Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = prefabricated steel structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 45631 KB  
Article
Field Vibration Monitoring for Detecting Stiffness Variations in RC, PSC, Steel, and UHPC Bridge Girders
by Osazee Oravbiere, Mi G. Chorzepa and S. Sonny Kim
Infrastructures 2025, 10(10), 272; https://doi.org/10.3390/infrastructures10100272 (registering DOI) - 11 Oct 2025
Abstract
This study quantifies shear and flexural stiffnesses and their changes over time to support structural health monitoring of in-service bridge superstructures across four girder types: reinforced concrete (RC) beams, prestressed concrete (PSC) girders, steel girders, and ultra-high-performance concrete (UHPC) sections, using field ambient [...] Read more.
This study quantifies shear and flexural stiffnesses and their changes over time to support structural health monitoring of in-service bridge superstructures across four girder types: reinforced concrete (RC) beams, prestressed concrete (PSC) girders, steel girders, and ultra-high-performance concrete (UHPC) sections, using field ambient vibration testing. A total of 20 bridges across Georgia and Iowa are assessed, involving over 100 hours of on-site data collection and traffic control strategies. Results show that field-measured natural frequencies differ from theoretical predictions by average of 30–35% for RC, and 20–25% for PSC, 15–25% for steel and 2% for UHPC, reflecting the complexity of in situ structural dynamics and challenges in estimating material properties. Site-placed RC beams showed stiffness reduction due to deterioration, whereas prefabricated PSC girders maintained consistent stiffness with predictable variations. UHPC sections exhibited the highest stiffness, reflecting superior performance. Steel girders matched theoretical values, but a span-level test revealed that deck damage can reduce frequencies undetected by localized measurements. Importantly, vibration-based measurements revealed reductions in structural stiffness that were not apparent through conventional visual inspection, particularly in RC beams. The research significance of this work lies in establishing a portfolio-based framework that enables cross-comparison of stiffness behavior across multiple girder types, providing a scalable and field-validated approach for system-level bridge health monitoring and serving as a quantitative metric to support bridge inspections and decision-making. Full article
(This article belongs to the Section Infrastructures Inspection and Maintenance)
Show Figures

Figure 1

20 pages, 16544 KB  
Article
Investigation on Static Performance of Piers Assembled with Steel Cap Beams and Single Concrete Columns
by Chong Shen, Qingtian Su, Sizhe Wang and Fawas. O. Matanmi
Buildings 2025, 15(19), 3476; https://doi.org/10.3390/buildings15193476 - 26 Sep 2025
Viewed by 218
Abstract
To reduce the weight of prefabricated cap beams, a new type of hybrid pier with a steel cap beam and single concrete column with an innovative flange–rebar–ultra-high-performance concrete (UHPC) connection structure is proposed in this paper. Focusing on the static performance of hybrid [...] Read more.
To reduce the weight of prefabricated cap beams, a new type of hybrid pier with a steel cap beam and single concrete column with an innovative flange–rebar–ultra-high-performance concrete (UHPC) connection structure is proposed in this paper. Focusing on the static performance of hybrid piers, a specimen with a geometric similarity ratio of 1:4 was fabricated for testing. The results showed that the ultimate load-bearing capacity reached 960 kN, and the failure mode was characterized by an obvious overall vertical displacement of 70.2 mm at the cantilever end, accompanied by local buckling in the webs between transversal diaphragms and ribs. Due to the varying-thickness design, longitudinal strains were comparable between the middle section (thin plates) and the root section (thick plates) of the cantilever beam, showing a trend of an initial increase followed by a decrease from the end of the cantilever beam to the road centerline. Meanwhile, the cross-sections of the connection joint and concrete column transformed from overall compression to eccentric compression during the test. At the ultimate state, their steel structures remained elastic, with no obvious damage in the concrete or UHPC, verifying good load-bearing capacity. Furthermore, the finite element analysis showed the new connection joint and construction method of hinged-to-rigid could reduce the column top concrete compressive stress by 18–54%, tensile stress by 11–68%, and steel cap beam Mises stress by 10%. Finally, based on the experimental and numerical studies, the safety reserve coefficient of the new hybrid pier was over 2.7. Full article
Show Figures

Figure 1

15 pages, 2846 KB  
Article
Seismic Performance Analysis of a New Type of Fabricated Concrete Beam–Column Joint
by Jintao Cui, Renyuan Zhang, Zhanyuan Gao, Chenchen Yuan and Julita Krassowska
Buildings 2025, 15(19), 3435; https://doi.org/10.3390/buildings15193435 - 23 Sep 2025
Viewed by 337
Abstract
Nodes are the key factors to ensure the performance of prefabricated building structures. A new type of prefabricated concrete beam–column node is proposed to address the problems of steel bar congestion, installation and construction difficulties, and difficulty in ensuring node quality in existing [...] Read more.
Nodes are the key factors to ensure the performance of prefabricated building structures. A new type of prefabricated concrete beam–column node is proposed to address the problems of steel bar congestion, installation and construction difficulties, and difficulty in ensuring node quality in existing concrete beam–column nodes. The node structure and design method are provided, and scaled model tests are conducted to analyze the stress distribution and bearing capacity of the core area of the node under low-cycle reciprocating loads. Comparative analysis was conducted on the experimental process and phenomena between the node and ordinary concrete beam–column joints, and seismic performance indicators such as hysteresis curve, skeleton curve, stiffness, and stiffness degradation were studied. The research results indicate that the structure of the new prefabricated concrete beam–column node is reasonable, and it is easy to manufacture and install. The hysteresis performance of the new prefabricated beam–column node is better than that of the ordinary concrete beam–column node, and the initial stiffness of the new joint is 25% higher than that of the conventional cast-in-place joint, and its construction efficiency is improved by approximately 30% in labor hours and 20% in construction duration due to the elimination of wet trades. The overall bearing capacity is improved, and the energy consumption performance is excellent, which is in line with the seismic design concept. The research results will be beneficial for the design and engineering application of new prefabricated concrete beam–column joints and will further promote the promotion and application of prefabricated concrete buildings. Full article
Show Figures

Figure 1

25 pages, 8253 KB  
Article
Experimental and Theoretical Studies on Shear Performance of Corrugated Steel–Concrete Composite Arches Considering the Shear–Compression Ratio
by Xiangfei Xia, Tianyu Li, Bowen Chen, Jinsheng Yang, Xinhao Han, Zhan Yu, Chenyang Wei and Hongwei Zhao
Buildings 2025, 15(18), 3316; https://doi.org/10.3390/buildings15183316 - 13 Sep 2025
Viewed by 476
Abstract
Corrugated steel–concrete (CSC) composite arches, an innovative structural system with simplified construction and enhanced stiffness, are widely used in bridge and tunnel modular engineering. However, insufficient research on their shear performance limits prefabricated applications. Similarly to beams, their shear behavior is significantly affected [...] Read more.
Corrugated steel–concrete (CSC) composite arches, an innovative structural system with simplified construction and enhanced stiffness, are widely used in bridge and tunnel modular engineering. However, insufficient research on their shear performance limits prefabricated applications. Similarly to beams, their shear behavior is significantly affected by loading location. Specifically, as a parameter significantly affected by the loading location, the shear–compression ratio exerts a notable influence on the shear bearing capacity of CSC arches by altering the development pattern of cracks and the inclination angle of shear cracks. To investigate the influence mechanism of the loading location, this study is the first to systematically link shear–compression ratio variation to load location in CSC arches. In this context, shear performance tests were conducted on two CSC specimens with different loading locations (mid-span and quarter-point) to investigate the influence of loading locations on the shear behavior of CSC arches. To further investigate the impact of key parameters on the shear bearing capacity of CSC arches, a validated finite element model was employed to support the parametric analysis. The parameters involved include the span-to-rise ratio, shear connector spacing, strength and thickness of corrugated steel, as well as strength and thickness of concrete. Theoretical calculations for internal forces under varying rise-to-span ratios and loading methods are conducted, proposing an analytical solution method. Validation using 2 experiments and 96 finite element results show that a modified method is applicable, with a mean value of 1.066, corresponding to a standard deviation of 0.071, and all relative errors within 15%. By introducing the shear–compression ratio, this study extends existing methods to make them applicable under single-point loading, thereby enabling their use for guiding engineering. Similarly, the internal force analysis method proposed herein can serve as a theoretical foundation, providing a valuable reference for future research on shear capacity calculation methods for CSC arches with varying cross-sectional configurations and those where bending moments play a more significant role. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 10806 KB  
Article
Study on the Mechanical Behavior of a Large-Segment Fully Prefabricated Subway Station During the Construction Process
by Zhongsheng Tan, Yuanzhuo Li, Xiaomin Fan and Jian Wang
Appl. Sci. 2025, 15(18), 9941; https://doi.org/10.3390/app15189941 - 11 Sep 2025
Viewed by 382
Abstract
In response to issues of long construction cycles, high pollution, and labor shortages in traditional cast in situ subway station construction, a refined 3D model of a large-segment prefabricated subway station was established using ABAQUS software 2024, with mechanical behavior throughout the construction [...] Read more.
In response to issues of long construction cycles, high pollution, and labor shortages in traditional cast in situ subway station construction, a refined 3D model of a large-segment prefabricated subway station was established using ABAQUS software 2024, with mechanical behavior throughout the construction process studied based on the Shenzhen Huaxia Station project case. The model incorporates a concrete inelastic damage constitutive model and a steel elastic–plastic model, accurately simulates key components, including dry joints of mortise–tenon grooves, prestressed reinforcement, and bolted connections, and implements a seven-phase construction sequence. Research findings indicate the following: (1) During component assembly, the roof vault settlement remains ≤3.8 mm, but backfilling significantly increases displacements (roof settlement reaches 45 mm, middle slab deflection measures 66.91 mm). (2) Longitudinal mortise–tenon joints develop stress concentrations due to stiffness disparities, with mid-column installation slots identified as vulnerable zones exhibiting maximum Von Mises stress of 32 MPa. (3) Mid-column eccentricity induces structural asymmetry, causing increased deflection in longer-span middle slabs, corbel contact stress differentials up to 6 MPa, and bolt tensile stresses exceeding 1.1 GPa. (4) The arched roof effectively transfers loads via three-hinged arch mechanisms, though spandrel horizontal displacement triggers 5 cm rebound in diaphragm wall displacement. Conclusions confirm overall the stability of the prefabricated structure while recommending the optimization of member stiffness matching, avoidance of asymmetric designs, and localized reinforcement for mortise–tenon edges and mid-column joints. Results provide valuable references for analogous projects. Full article
Show Figures

Figure 1

25 pages, 7145 KB  
Article
Fragility Analysis of Prefabricated RCS Hybrid Frame Structures Based on IDA
by Yuliang Wang, Guocan Sun, Xuyue Wang, Xinyue Zhang and Czesław Miedziałowski
Buildings 2025, 15(17), 3207; https://doi.org/10.3390/buildings15173207 - 5 Sep 2025
Viewed by 414
Abstract
The prefabricated reinforced concrete columns–steel girder (RCS) hybrid frame structure using column–column connections is a kind of green and environmentally friendly building structure; its seismic performance is investigated. The seismic susceptibility and key influencing factors are systematically evaluated through the establishment of an [...] Read more.
The prefabricated reinforced concrete columns–steel girder (RCS) hybrid frame structure using column–column connections is a kind of green and environmentally friendly building structure; its seismic performance is investigated. The seismic susceptibility and key influencing factors are systematically evaluated through the establishment of an analytical model and incremental dynamic analysis (IDA) method. A typical three-span, six-story prefabricated RCS hybrid frame structure is designed and numerically modeled with good agreement with the test data. Sa(T1,5%) and PGA double ground motion intensity parameters are selected for IDA analysis. A comparison between the quantile curve method and the conditional logarithmic standard deviation method reveals that using Sa(T1, 5%) as the intensity measure (IM) provides greater reliability for analyzing the vulnerability of the prefabricated RCS hybrid frame structure. The seismic probability demand model of the structure is fitted with Sa(T1,5%) as a parameter and the seismic fragility curves of the structure are plotted; this shows that the slope of the seismic fragility curves becomes smaller after the structure enters the elastic–plastic state, and exhibits good seismic performance. By studying the effects of concrete strength, longitudinal reinforcement strength, and the axial compression ratio on the seismic fragility, it can be seen that with the increase in concrete strength and longitudinal reinforcement strength, and the decrease in axial compression ratio, the overall ductility of the structure increases, the resistance to lateral deformation of the RCS hybrid frame structure is enhanced, and the seismic performance of the prefabricated structure is improved. Full article
Show Figures

Figure 1

15 pages, 3034 KB  
Article
Experimental Study on Seismic Performance of Fire-Damaged Concrete-Filled Steel Tubular Column-Steel Beam Joints Under Low-Cycle Reversed Loading
by Fang Liu, Longxin Yuan, Tongyao Xu, Wenchao Miao, Ran Zheng and Yusong Mu
Buildings 2025, 15(17), 3169; https://doi.org/10.3390/buildings15173169 - 3 Sep 2025
Viewed by 491
Abstract
As a typical steel-concrete composite structure, Concrete-Filled Steel Tubular (CFST) structures utilize the synergistic mechanical advantages of steel and concrete, showing good performance in bearing capacity, ductility and fire resistance, and becoming important in modern buildings. However, CFST structures may suffer hazards like [...] Read more.
As a typical steel-concrete composite structure, Concrete-Filled Steel Tubular (CFST) structures utilize the synergistic mechanical advantages of steel and concrete, showing good performance in bearing capacity, ductility and fire resistance, and becoming important in modern buildings. However, CFST structures may suffer hazards like fire, which causes performance degradation affecting subsequent seismic behavior. To study seismic performance of fire-damaged CFST column-steel beam joints, low-cycle repeated loading experiments were carried out on 3 specimens: 2 exposed to different fire temperatures and 1 ambient temperature control. Tests examined hysteretic behavior, ductility, energy dissipation, bearing capacity and stiffness degradation under post-fire axial compression ratios. Results show fire-damaged specimens had similar ductile failure modes to the control. Despite high temperatures, they maintained relatively full hysteretic curves and strong energy dissipation, but with reduced bearing capacity, increased deformation, nonlinear ductility growth, and more significant degradation at higher temperatures. Full article
Show Figures

Figure 1

13 pages, 2082 KB  
Article
Comparison of Fracture Resistance and Microleakage Properties of Two Different Prefabricated Zirconia Crowns After Thermocycling: An In Vitro Study
by Nazile Pehlivan, Nurhan Öztaş Kırmızı and Menekşe Alim
Biomimetics 2025, 10(8), 538; https://doi.org/10.3390/biomimetics10080538 - 16 Aug 2025
Viewed by 755
Abstract
Biomimetic restorative treatments in pediatric dentistry increase the longevity of the restoration compared to traditional methods and aim to preserve the natural tooth structure. Prefabricated zirconia crowns have been developed as aesthetic alternatives to stainless steel crowns for full-coronal restorations of primary teeth. [...] Read more.
Biomimetic restorative treatments in pediatric dentistry increase the longevity of the restoration compared to traditional methods and aim to preserve the natural tooth structure. Prefabricated zirconia crowns have been developed as aesthetic alternatives to stainless steel crowns for full-coronal restorations of primary teeth. This study aimed to compare the fracture resistance and microleakage of two different posterior zirconia crown brands—NuSmile® (USA) and ProfZrCrown® (Turkey)—cemented with either conventional glass ionomer cement (GIC) or resin-modified glass ionomer cement (RMGIC). Eighty extracted primary molars were divided into four groups (n = 20). Crowns were cemented with Ketac™ Cem Radiopaque (GIC) or Ketac™ Cem Plus (RMGIC), in accordance with the manufacturers’ instructions, and then subjected to thermocycling. Fracture resistance was tested on 40 samples by applying an increasing compressive load until failure, with values recorded in Newtons (N). The remaining 40 samples were immersed in basic fuchsin dye for microleakage testing and evaluated under a stereomicroscope at 30× magnification. The results revealed that the ProfZrCrown®/RMGIC group exhibited significantly higher fracture resistance compared to the NuSmile®/RMGIC group (p < 0.05). No statistically significant differences were found among the other groups. Although no significant differences in microleakage were observed among the groups (p > 0.05), crowns cemented with GIC demonstrated higher microleakage levels. Within the limitations of this in vitro study, ProfZrCrown® may be considered a promising alternative for aesthetic posterior restorations in pediatric dentistry. Full article
(This article belongs to the Special Issue Biomimetic Bonded Restorations for Dental Applications: 2nd Edition)
Show Figures

Figure 1

20 pages, 6960 KB  
Article
Silicon-Based Solar Brick for Textile Ceramic Technology
by P. Casariego, V. Sarrablo, R. Barrientos and S. Santamaria-Fernandez
Ceramics 2025, 8(3), 106; https://doi.org/10.3390/ceramics8030106 - 15 Aug 2025
Viewed by 643
Abstract
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of [...] Read more.
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of silicon photovoltaic (PV) modules into TCT to develop an industrialized Building-Integrated Photovoltaics (BIPV) system that maintains energy efficiency and visual coherence. Three full-scale solar brick prototypes are presented, detailing design objectives, experimental results, and conclusions. The first prototype demonstrated the feasibility of scaling small silicon PV units with good efficiency but limited aesthetic integration. The second embedded PV cells within ceramic bricks, improving aesthetics while maintaining electrical performance. Durability tests—including humidity, temperature cycling, wind, and hail impact—confirmed system stability, though structural reinforcement is needed for impact resistance. The third prototype outlines future work focusing on modularity and industrial scalability. Results confirm the technical viability of silicon PV integration in TCT, enabling active façades that generate renewable energy without compromising architectural freedom or aesthetics. This research advances industrialized, sustainable building envelopes that reduce environmental impact through distributed energy generation. Full article
Show Figures

Figure 1

26 pages, 9395 KB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Cited by 1 | Viewed by 636
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

18 pages, 4910 KB  
Article
Experiment and Numerical Study on the Flexural Behavior of a 30 m Pre-Tensioned Concrete T-Beam with Polygonal Tendons
by Bo Yang, Chunlei Zhang, Hai Yan, Ding-Hao Yu, Yaohui Xue, Gang Li, Mingguang Wei, Jinglin Tao and Huiteng Pei
Buildings 2025, 15(15), 2595; https://doi.org/10.3390/buildings15152595 - 22 Jul 2025
Viewed by 600
Abstract
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical [...] Read more.
As a novel prefabricated structural element, the pre-tensioned, prestressed concrete T-beam with polygonal tendons layout demonstrates advantages including reduced prestress loss, streamlined construction procedures, and stable manufacturing quality, showing promising applications in medium-span bridge engineering. This paper conducted a full-scale experiment and numerical simulation research on a 30 m pre-tensioned, prestressed concrete T-beam with polygonal tendons practically used in engineering. The full-scale experiment applied symmetrical four-point bending to create a pure bending region and used embedded strain gauges, surface sensors, and optical 3D motion capture systems to monitor the beam’s internal strain, surface strain distribution, and three-dimensional displacement patterns during loading. The experiment observed that the test beam underwent elastic, crack development, and failure phases. The design’s service-load bending moment induced a deflection of 18.67 mm (below the 47.13 mm limit). Visible cracking initiated under a bending moment of 7916.85 kN·m, which exceeded the theoretical cracking moment of 5928.81 kN·m calculated from the design parameters. Upon yielding of the bottom steel reinforcement, the maximum of the crack width reached 1.00 mm, the deflection in mid-span measured 148.61 mm, and the residual deflection after unloading was 10.68 mm. These results confirmed that the beam satisfied design code requirements for serviceability stiffness and crack control, exhibiting favorable elastic recovery characteristics. Numerical simulations using ABAQUS further verified the structural performance of the T-beam. The finite element model accurately captured the beam’s mechanical response and verified its satisfactory ductility, highlighting the applicability of this beam type in bridge engineering. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

26 pages, 7471 KB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 448
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

17 pages, 3867 KB  
Article
A Case-Study-Based Comparative Analysis of Using Prefabricated Structures in Industrial Buildings
by Abdelhadi Salih, Cynthia Changxin Wang, Rui Tian and Mohammad Mojtahedi
Buildings 2025, 15(14), 2416; https://doi.org/10.3390/buildings15142416 - 10 Jul 2025
Viewed by 1992
Abstract
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. [...] Read more.
Construction costs have increased significantly since the COVID-19 pandemic due to supply chain disruption, labour shortages, and construction material price hikes. The market is increasingly demanding innovative construction methods that can save construction costs, reduce construction time, and minimise waste and carbon emission. The prefabrication system has been used for years in industrial construction, resulting in better performance in regard to structure stability, the control of wastage, and the optimisation of construction time and cost. In addition, prefabrication has had a positive contribution on resource utilisation in the construction industry. There are various types of prefabricated wall systems. However, the majority of comparative studies have focused on comparing each prefabrication wall system against the conventional construction system, while limited research has been conducted to compare different prefabrication structures. This study examined four prominent prefabricated wall systems, i.e., precast walls, tilt-up walls, prefabricated steel-frame walls, and on-site-cut steel-frame walls, to determine which one is more suitable for the construction of industrial buildings to minimise cost, time delay, and labourer utilisation on construction sites, as well as to enhance structure durability, construction efficiency, and sustainability. One primary case project and five additional projects were included in this study. For the primary case project, data were collected and analysed; for example, a subcontractor cost comparison for supply and installation was conducted, and shop drawings, construction procedures, timelines, and site photos were collected. For the additional five projects, the overall cost data were compared. The main research finding of this study is that factory-made precast walls and tilt-up wall panels require similar construction time. However, on average, tilt-up prefabrication construction can reduce the cost by around 23.55%. It was also found that prefabricated frame walls provide cost and time savings of around 39% and 10.5%, respectively. These findings can provide architects, developers, builders, suppliers, regulators, and other stakeholders with a comprehensive insight into selecting a method of wall construction that can achieve greater efficiency, cost savings, and environmental sustainability in the construction of industrial and commercial buildings. Full article
(This article belongs to the Collection Buildings for the 21st Century)
Show Figures

Figure 1

27 pages, 9778 KB  
Article
Flexural Behavior of Pre-Tensioned Precast High-Performance Steel-Fiber-Reinforced Concrete Girder Without Conventional Reinforcement: Full-Scale Test and FE Modeling
by Ling Kang, Haiyun Zou, Tingmin Mu, Feifei Pei and Haoyuan Bai
Buildings 2025, 15(13), 2308; https://doi.org/10.3390/buildings15132308 - 1 Jul 2025
Viewed by 550
Abstract
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on [...] Read more.
In contrast to brittle normal-strength concrete (NSC), high-performance steel-fiber-reinforced concrete (HPSFRC) provides better tensile and shear resistance, enabling enhanced bridge girder design. To achieve a balance between cost efficiency and quality, reducing conventional reinforcement is a viable cost-saving strategy. This study focused on the flexural behavior of a type of pre-tensioned precast HPSFRC girder without longitudinal and shear reinforcement. This type of girder consists of HPSFRC and prestressed steel strands, balancing structural performance, fabrication convenience, and cost-effectiveness. A 30.0 m full-scale girder was randomly selected from the prefabrication factory and tested through a four-point bending test. The failure mode, load–deflection relationship, and strain distribution were investigated. The experimental results demonstrated that the girder exhibited ductile deflection-hardening behavior (47% progressive increase in load after the first crack), extensive cracking patterns, and large total deflection (1/86 of effective span length), meeting both the serviceability and ultimate limit state design requirements. To complement the experimental results, a nonlinear finite element model (FEM) was developed and validated against the test data. The flexural capacity predicted by the FEM had a marginal 0.8% difference from the test result, and the predicted load–deflection curve, crack distribution, and load–strain curve were in adequate agreement with the test outcomes, demonstrating reliability of the FEM in predicting the flexural behavior of the girder. Based on the FEM, parametric analysis was conducted to investigate the effects of key parameters, namely concrete tensile strength, concrete compressive strength, and prestress level, on the flexural responses of the girder. Eventually, design recommendations and future studies were suggested. Full article
(This article belongs to the Special Issue Advances in Mechanical Behavior of Prefabricated Structures)
Show Figures

Figure 1

23 pages, 6396 KB  
Article
Shear Performance of Reinforced Shear Pocket Joint in Light Steel—Recycled Concrete Composite Floor
by Jinliang Bian, Jingwei Zhang, Lidong Zhao, Wei Gan and Wanlin Cao
Buildings 2025, 15(13), 2267; https://doi.org/10.3390/buildings15132267 - 27 Jun 2025
Viewed by 433
Abstract
To address the challenges of slow construction and high self-weight in steel–concrete composite floors for rural light steel frame structures in China, a new prefabricated floor system was developed. This system features prefabricated slabs made from recycled concrete, connected via reinforced shear pocket [...] Read more.
To address the challenges of slow construction and high self-weight in steel–concrete composite floors for rural light steel frame structures in China, a new prefabricated floor system was developed. This system features prefabricated slabs made from recycled concrete, connected via reinforced shear pocket joints. In seismic environments, assembly floor joints often become vulnerable points, making their shear resistance particularly crucial. This study investigated the shear performance of this new type of floor joint, examining the effects of various parameters such as joint configuration, stud diameter, recycled concrete strength, and grout strength. A refined finite element model was established for an in-depth parameter analysis. The research revealed stud–shear failure as the mode of floor joint failure under different design parameters. The detailed design of the new joint structure ensures safety in the floor joint area. Increasing stud diameter, recycled concrete strength, and grout strength all contributed to enhancing the joint’s shear capacity and stiffness, with stud diameter having the most significant impact. Higher recycled concrete strength improved shear capacity, although its influence decreased beyond a certain threshold. Optimal reserved hole diameter proved beneficial for enhancing joint shear performance, with a diameter of 40 mm showing superior performance. Full article
Show Figures

Figure 1

Back to TopTop