Kader, A. In vitro micropropagation of medicinal and aromatic plants. In Medicinal and Aromatic Plants of the World; Máthé, A., Ed.; Springer Science+Business Media: Dordrecht, The Netherlands, 2015; Volume 1, pp. 305–336. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. In Vitro Propagation and NaCl Tolerance of the Multipurpose Medicinal Halophyte Limoniastrum monopetalum. HortScience 2020, 55, 436–443. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Papafotiou, M.; Balotis, G. Effect of medium on in vitro growth and ex vitro establishment of Globularia alypum. Acta Hortic. 2003, 616, 177–180. [Google Scholar] [CrossRef]
- Trigka, M.; Papafotiou, M. In Vitro Propagation of Anthyllis barba-Jovis from Seedling Tissues. Acta Hortic. 2017, 1189, 473–748. [Google Scholar] [CrossRef]
- Sreelekshmi, R.; Siril, E.A.; Muthukrishnan, S. Role of Biogenic Silver Nanoparticles on Hyperhydricity Reversion in Dianthus chinensis L. An in Vitro Model Culture. J. Plant Growth Regul. 2021, 41, 23–39. [Google Scholar] [CrossRef]
- Mohamed, S.M.; El-Mahrouk, M.E.; El-Banna, A.N.; Hafez, Y.M.; El-Ramady, H.; Abdalla, N.; Dobránszki, J. Optimizing Medium Composition and Environmental Culture Condition Enhances Antioxidant Enzymes, Recovers Gypsophila paniculata L. Hyperhydric Shoots and Improves Rooting In Vitro. Plants 2023, 12, 306. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, M.; Van Staden, J. Nitrogen source, concentration, and NH4+:NO3− ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell Tissue Organ Cult. 2009, 99, 167–174. [Google Scholar] [CrossRef]
- Ravanfar, S.A.; Salim, S.; Aziz, M.A.; Abdullah, S.N.A.; Rashid, A.A. Influence of phenyl-urea and adenine-type cytokinins on direct adventitious shoot regeneration of cabbage (Brassica oleracea subsp. capitata) “KCross”. Plant Biotechnol. 2014, 31, 275–280. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in Plant Tissue Culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K. Seed germination, micropropagation from adult and juvenile origin explants and address of hyperhydricity of the Cretan endemic herb Calamintha cretica. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1504–1518. [Google Scholar] [CrossRef]
- Zunazri, N.H.; Kemat, N.; Ariffin, N.; Rineksane, I.A. Effect of media components on hyperhydricity in horticultural crops: A review. J. Plant Biotechnol. 2024, 51, 307–319. [Google Scholar] [CrossRef]
- Casanova, E.; Moysset, L.; Trillas, M.I. Effects of Agar Concentration and Vessel Closure on the Organogenesis and Hyperhydricity of Adventitious Carnation Shoots. Biol. Plant. 2008, 52, 1–8. [Google Scholar] [CrossRef]
- Gerszberg, A. Tissue Culture and Genetic Transformation of Cabbage (Brassica oleracea var. capitata): An Overview. Planta 2018, 248, 1037–1048. [Google Scholar] [CrossRef]
- Debergh, P.; Aitken-Christie, J.; Cohen, D.; Grout, B.; von Arnold, S.; Zimmerman, R.; Ziv, M. Reconsideration of the term vitrification as used in micropropagation. Plant Cell Tissue Organ Cult. 1992, 30, 135–140. [Google Scholar] [CrossRef]
- Monteuuis, O. In vitro rooting of juvenile and mature Acacia mangium microcuttings with reference to leaf morphology as a phase change marker. Trees 2004, 18, 77–82. [Google Scholar] [CrossRef]
- Preece, J. Stock Plant Physiological Factors Affecting Growth and Morphogenesis. In Plant Propagation by Tissue Culture: Volume 1. The Background, 3rd ed.; Edwin, F.G., Michael, A.H., de Klerk, G.-J., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 403–422. [Google Scholar]
- Aicha, N.; Rachida, T.C.; El Abdelmalek, M. Micropropagation of Thymus satureioides Coss. an endangered medicinal plant of Morocco. J. Agric. Technol. 2013, 9, 487–501. [Google Scholar]
- Tyub, S.; Kamili, A.N.; Shah, A.M. Effect of BAP on Shoot Regeneration in Shoot Tip Cultures of Lavandula officinalis. J. Res. Dev. 2007, 7, 125–130. [Google Scholar]
- Alexopoulos, A.A.; Kartsonas, E.; Karras, S.; Mavrommati, E.; Petropoulos, S.A.; Papafotiou, M. In Vitro Propagation of Origanum scabrum (Boiss. & Heldr.): An Endemic Medicinal Plant of Greece. Plants 2023, 12, 2118. [Google Scholar] [CrossRef]
- El Beyrouthy, M.; Elian, G.; Abou Jaoudeh, C.; Chalak, L. In vitro propagation of Origanum syriacum and Origanum ehrenbergii. Acta Hortic. 2015, 1083, 169–172. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. Effect of cytokinins on in vitro blastogenesis of Thymelaea tartonraira ssp. tartonraira (L.) All. Acta Hortic. 2019, 1242, 511–514. [Google Scholar] [CrossRef]
- Papafotiou, M. In vitro propagation of temperate zone woody plants with potential ornamental use. Acta Hortic. 2010, 885, 255–262. [Google Scholar] [CrossRef]
- Martini, A.N.; Papafotiou, M. Investigation of micropropagation of the Mediterranean xerophyte Thymelaea hirsuta (L.) Endl. (Thymelaeaceae). Acta Hortic. 2020, 1298, 335–340. [Google Scholar] [CrossRef]
- De Klerk, G.J.; Der Krieken, W.V.; De Jong, J.C. Review the formation of adventitious roots: New concepts, new possibilities. Vitr. Cell. Dev. Biol. Plant 1999, 35, 189–199. [Google Scholar] [CrossRef]
- Pospíšilová, J.; Tichá, I.; Kadleček, P.; Haisel, D.; Plzáková, Š. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K.F. Studies on in vitro propagation of Anthyllis barba-jovis L. Acta Hortic. 2017, 1155, 317–320. [Google Scholar] [CrossRef]
ΒA/Agar (mg L−1)/ (g L−1) | Shooting (%) 1/2 (%) | Number of NSh ₸/HSh ₸₸ | Length of NSh (cm) | Node Number of NSh | Multiplication Index |
---|---|---|---|---|---|
0.0/8 ± | 88 a z/8 c | 1.6 d/0.1 e | 5.4 a | 5.9 a | 8.3 b |
0.5/8 | 68 b/27 a | 4.7 c/2.3 b | 1.4 b | 2.4 b | 7.7 b |
0.5/12 | 88 a/8 c | 7.8 b/1.0 cd | 1.3 b | 2.3 b | 15.8 a |
1.0/8 | 70 b/22 b | 7.4 b/3.4 a | 1.1 bc | 1.9 bc | 9.8 b |
1.0/12 | 92 a/8 c | 10.2 a/0.8 d | 0.8 c | 1.8 c | 16.9 a |
FΒA | NS/- | ***/*** | *** | ** | NS |
Fagar | ***/- | ***/** | ** | NS | *** |
FΒA×agar | NS/*** | NS/NS | NS | NS | NS |
Fone-way ANOVA | ***/*** | ***/*** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlachou, G.; Papafotiou, M. Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential. Horticulturae 2025, 11, 390. https://doi.org/10.3390/horticulturae11040390
Vlachou G, Papafotiou M. Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential. Horticulturae. 2025; 11(4):390. https://doi.org/10.3390/horticulturae11040390
Chicago/Turabian StyleVlachou, Georgia, and Maria Papafotiou. 2025. "Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential" Horticulturae 11, no. 4: 390. https://doi.org/10.3390/horticulturae11040390
APA StyleVlachou, G., & Papafotiou, M. (2025). Efficient Micropropagation Using Different Types of Explant and Addressing the Hyperhydricity of Ballota acetabulosa, a Mediterranean Plant with High Xeriscaping Potential. Horticulturae, 11(4), 390. https://doi.org/10.3390/horticulturae11040390