Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Devices
2.2. Experimental Design
2.3. Growth Parameters Determination
2.4. Pigment Quantification
2.5. Determination of Nutrients and Secondary Metabolites
2.6. Antioxidant Capacity Determination
2.7. Comprehensive Evaluation Based on Fuzzy Membership Function Analysis
2.8. Statistical Analyses
3. Result Analysis
3.1. Growth Is Improved by Electric Stimulation and CO2 Enrichment
3.2. Electric Field and CO2 Synergy Enhances Chlorophyll Content in Asparagus Cladodes
3.3. Effects of the Interaction Between Electrostatic Field and Carbon Dioxide on Antioxidant Capacity in Asparagus
3.4. Effects of the Interaction Between Electrostatic Field and Carbon Dioxide on Nutrient Dynamics and Metabolic Regulation in Asparagus
3.5. Correlation Analysis
3.6. Comprehensive Evaluation Based on Fuzzy Membership Function Analysis
4. Discussion
4.1. Effects of the Interaction Between Electrostatic Field and Carbon Dioxide on Harvest Time Reduction and Yield Enhancement in Asparagus
4.2. Effects of the Interaction Between Electrostatic Field and Carbon Dioxide on Chlorophyll Content in Asparagus
4.3. Effects of the Interaction Between Electrostatic Field and Carbon Dioxide on Enhancing Antioxidant Enzyme Activity and Reducing Oxidative Damage in Asparagus
4.4. Effects of the Interaction Between Electrostatic Field and Carbon Dioxide on Metabolic Activity Enhancement and Nutrient Composition in Asparagus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Soteriou, G.A.; Antoniou, C.; Rouphael, Y.; Kyratzis, A.C.; Kyriacou, M.C. Changes in the primary and secondary metabolome of male green asparagus (Asparagus officinalis L.) as modulated by sequential harvesting. Food Chem. 2021, 358, 129877. [Google Scholar] [CrossRef] [PubMed]
- Chitrakar, B.; Zhang, M.; Adhikari, B. Asparagus (Asparagus officinalis): Processing Effect on Nutritional and Phytochemical Composition of Spear and Hard-stem Byproducts. Trends Food Sci. Technol. 2019, 93, 1–11. [Google Scholar] [CrossRef]
- Sullivan, S.A.; Tran, A.Q.M.; Xu, G.; Yin, Y.; Zhou, C.; Bae-Jump, V.L. Asparagus Polysaccharide Inhibits Cell Proliferation, Adhesion and Invasion in Endometrial Cancer Cells. Gynecol. Oncol. 2017, 145, 133. [Google Scholar] [CrossRef]
- Jäger, A.K.; Mohoto, S.P.; van Heerden, F.R.; Viljoen, A.M. Activity of a Traditional South African Epilepsy Remedy in the GABA-Benzodiazepine Receptor Assay. J. Ethnopharmacol. 2005, 96, 603–606. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Wang, S.; Guo, Q.; Li, Z.; Liu, H.; Wang, C. Structural Characterisation and Immunomodulatory Activity of Polysaccharides from White Asparagus Skin. Carbohydr. Polym. 2020, 227, 115314. [Google Scholar] [CrossRef]
- Hafizur, R.M.; Kabir, N.; Chishti, S. Asparagus Officinalis Extract Controls Blood Glucose by Improving Insulin Secretion and β-Cell Function in Streptozotocin-Induced Type 2 Diabetic Rats. Br. J. Nutr. 2012, 108, 1586–1595. [Google Scholar] [CrossRef]
- Kahlon, T.S.; Chapman, M.H.; Smith, G.E. In Vitro Binding of Bile Acids by Okra, Beets, Asparagus, Eggplant, Turnips, Green Beans, Carrots, and Cauliflower. Food Chem. 2007, 103, 676–680. [Google Scholar] [CrossRef]
- Miura, T.; Yasueda, A.; Sakaue, M.; Maeda, K.; Hayashi, N.; Ohno, S.; Ito, T. SUN-LB271: A Double-Blind Randomized Controlled Trial Regarding the Safety and Efficacy of Enzyme-Treated Asparagus Extract Intake in Healthy Human Subjects. Clin. Nutr. 2016, 35, S145. [Google Scholar] [CrossRef]
- Negi, J.S.; Singh, P.; Joshi, G.P.; Rawat, M.S.; Bisht, V.K. Chemical Constituents of Asparagus. Pharmacogn. Rev. 2010, 4, 215–220. [Google Scholar] [CrossRef]
- Rodkiewicz, T. Vitamin C Changes and Total Antioxidant Activity of Fresh and Stored Green Asparagus Spears. In Proceedings of the XI International Asparagus Symposium, Horst, The Netherlands, 1 January 2008; pp. 235–238. [Google Scholar]
- Guo, Q.; Wang, N.; Liu, H.; Li, Z.; Lu, L.; Wang, C. The Bioactive Compounds and Biological Functions of Asparagus officinalis L.—A Review. J. Funct. Foods 2020, 65, 103727. [Google Scholar] [CrossRef]
- Li, Z.-G.; Gou, H.-Q.; Li, R.-Q. Electrical Stimulation Boosts Seed Germination, Seedling Growth, and Thermotolerance Improvement in Maize (Zea mays L.). Plant Signal. Behav. 2019, 14, 1681101. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Oh, M.-M. Electric field: A New Environmental Factor for Controlling Plant Growth and Development in Agriculture. Hortic. Environ. Biotechnol. 2023, 64, 955–961. [Google Scholar] [CrossRef]
- Okumura, T.; Muramoto, Y.; Shimizu, N. Influence of DC Electric Field on Growth of Daikon Radish (Raphanus sativus). IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 2237–2241. [Google Scholar] [CrossRef]
- Akdemir Evrendilek, G.; Atmaca, B.; Bulut, N.; Uzuner, S. Development of Pulsed Electric Fields Treatment Unit to Treat Wheat Grains: Improvement of Seed Vigour and Stress Tolerance. Comput. Electron. Agric. 2021, 185, 106129. [Google Scholar] [CrossRef]
- Cramariuc, R.; Donescu, V.; Popa, M.; Cramariuc, B. The Biological Effect of the Electrical Field Treatment on the Potato Seed: Agronomic Evaluation. J. Electrost. 2005, 63, 837–846. [Google Scholar] [CrossRef]
- Sonoda, T.; Takamura, N.; Wang, D.; Namihira, T.; Akiyama, H. Growth Control of Leaf Lettuce Using Pulsed Electric Field. IEEE Trans. Plasma Sci. 2014, 42, 3202–3208. [Google Scholar] [CrossRef]
- Liu, X.; Wan, B.; Hua, H.; Li, X. Electric Field Generated by High-Voltage Transmission System Is Beneficial to Cotton Growth. Acta Ecol. Sin. 2021, 41, 552–559. [Google Scholar] [CrossRef]
- Mahmood, B.; Jaleh, S.; Yasaman, Y. Study of DC and AC Electric Field Effect on Pisum sativum Seeds Growth. Eur. Phys. J. Appl. Phys. 2014, 67, 11201. [Google Scholar] [CrossRef]
- Pelesz, A.; Fojcik, M. Effect of High Static Electric Field on Germination and Early Stage of Growth of Avena sativa and Raphanus sativus. J. Electrost. 2024, 130, 103939. [Google Scholar] [CrossRef]
- Ma, H.; Wang, L.; Ke, H.; Zhou, W.; Jiang, C.; Jiang, M.; Zhan, F.; Li, T. Effects, Physiological Response and Mechanism of Plant Under electric Field Application. Sci. Hortic. 2024, 329, 112992. [Google Scholar] [CrossRef]
- Jin, T.Z.; Yu, Y.; Gurtler, J.B. Effects of Pulsed Electric Field Processing on Microbial Survival, Quality Change and Nutritional Characteristics of Blueberries. LWT 2017, 77, 517–524. [Google Scholar] [CrossRef]
- Lee, S.; Oh, M.-M. Electric Stimulation Promotes Growth, Mineral Uptake, and Antioxidant Accumulation in Kale (Brassica oleracea var. acephala). Bioelectrochemistry 2021, 138, 107727. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Schlaak, M.; Siefert, E.; Lord, R.; Connolly, H. Alternating Current Electrical Field Effects on Lettuce (Lactuca sativa) Growing in Hydroponic Culture with and Without Cadmium Contamination. J. Appl. Electrochem. 2010, 40, 1217–1223. [Google Scholar] [CrossRef]
- Moratto, E.; Tang, Z.; Bozkurt, T.O.; Sena, G. Reduction of Phytophthora Palmivora Plant Root Infection in Weak Electric Fields. Sci. Rep. 2024, 14, 19993. [Google Scholar] [CrossRef]
- Boretti, A.; Florentine, S. Atmospheric CO2 Concentration and Other Limiting Factors in the Growth of C3 and C4 Plants. Plants 2019, 8, 92. [Google Scholar] [CrossRef]
- Jin, C.; Du, S.; Wang, Y.; Condon, J.; Lin, X.; Zhang, Y. Carbon Dioxide Enrichment by Composting in Greenhouses and Its Effect on Vegetable Production. J. Plant Nutr. Soil. Sci. 2009, 172, 418–424. [Google Scholar] [CrossRef]
- Akhlaq, M.; Zhang, C.; Yan, H.; Ou, M.; Zhang, W.; Liang, S.; Ikram, R.M.A. Response of tomato growth to continuous elevated CO2 concentration under controlled environment. Int. J. Agric. Biol. Eng. 2022, 15, 51–59. [Google Scholar] [CrossRef]
- Zhang, C.; Akhlaq, M.; Yan, H.; Ni, Y.; Liang, S.; Zhou, J.; Xue, R.; Li, M.; Adnan, R.M.; Li, J. Chlorophyll fluorescence parameter as a predictor of tomato growth and yield under CO2 enrichment in protective cultivation. Agric. Water Manag. 2023, 284, 108333. [Google Scholar] [CrossRef]
- Scandolera, T.; Teano, G.; Naderpour, M.; Geffroy, V.; Pflieger, S. Insights into the Effects of Elevated Atmospheric Carbon Dioxide on Plant-Virus Interactions: A Literature Review. Environ. Exp. Bot. 2024, 221, 105737. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Rogers, A.; Vodkin, L.O.; Walter, A.; Schurr, U. The Effects of Elevated CO2 Concentration on Soybean Gene Expression. An Analysis of Growing and Mature Leaves. Plant Physiol. 2006, 142, 135–147. [Google Scholar] [CrossRef]
- Abzar, A.; Nizam, M.; Said, M.; Wan Ahmad, W.J.; Mohtar, W.; Yusoff, W.; Doni, F.; Fathurrahman, F.; Radziah, C.; Zain, C. Elevated CO2 Concentration Enhance Germination, Seedling Growth and Vigor of Rice. Ecol. Environ. Conserv. 2017, 23, 2017–2058. [Google Scholar]
- Pritchard, S.G.; Ju, Z.; van Santen, E.; Qiu, J.; Weaver, D.B.; Prior, S.A.; Rogers, H.H. The Influence of Elevated CO2 on the Activities of Antioxidative Enzymes in Two Soybean Genotypes. Funct. Plant Biol. 2000, 27, 1061–1068. [Google Scholar] [CrossRef]
- Giri, A.; Armstrong, B.; Rajashekar, C. Elevated Carbon Dioxide Level Suppresses Nutritional Quality of Lettuce and Spinach. Am. J. Plant Sci. 2016, 7, 246–258. [Google Scholar] [CrossRef]
- Tausz-Posch, S.; Borowiak, K.; Dempsey, R.W.; Norton, R.M.; Seneweera, S.; Fitzgerald, G.J.; Tausz, M. The Effect of Elevated CO2 on Photochemistry and Antioxidative Defence Capacity in Wheat Depends on Environmental Growing Conditions—A FACE Study. Environ. Exp. Bot. 2013, 88, 81–92. [Google Scholar] [CrossRef]
- Muthusamy, M.; Hwang, J.E.; Kim, S.H.; Kim, J.A.; Jeong, M.-J.; Park, H.C.; Lee, S.I. Elevated Carbon Dioxide Significantly Improves Ascorbic Acid Content, Antioxidative Properties and Restricted Biomass Production in Cruciferous Vegetable Seedlings. Plant Biotechnol. Rep. 2019, 13, 293–304. [Google Scholar] [CrossRef]
- Li, X.-Y.; Liu, B.-J.; Chen, S.-Y. Effects of Space Electric Field on Absorption of CO2 and Growth Speed of Plants. Trans. Chin. Soc. Agric. Eng. 2007, 23, 177–181. [Google Scholar]
- Zhao, S.-J.; Cang, J. Plant Physiology; China Agriculture Press: Beijing, China, 2015; pp. 73–76. [Google Scholar]
- Li, X.-F.; Zhang, Z.-L. Experimental Guide for Plant Physiology, 5th ed.; Higher Education Press: Beijing, China, 2016; pp. 11–43. [Google Scholar]
- Yang, Q.-N.; Zhou, Q.-J.; Wu, S.-J.; Wang, Y.-B.; Zhang, M.; Hong, Y.; Nong, H.Z.; Huang, C.H. Comparison of 3,5-dinitrosalicylic acid method and enzymatic method for determination of reducing sugar and sucrose content in sweet corn. China Agric. Sci. Technol. Her. 2017, 19, 125–131. [Google Scholar]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y.; Zhang, D.; Cai, M.; Chen, G. Ultrasound assisted extraction of polyphenolic compounds from red sorghum (Sorghum bicolor L.) bran and their biological activities and polyphenolic compositions. Ind. Crops Prod. 2018, 112, 296–304. [Google Scholar] [CrossRef]
- Osae, R.; Zhou, C.; Tchabo, W.; Xu, B.; Bonah, E.; Alenyorege, E.A.; Ma, H. Optimization of osmosonication pretreatment of ginger (Zingiber officinale Roscoe) using response surface methodology: Effect on antioxidant activity, enzyme inactivation, phenolic compounds, and physical properties. J. Food Process Eng. 2019, 42, e13218. [Google Scholar] [CrossRef]
- Ding, Q.; Jiang, H.; Chen, Y.; Luo, L.; He, R.; Ma, H.; Wu-Chen, R.A.; Zhang, T. Influence of nitrogen protection on the extraction yield and antioxidant activities of polyphenols by ultrasonic-assisted extraction from rapeseed meal. J. Food Process Eng. 2019, 42, e13104. [Google Scholar] [CrossRef]
- Dzah, C.-S.; Duan, Y.; Zhang, H.; Wen, C.; Zhang, J.; Chen, G.; Ma, H. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Biosci. 2020, 35, 100547. [Google Scholar] [CrossRef]
- Wu, Q.-S. Experimental Guide for Plant Physiology; China Agriculture Press: Beijing, China, 2018. [Google Scholar]
- Lei, Y. Study on the Granulation of Citrus Fruit. Master’s Thesis, Huazhong Agricultural University, Wuhan, China,, 2010. [Google Scholar]
- Kai, Q.-Y. Determination of vitamin C content in Vc Yinqiao tablets by ultraviolet spectrophotometry. Fujian Anal. Test. 2015, 24, 35–37. [Google Scholar]
- Bao, W.; Xu, H.; Zhu, X.-Y.; He, K.; Yu, H.; Wu, Z.; Huang, M.; Wang, L. Optimization of technical steps for rapid determination of nitrate content in leafy vegetables by ultraviolet spectrophotometry. Shanghai Agric. Sci. Technol. 2024, 1, 32–34. [Google Scholar]
- Tang, S.-H.; Luo, C. Plant Physiology Experiment Course; Southwest China Normal University Press: Chongqing, China, 2012; pp. 172–197. [Google Scholar]
- Dai, M.; Tan, X.; Ye, Z.; Ren, J.; Chen, X.; Kong, D. Optimal Light Intensity for Lettuce Growth, Quality, and Photosynthesis in Plant Factories. Plants 2024, 13, 2616. [Google Scholar] [CrossRef]
- Braun, D.M. Phloem Loading and Unloading of Sucrose: What a Long, Strange Trip from Source to Sink. Annu. Rev. Plant Biol. 2022, 73, 553–584. [Google Scholar] [CrossRef]
- Toepfl, S.; Heinz, V.; Knorr, D. Applications of Pulsed Electric Fields Technology for the Food Industry. In Pulsed Electric Fields Technology for the Food Industry: Fundamentals and Applications; Raso, J., Heinz, V., Eds.; Springer: Boston, MA, USA, 2006; pp. 197–221. [Google Scholar]
- Abdelgawad, K.F.; El-Mogy, M.M.; Mohamed, M.I.A.; Garchery, C.; Stevens, R.G. Increasing Ascorbic Acid Content and Salinity Tolerance of Cherry Tomato Plants by Suppressed Expression of the Ascorbate Oxidase Gene. Agronomy 2019, 9, 51. [Google Scholar] [CrossRef]
- Kojo, S. Vitamin C: Basic Metabolism and Its Function as an Index of Oxidative Stress. Curr. Med. Chem. 2004, 11, 1041–1064. [Google Scholar] [CrossRef]
- De Souza, A.P.; Gaspar, M.; Da Silva, E.A.; Ulian, E.C.; Waclawovsky, A.J.; Nishiyama, M.Y., Jr.; Dos Santos, R.V.; Teixeira, M.M.; Souza, G.M.; Buckeridge, M.S. Elevated CO2 Increases Photosynthesis, Biomass and Productivity, and Modifies Gene Expression in Sugarcane. Plant Cell Environ. 2008, 31, 1116–1127. [Google Scholar] [CrossRef]
- Zhang, D.; Du, M.; Wei, Y.; Wang, C.; Shen, L. A review on the structure–activity relationship of dietary flavonoids for protecting vascular endothelial function: Current understanding and future issues. J. Food Biochem. 2018, 42, e12557. [Google Scholar] [CrossRef]
- Khan, H.; Belwal, T.; Efferth, T.; Farooq, A.A.; Sanches-Silva, A.; Vacca, R.A.; Nabavi, S.F.; Khan, F.; Devkota, H.P.; Barreca, D.; et al. Targeting Epigenetics in Cancer: Therapeutic potential of flavonoids. Crit. Rev. Food Sci. Nutr. 2020, 61, 1616–1639. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Zhou, L.-P.; Yu, K.-X.; Chai, W.-G.; Pan, N.-A.; Fu, X.-X.; Shi, J.-J. Determination of Annual Variation of Yield and Main Nutrients of Green Asparagus. Acta Agric. Zhejiangensis 2024, 36, 2238–2246. [Google Scholar]
- Song, H.-X.; Zheng, S.-W.; Xu, X.-Y.; Zhang, J.; Hou, L.-P.; Xing, G.-M.; Li, M.-L. Effect of CO2 Enrichment on Photosynthetic Parameters, Yield and Quality of Celery in Greenhouse. Heilongjiang Agric. Sci. 2018, 15–17. [Google Scholar]
- Zhang, X.; Song, J.; Yan, W.; Li, T.; Li, R.; Wang, J.; Wang, X.; Zhou, Q. Regulation of Rhizospheric Microbial Network to Enhance Plant Growth and Resist Pollutants: Unignorable Weak Electric Field. Sci. Total Environ. 2023, 855, 158888. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.-L.; Bai, Y.-L.; Li, L.-Z.; Tang, T.-Z.; Li, H.-P.; Wang, Y.-F.; Sun, B. Effects of Different CO2 Concentrations on Tomato Photosynthetic Properties under Spatial Electric Field Conditions. J. Shanxi Agric. Univ. 2023, 43, 45–53. [Google Scholar] [CrossRef]
- Song, H.; Li, Y.; Xu, X.; Zhang, J.; Zheng, S.; Hou, L.; Xing, G.; Li, M. Analysis of Genes Related to Chlorophyll Metabolism under Elevated CO2 in Cucumber (Cucumis sativus L.). Sci. Hortic. 2020, 261, 108988. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Kim, H.; Yi, P.H.; Park, J.H. Evaluation of Plant-induced Electrical Signal and Growth of Broccoli (Brassica oleracea var. italica) in Response to Urea Application in Soil. Korean J. Hortic. Sci. Technol. 2022, 40, 210–218. [Google Scholar]
- Lee, S.; Song, M.-J.; Oh, M.-M. Effects of Air Anions on Growth and Economic Feasibility of Lettuce: A Plant Factory Experiment Approach. Sustainability 2022, 14, 15468. [Google Scholar] [CrossRef]
- Jing, Y.; Huang, J.; Yu, X. Maintenance of the Antioxidant Capacity of Fresh-Cut Pineapple by Procyanidin-Grafted Chitosan. Postharvest Biol. Technol. 2019, 154, 79–86. [Google Scholar] [CrossRef]
- Wang, L.-L.; Yao, Y.-X.; Wang, J.-Y.; Cui, J.; Wang, X.; Li, X.; Li, Y.; Ma, L. Metabolomics Analysis Reveal the Molecular Responses of High CO2 Concentration Improve Resistance to Pb Stress of Oryza sativa L. Seedlings. Ecotoxicol. Environ. Saf. 2023, 251, 114515. [Google Scholar] [CrossRef]
- Martins, M.Q.; Rodrigues, W.P.; Fortunato, A.S.; Leitão, A.E.; Rodrigues, A.P.; Pais, I.P.; Martins, L.D.; Silva, M.J.; Reboredo, F.H.; Partelli, F.L.; et al. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp. Front. Plant Sci. 2016, 7, 947. [Google Scholar] [CrossRef]
- Ozuna, C.; Cerón-García, A.; Elena Sosa-Morales, M.; Salazar, J.A.G.; Fabiola León-Galván, M.; del Rosario Abraham-Juárez, M. Electrically Induced Changes in Amaranth Seed Enzymatic Activity and Their Effect on Bioactive Compounds Content after Germination. J. Food Sci. Technol. 2018, 55, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Khan, A.L.; Waqas, M.; Lee, I.J. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Front. Plant Sci. 2017, 8, 510. [Google Scholar] [CrossRef] [PubMed]
- Ben Laouane, R.; Meddich, A.; Bechtaoui, N.; Oufdou, K.; Wahbi, S. Effects of Arbuscular Mycorrhizal Fungi and Rhizobia Symbiosis on the Tolerance of Medicago sativa to Salt Stress. Gesunde Pflanz. 2019, 71, 135–146. [Google Scholar] [CrossRef]
- Cassia, R.; Nocioni, M.; Correa-Aragunde, N.; Lamattina, L. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress. Front. Plant Sci. 2018, 9, 273. [Google Scholar] [CrossRef]
- Ciereszko, I. Regulatory Roles of Sugars in Plant Growth and Development. Acta Soc. Bot. Pol. 2018, 87, 3583. [Google Scholar] [CrossRef]
- Azam, A.; Khan, I.; Mahmood, A.; Hameed, A. Yield, Chemical Composition and Nutritional Quality Responses of Carrot, Radish and Turnip to Elevated Atmospheric Carbon Dioxide. Sci. Food Agric. 2013, 93, 3237–3244. [Google Scholar] [CrossRef]
- Högy, P.; Fangmeier, A. Atmospheric CO2 Enrichment Affects Potatoes: 2. Tuber Quality Traits. Eur. J. Agron. 2009, 30, 85–94. [Google Scholar] [CrossRef]
- Wen, S.-B.; Ma, F.-R.; Xu, S.-M.; Wang, X.-L.; Zhao, X.-L. The Mechanism of Ion Absorption Stimulated by the High Voltage Electrostatic Field. Prog. Biochem. Biophys. 1995, 22, 377–379. [Google Scholar]
- An, J.-I.; Lee, S. Air Anions Promote the Growth and Mineral Accumulation of Spinach (Spinacia oleracea) Cultivated in Greenhouses. Can. J. Plant Sci. 2021, 39, 332–342. [Google Scholar] [CrossRef]
- Miyagi, A.; Uchimiya, H.; Kawai-Yamada, M. Synergistic Effects of Light Quality, Carbon Dioxide and Nutrients on Metabolite Compositions of Head Lettuce under Artificial Growth Conditions Mimicking a Plant Factory. Food Chem. 2017, 218, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Piñero, M.C.; Pérez-Jiménez, M.; López-Marín, J.; Del Amor, F.M. Fruit Quality of Sweet Pepper as Affected by Foliar Ca Applications to Mitigate the Supply of Saline Water under a Climate Change Scenario. J. Sci. Food Agric. 2018, 98, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, J.; Li, Y.; Li, M. Effect of High-Voltage Electrostatic Field on Inorganic Nitrogen Uptake by Cucumber Plants. Trans. Asabe 2016, 59, 25–29. [Google Scholar] [CrossRef]
- Choi, S.Y.; Choi, J.Y.; Lee, J.M.; Lee, S.; Cho, E.J. Tartary Buckwheat on Nitric Oxide-Induced Inflammation in RAW264.7 Macrophage Cells. Food Funct. 2015, 6, 2664–2670. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.-Y.; Regolo, L.; Alvarez-Suarez, J.M.; Navarro-Hortal, M.D.; Xiao, J.; Quiles, J.L.; Battino, M.; Giampieri, F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem. 2022, 375, 131904. [Google Scholar] [CrossRef]
- Levine, L.H.; Paré, P.W. Antioxidant Capacity Reduced in Scallions Grown under Elevated CO2 Independent of Assayed Light Intensity. Adv. Space Res. 2009, 44, 887–894. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Oms-Oliu, G.; Odriozola-Serrano, I.; Lamuela-Raventos, R.M.; Martín-Belloso, O.; Elez-Martínez, P. Effects of Pulsed Electric Fields on the Bioactive Compound Content and Antioxidant Capacity of Tomato Fruit. J. Agric. Food Chem. 2012, 60, 3126–3134. [Google Scholar] [CrossRef]
- Grzelka, K.; Matkowski, A.; Ślusarczyk, S. Electrostimulation Improves Plant Growth and Modulates the Flavonoid Profile in Aeroponic Culture of Scutellaria baicalensis Georgi. Front. Plant Sci. 2023, 14, 1142624. [Google Scholar] [CrossRef]
Treatment | Total Yield (g) | Tender Stem Diameter (mm) | Tender Stem Number | Single Tender Stem Weight (g) |
---|---|---|---|---|
A | 104.93 ± 2.09 c | 5.85 ± 0.06 b | 22.00 ± 0.58 b | 4.77 ± 0.07 d |
B | 211.77 ± 1.47 a | 5.96 ± 0.13 b | 34.67 ± 0.33 a | 6.11 ± 0.06 c |
C | 208.13 ± 8.69 a | 6.11 ± 0.15 b | 32.33 ± 1.2 a | 6.44 ± 0.07 b |
D | 117.56 ± 3.30 b | 7.05 ± 0.11 a | 17.67 ± 0.67 c | 6.66 ± 0.06 a |
Treatment | Chlorophyll a | Chlorophyll b | Total Chlorophyll |
---|---|---|---|
A | 1.27 ± 0.02 c | 0.95 ± 0.01 b | 2.23 ± 0.03 c |
B | 1.47 ± 0.02 b | 0.94 ± 0.01 b | 2.41 ± 0.03 b |
C | 1.76 ± 0.02 a | 1.07 ± 0.01 a | 2.83 ± 0.02 a |
D | 1.31 ± 0.02 c | 0.95 ± 0.01 b | 2.26 ± 0.03 c |
A | B | C | D | |
---|---|---|---|---|
Total Yield | 0.00 | 1.00 | 0.97 | 0.12 |
Tender Stem Diameter | 0.00 | 0.09 | 0.22 | 1.00 |
Tender Stem Number | 0.25 | 1.00 | 0.86 | 0.00 |
Tender Stem Weight | 0.00 | 0.71 | 1.00 | 0.88 |
Average Membership Function Value | 0.06 | 0.70 | 0.73 | 0.53 |
Comprehensive Ranking | 4 | 2 | 1 | 3 |
A | B | C | D | |
---|---|---|---|---|
Soluble Sugar | 0.00 | 0.68 | 1.00 | 0.50 |
Reducing Sugar | 0.00 | 1.00 | 0.71 | 0.40 |
Soluble Protein | 0.00 | 1.00 | 0.43 | 0.88 |
Amino Acid | 1.00 | 0.00 | 0.83 | 0.63 |
Nitrate | 0.00 | 1.00 | 0.79 | 0.88 |
NR | 0.00 | 1.00 | 0.07 | 0.50 |
AsA | 0.00 | 0.49 | 1.00 | 0.11 |
Total Flavonoids | 0.00 | 0.56 | 0.66 | 1.00 |
Total Phenolics | 0.00 | 0.68 | 1.00 | 0.30 |
Cellulose | 0.00 | 0.10 | 1.00 | 0.33 |
Average Membership Function Value | 0.10 | 0.65 | 0.75 | 0.55 |
Comprehensive Ranking | 4 | 2 | 1 | 3 |
A | B | C | D | |
---|---|---|---|---|
SOD | 0.00 | 1.00 | 0.38 | 0.86 |
POD | 0.55 | 1.00 | 0.00 | 0.37 |
CAT | 0.00 | 0.35 | 1.00 | 0.66 |
APX | 0.00 | 0.69 | 0.79 | 1.00 |
PPO | 1.00 | 0.00 | 0.14 | 0.41 |
MDA | 0.00 | 0.64 | 1.00 | 0.80 |
Average Membership Function Value | 0.26 | 0.61 | 0.55 | 0.68 |
Comprehensive Ranking | 4 | 2 | 3 | 1 |
A | B | C | D | |
---|---|---|---|---|
Total Yield | 0.00 | 1.00 | 0.97 | 0.12 |
Tender Stem Diameter | 0.00 | 0.09 | 0.22 | 1.00 |
Tender Stem Number | 0.25 | 1.00 | 0.86 | 0.00 |
Tender Stem Weight | 0.00 | 0.71 | 1.00 | 0.88 |
Total chlorophyll | 0.00 | 0.33 | 1.00 | 0.07 |
SOD | 0.00 | 1.00 | 0.38 | 0.86 |
POD | 0.55 | 1.00 | 0.00 | 0.37 |
CAT | 0.00 | 0.35 | 1.00 | 0.66 |
APX | 0.00 | 0.69 | 0.79 | 1.00 |
PPO | 1.00 | 0.00 | 0.14 | 0.41 |
MDA | 0.00 | 0.64 | 1.00 | 0.80 |
Soluble Sugar | 0.00 | 0.68 | 1.00 | 0.50 |
Reducing Sugar | 0.00 | 1.00 | 0.71 | 0.40 |
Soluble Protein | 0.00 | 1.00 | 0.43 | 0.88 |
Amino Acid | 1.00 | 0.00 | 0.83 | 0.63 |
Nitrate | 0.00 | 1.00 | 0.79 | 0.88 |
NR | 0.00 | 1.00 | 0.07 | 0.50 |
AsA | 0.00 | 0.49 | 1.00 | 0.11 |
Total Flavonoids | 0.00 | 0.56 | 0.66 | 1.00 |
Total Phenolics | 0.00 | 0.68 | 1.00 | 0.30 |
Cellulose | 0.00 | 0.10 | 1.00 | 0.33 |
Average Membership Function Value | 0.13 | 0.63 | 0.70 | 0.56 |
Comprehensive Ranking | 4 | 2 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liang, L.; Chen, P.; Peng, W.; Guo, K.; Huang, X.; Qin, C.; Luo, Z.; Ouyang, K.; Jiang, C.; et al. Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus. Agriculture 2025, 15, 1416. https://doi.org/10.3390/agriculture15131416
Liu X, Liang L, Chen P, Peng W, Guo K, Huang X, Qin C, Luo Z, Ouyang K, Jiang C, et al. Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus. Agriculture. 2025; 15(13):1416. https://doi.org/10.3390/agriculture15131416
Chicago/Turabian StyleLiu, Xinyuan, Lirui Liang, Peiran Chen, Wenjun Peng, Kexin Guo, Xiaole Huang, Chi Qin, Zijing Luo, Kewen Ouyang, Chengyao Jiang, and et al. 2025. "Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus" Agriculture 15, no. 13: 1416. https://doi.org/10.3390/agriculture15131416
APA StyleLiu, X., Liang, L., Chen, P., Peng, W., Guo, K., Huang, X., Qin, C., Luo, Z., Ouyang, K., Jiang, C., Li, M., Pan, T., Zheng, Y., & Lu, W. (2025). Effects of Electrostatic Field and CO2 Interaction on Growth and Physiological Metabolism in Asparagus. Agriculture, 15(13), 1416. https://doi.org/10.3390/agriculture15131416