Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = prediction of roadway deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7721 KB  
Article
Advanced Research and Engineering Application of Tunnel Structural Health Monitoring Leveraging Spatiotemporally Continuous Fiber Optic Sensing Information
by Gang Cheng, Ziyi Wang, Gangqiang Li, Bin Shi, Jinghong Wu, Dingfeng Cao and Yujie Nie
Photonics 2025, 12(9), 855; https://doi.org/10.3390/photonics12090855 - 26 Aug 2025
Viewed by 645
Abstract
As an important traffic and transportation roadway, tunnel engineering is widely used in important fields such as highways, railways, water conservancy, subways and mining. It is limited by complex geological conditions, harsh construction environments and poor robustness of the monitoring system. If the [...] Read more.
As an important traffic and transportation roadway, tunnel engineering is widely used in important fields such as highways, railways, water conservancy, subways and mining. It is limited by complex geological conditions, harsh construction environments and poor robustness of the monitoring system. If the construction process and monitoring method are not properly designed, it will often directly induce disasters such as tunnel deformation, collapse, leakage and rockburst. This seriously threatens the safety of tunnel construction and operation and the protection of the regional ecological environment. Therefore, based on distributed fiber optic sensing technology, the full–cycle spatiotemporally continuous sensing information of the tunnel structure is obtained in real time. Accordingly, the health status of the tunnel is dynamically grasped, which is of great significance to ensure the intrinsic safety of the whole life cycle for the tunnel project. Firstly, this manuscript systematically sorts out the development and evolution process of the theory and technology of structural health monitoring in tunnel engineering. The scope of application, advantages and disadvantages of mainstream tunnel engineering monitoring equipment and main optical fiber technology are compared and analyzed from the two dimensions of equipment and technology. This provides a new path for clarifying the key points and difficulties of tunnel engineering monitoring. Secondly, the mechanism of action of four typical optical fiber sensing technologies and their application in tunnel engineering are introduced in detail. On this basis, a spatiotemporal continuous perception method for tunnel engineering based on DFOS is proposed. It provides new ideas for safety monitoring and early warning of tunnel engineering structures throughout the life cycle. Finally, a high–speed rail tunnel in northern China is used as the research object to carry out tunnel structure health monitoring. The dynamic changes in the average strain of the tunnel section measurement points during the pouring and curing period and the backfilling period are compared. The force deformation characteristics of different positions of tunnels in different periods have been mastered. Accordingly, scientific guidance is provided for the dynamic adjustment of tunnel engineering construction plans and disaster emergency prevention and control. At the same time, in view of the development and upgrading of new sensors, large models and support processes, an innovative tunnel engineering monitoring method integrating “acoustic, optical and electromagnetic” model is proposed, combining with various machine learning algorithms to train the long–term monitoring data of tunnel engineering. Based on this, a risk assessment model for potential hazards in tunnel engineering is developed. Thus, the potential and disaster effects of future disasters in tunnel engineering are predicted, and the level of disaster prevention, mitigation and relief of tunnel engineering is continuously improved. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

20 pages, 2387 KB  
Article
A Rubberized-Aerogel Composite Binder Modifier for Durable and Sustainable Asphalt Pavements
by Carlos J. Obando, Jolina J. Karam, Jose R. Medina and Kamil E. Kaloush
Buildings 2025, 15(17), 2998; https://doi.org/10.3390/buildings15172998 - 23 Aug 2025
Viewed by 460
Abstract
The United States produces approximately 500 million tons of asphalt mixtures annually, while generating vast amounts of waste materials that could be repurposed for sustainable infrastructure. Each year, 1.4 billion gallons of lubricating oils are available for reuse and recycling. Additionally, 280 million [...] Read more.
The United States produces approximately 500 million tons of asphalt mixtures annually, while generating vast amounts of waste materials that could be repurposed for sustainable infrastructure. Each year, 1.4 billion gallons of lubricating oils are available for reuse and recycling. Additionally, 280 million tires are discarded, contributing to significant environmental challenges. Given the critical role of the roadway network in economic growth, mobility, and infrastructure sustainability, there is a pressing need for innovative material solutions that integrate recycled materials without compromising performance. This study introduces a Rubberized-Aerogel Composite (RaC), a novel asphalt binder modifier combining crumb rubber, recycled oil, and a silica-based aerogel to enhance the sustainability and durability of asphalt pavements. The research methodology involved blending the RaC with the PG70-10 asphalt binder at a 5:1 ratio and conducting comprehensive laboratory tests on binders and mixtures, including rheology, thermal conductivity (TC), specific heat capacity (Cp), the Hamburg Wheel-Tracking Test (HWTT), and indirect tensile strength (IDT). Pavement performance was simulated using AASHTOWare Pavement ME under hot and cold climates with thin and thick pavement structures. Results showed that RaC-modified binders reduced thermal conductivity by up to 30% and increased specific heat capacity by 15%, improving thermal stability. RaC mixtures exhibited a 50% reduction in rut depth in the HWTT and lower thermal expansion/contraction coefficients. Pavement ME simulations predicted up to 40% less permanent deformation and 60% reduced thermal cracking for RaC mixtures compared to the controls. RaC enhances pavement lifespan, reduces maintenance costs, and promotes environmental sustainability by repurposing waste materials, offering a scalable solution for resilient infrastructure. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 11290 KB  
Article
Material Characterization and Stress-State-Dependent Failure Criteria of AASHTO M180 Guardrail Steel: Experimental and Numerical Investigation
by Qusai A. Alomari, Tewodros Y. Yosef, Robert W. Bielenberg, Ronald K. Faller, Mehrdad Negahban, Zesheng Zhang, Wenlong Li and Brandt M. Humphrey
Materials 2025, 18(11), 2523; https://doi.org/10.3390/ma18112523 - 27 May 2025
Viewed by 745
Abstract
As a key roadside safety feature, longitudinal guardrail steel barriers are purposefully designed to contain and redirect errant vehicles to prevent roadway departure, dissipate impact energy through plastic deformation, and reduce the severity of vehicle crashes. Nevertheless, these systems should be carefully designed [...] Read more.
As a key roadside safety feature, longitudinal guardrail steel barriers are purposefully designed to contain and redirect errant vehicles to prevent roadway departure, dissipate impact energy through plastic deformation, and reduce the severity of vehicle crashes. Nevertheless, these systems should be carefully designed and assessed, as localized rupturing, especially near splice or impact locations, can lead to catastrophic failures, compromising vehicle containment, violating crash safety standards, and ultimately jeopardizing the safety of occupants and other road users. Before conducting full-scale crash testing, finite element analysis (FEA) tools are widely employed to evaluate the design efficiency, optimize system configurations, and preemptively identify potential failure modes prior to expensive physical crash testing. To accurately assess system behavior, calibrated material models and precise failure criteria must be utilized in these simulations. Despite the existence of numerous failure criteria and material models, the material characteristics of AASHTO M-180 guardrail steel have not been fully investigated. This paper significantly advances the FE modeling of ductile fracture in guardrail steel, addressing a critical need within the roadside safety community. This study formulates stress-state-dependent failure criteria and proposes advanced material modeling techniques. Extensive experimental testing was conducted on steel specimens having various triaxiality and Lode parameter values to reproduce a wide spectrum of complex, three-dimensional stress-state loading conditions. The test results were then used to identify material properties and construct a failure surface. Subsequent FEA, which incorporated the Generalized Incremental Stress-State-Dependent Damage Model (GISSMO) in conjunction with two LS-DYNA material models, illustrates the capability of the developed surface and material input parameters to predict material behavior under various stress states accurately. A parametric study was completed to further validate the proposed models, highlighting their robustness and reliability. Full article
(This article belongs to the Special Issue From Materials to Applications: High-Performance Steel Structures)
Show Figures

Figure 1

20 pages, 9964 KB  
Article
Damage Behaviour and Fractal Characteristics of Underground Openings Under True Triaxial Loading
by Yunfeng Wu, Peng Li, Xiaolou Chi, Baokun Zhou, Erhui Zhang, Youdong Zhu and Changhong Li
Fractal Fract. 2025, 9(2), 121; https://doi.org/10.3390/fractalfract9020121 - 15 Feb 2025
Viewed by 747
Abstract
In the context of advancements in deep resource development and underground space utilisation, deep underground engineering faces the challenge of investigating the mechanical behaviour of rocks under high-stress conditions. The present study is based on a gold mine, and the bulk ore taken [...] Read more.
In the context of advancements in deep resource development and underground space utilisation, deep underground engineering faces the challenge of investigating the mechanical behaviour of rocks under high-stress conditions. The present study is based on a gold mine, and the bulk ore taken from the mine perimeter rock was processed into two sets of specimens containing semicircular arched roadways with half and full penetrations. The tests were carried out using a true triaxial rock test system. The results indicate that the true triaxial stress–strain curve included stages such as compression density, linear elasticity, yielding, and destructive destabilisation following the peak; the yield point was more pronounced than that in uniaxial and conventional triaxial tests; and the peak stress and strain of the semi-excavation were higher than those of the full excavation. Furthermore, full excavation led to greater deformation along the σ3 direction. The acoustic emission energy showed a sudden increase during the unloading stage, then fluctuated and increased with increasing stress until significant destabilisation occurred. Additionally, increased burial stress in the half-excavation decreased the proportion of tension cracks and shear cracks. Conversely, in semi-excavation, the proportion of tensile cracks decreased, while that of shear cracks increased. However, the opposite was observed in full excavation. In terms of fractal dimension, semi-excavation fragmentation due to stress concentration followed a power distribution, while the mass fragmentation in full excavation followed a random distribution due to uniform stress release. Furthermore, the specimen strength was positively correlated with fragmentation degree, and primary defects also influenced this degree. This study provides a crucial foundation for predicting and preventing rock explosions in deep underground engineering. Full article
Show Figures

Figure 1

24 pages, 8976 KB  
Article
Optimization of Key Parameters for Coal Seam L-CO2 Phase Transition Blasting Based on Response Surface Methodology
by Xuanping Gong, Xiaoyu Cheng, Cheng Cheng, Quangui Li, Jizhao Xu and Yu Wang
Appl. Sci. 2025, 15(2), 612; https://doi.org/10.3390/app15020612 - 10 Jan 2025
Cited by 1 | Viewed by 916
Abstract
Liquid carbon dioxide (L-CO2) phase transition blasting technology, known for its high efficiency, environmental friendliness, and controllable energy output, has been widely applied in mine safety fields such as coal roadway pressure relief and coal seam permeability enhancement. However, the synergistic [...] Read more.
Liquid carbon dioxide (L-CO2) phase transition blasting technology, known for its high efficiency, environmental friendliness, and controllable energy output, has been widely applied in mine safety fields such as coal roadway pressure relief and coal seam permeability enhancement. However, the synergistic control mechanism between L-CO2 blasting loads and in situ stress conditions on coal seam fracturing and permeability enhancement remains unclear. This study systematically investigates the key process parameters of L-CO2 phase transition blasting in deep coal seams using response surface methodology and numerical simulation. First, three commonly used L-CO2 blasting tubes with the overpressure of 150 MPa, 210 MPa, and 270 MPa were selected, and the corresponding material parameters and state equations were established. A dynamic mechanical constitutive model for a typical low-permeability, high-gas coal seam was then developed. A numerical model of L-CO2 phase transition blasting, considering fluid–solid coupling effects, was then constructed. Multiple experiments were designed based on response surface methodology to evaluate the effects of blasting pressure, in situ stress, and stress difference on L-CO2 fracturing performance. The results indicate that the overpressures of the three simulated blasting loads were 156 MPa, 215 MPa, and 279 MPa, respectively, and the load model closely matches the actual phase blasting load. L-CO2 blasting creates a plastic deformation zone and a pulverized zone around the borehole within 500 μs to 800 μs after detonation, with a tensile fracture zone appearing at 2000 μs. By analyzing radial and tangential stresses at different distances from the explosion center, the mechanical mechanisms of fracture formation in different blast zones were revealed. Under the in situ stress conditions of this study, the number of primary fractures generated by the explosion ranged from 0 to 12, the size of the pulverized zone varied from 1170 cm2 to 2875 cm2, and the total fracture length ranged from 44.4 cm to 1730.2 cm. In cases of unequal stress, the stresses display axial symmetry, and the differential stress drives the fractures to expand along the direction of the maximum principal stress. This caused the aspect ratio of the external ellipse of the explosion fracture zone to range between 1.00 and 1.72. The study establishes and validates a response model for the effects of blasting load, in situ stress, and stress difference on fracturing performance. A single-factor analysis reveals that the blasting load positively impacts fracture generation, while in situ stress and differential stress have negative effects. The three-factor interaction model shows that as the in situ stress and stress difference increase, their inhibitory effects become stronger, while the enhancement effect of the blasting load continues to grow. This research provides a theoretical basis for blasting design and fracture propagation prediction using L-CO2 phase transition blasting in the coal seam under varying in situ stress conditions, offering valuable data support for optimizing the process of L-CO2 phase transition fracturing technology. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 3982 KB  
Article
Numerical Simulation Study on the Deformation Patterns of Surrounding Rock in Deeply Buried Roadways under Seepage Action
by Xuebin Xie and Liang Li
Appl. Sci. 2024, 14(12), 5276; https://doi.org/10.3390/app14125276 - 18 Jun 2024
Cited by 4 | Viewed by 1097
Abstract
To reveal the deformation patterns of the surrounding rock in deeply buried straight-wall arch-shaped roadways under seepage action, this study, based on an FLAC3D numerical simulation and classic elastoplastic theory, investigates the influences of surrounding rock classification, roadway burial depth, pore water pressure, [...] Read more.
To reveal the deformation patterns of the surrounding rock in deeply buried straight-wall arch-shaped roadways under seepage action, this study, based on an FLAC3D numerical simulation and classic elastoplastic theory, investigates the influences of surrounding rock classification, roadway burial depth, pore water pressure, and roadway cross-sectional dimensions on the deformation of surrounding rock. A multivariate regression prediction model for rock deformation was established based on the numerical simulation conclusions, and the correctness of the conclusions was verified through comparative analysis. Correlation analysis of various factors with rock deformation was conducted, ranking their impact as follows: pore water pressure > roadway burial depth > surrounding rock classification > roadway height > roadway width. The research results can provide guidance for the construction and support of deeply buried roadways under seepage action. Full article
(This article belongs to the Special Issue Rock Mechanics in Geotechnical and Tunnel Engineering)
Show Figures

Figure 1

16 pages, 20806 KB  
Article
Study on Dynamic Crack Expansion and Size Effect of Back–Filling Concrete under Uniaxial Compression
by Xicai Gao, Huan Xia, Kai Fan, Leilei Yi and Jianhui Yin
Materials 2023, 16(23), 7503; https://doi.org/10.3390/ma16237503 - 4 Dec 2023
Cited by 3 | Viewed by 1593
Abstract
With the continuous expansion of the application range of gob–side entry retaining technology, the depth, height, and advancing speed of coal seams also increase, which brings great problems to the stability control of surrounding rock structures of gob–side entry retaining. As one of [...] Read more.
With the continuous expansion of the application range of gob–side entry retaining technology, the depth, height, and advancing speed of coal seams also increase, which brings great problems to the stability control of surrounding rock structures of gob–side entry retaining. As one of the main bearing structures of the surrounding rock, the stability of the roadway–side support body is a key factor for the success of gob–side entry retaining. In order to study the deformation characteristics and instability mechanism of roadway-side support body, based on the roadway–side support materials of gob-side entry retaining, the dynamic expansion test of back–filling concrete cracks under uniaxial compression was carried out. The YOLOv5 algorithm was applied to establish the fine identification and quantitative characterization method of macroscopic cracks of the samples, and the dynamic expansion rule of roadway-side support body cracks and its dimensional effect were revealed by combining the fractal theory. The results show that the F1 value and average precision mean of the intelligent dynamic crack identification model reached 75% and 71%, respectively, the GIoU loss value tends to fit around 0.038, and the model reached the overall optimal solution. During the uniaxial compression process, micro cracks on the surface of the back–filling concrete first initiated at the end, and after reaching the yield stress, the macroscopic cracks developed significantly. Moreover, several secondary cracks expanded, pooled, and connected from the middle of the specimen to the two ends, inducing the overall instability of the specimen. The surface crack expansion rate, density, and fractal dimension all show stage change characteristics with the increase in stress, and the main crack expansion rate has obvious precursor characteristics. With the increase in the size, the decrease in crack density after back–filling concrete failures gradually decreases from 93.19% to 4.08%, the surface crack network develops from complex to simple, and the failure mode transits from tensile failure to shear failure. The above research results provide a basic experimental basis for design optimization and instability prediction of a roadway–side support body for engineering-scale applications. Full article
Show Figures

Figure 1

14 pages, 2427 KB  
Article
Research on Subsidence Prediction Method of Water-Conducting Fracture Zone of Overlying Strata in Coal Mine Based on Grey Theory Model
by Jinjun Li, Zhihao He, Chunde Piao, Weiqi Chi and Yi Lu
Water 2023, 15(23), 4177; https://doi.org/10.3390/w15234177 - 2 Dec 2023
Cited by 17 | Viewed by 1962
Abstract
The development height and settlement prediction of water-conducting fracture zones caused by coal seam mining play an important role in the stability of overburden aquifers and the safety of roadways. Based on the engineering geological data of the J60 borehole in the Daliuta [...] Read more.
The development height and settlement prediction of water-conducting fracture zones caused by coal seam mining play an important role in the stability of overburden aquifers and the safety of roadways. Based on the engineering geological data of the J60 borehole in the Daliuta Coal Mine and the mining conditions of the 2−2 coal seam, China, this study established a similar material test model of mining overburden. The deformation characteristics of overlying strata in the mining process of coal seam were studied by using distributed optical fiber sensing technology, and the development height of water flowing fractured zone was determined. According to the equidistant sampling characteristics of Brillouin optical time domain reflection technology and the principle of the grey theory model, the settlement prediction model of the water-conducting fracture zone was established. By analyzing and comparing the prediction accuracy of the GM (1, 1) model, grey progressive model, and metabolic model, the optimal method for settlement prediction of the water-conducting fracture zone was discussed. The results show that, for the metabolic model, with the increase in the number of test sets and the decrease in the number of prediction sets, the mean square error ratio c and the small error probability p of the prediction accuracy evaluation parameters display a downward trend. The accuracy is related to the sudden change in the settlement of the water-conducting fracture zone caused by the breaking of the key stratum of the overlying rock. The optimal time of test sets selected for the best settlement prediction model is 7~8, and that of prediction sets selected is 5~6. For the GM (1, 1) model and the grey progressive model, the prediction accuracy of mining overburden subsidence is grade 4, which is not suitable for settlement prediction of water-flowing fractured zones. Full article
Show Figures

Figure 1

17 pages, 5256 KB  
Article
Experimental Study on the Relationship between the Degree of Surrounding Rock Fragmentation and the Adaptability of Anchor Support
by Shuai Wang, Lianguo Wang, Furong Tang, Ke Ding, Zhaolin Li, Bo Ren, Chongyang Jiang and Jiaxing Guo
Appl. Sci. 2023, 13(20), 11328; https://doi.org/10.3390/app132011328 - 15 Oct 2023
Cited by 3 | Viewed by 1432
Abstract
Taking the roadway peripheral rock anchoring unit as the research object, the rock compression test containing the anchor solid was carried out to analyze the influence of the degree of peripheral rock fragmentation and the anchor support method on the mechanical properties of [...] Read more.
Taking the roadway peripheral rock anchoring unit as the research object, the rock compression test containing the anchor solid was carried out to analyze the influence of the degree of peripheral rock fragmentation and the anchor support method on the mechanical properties of the rock body. The test results showed that the smaller the size of the structural surface, the more a greater number of anchor rods were needed, which in turn provided better support. With the increase in the size of the structural surface, the uniaxial compressive strength and modulus of elasticity of the specimen showed a gradual decrease. Numerical tests of the uniaxial compression of rock containing cohesive units showed that the deformation of the specimen near the anchor bar was significantly reduced, while the main rupture surface was blocked, and an obvious reinforcement zone was formed near the anchor bar. Under the double-anchor condition, the anchor tension stress was more obvious, the reinforcement zone was wider, and the rock rupture surface was strongly blocked, all of which made its reinforcement effect the more obvious. This double-anchor condition showed that the anchoring effect of the anchor rods on the specimens was reflected in two aspects of reinforcement and crack stopping. The denser the anchor rods, the wider the reinforcement zone and hence the more likely that the superposition effect will occur, which allowed the anchor rods to play a greater supporting role in stabilizing the rock. The research results can provide a theoretical basis for the design of anchor support and early warning prediction of destabilization damage in the fractured surrounding rock of coal mine roadways. Full article
Show Figures

Figure 1

20 pages, 6782 KB  
Article
Research of a Fiber Sensor Based on Fiber Bragg Grating for Road Surface Monitoring
by Gulzhan Kashaganova, Ainur Kozbakova, Timur Kartbayev, Gani Balbayev, Kulzhan Togzhanova, Zhuldyz Alimseitova and Sandugash Orazaliyeva
Electronics 2023, 12(11), 2491; https://doi.org/10.3390/electronics12112491 - 31 May 2023
Cited by 24 | Viewed by 3188
Abstract
Road infrastructure is a key public asset because it benefits the social and economic development of any country. It plays an important role in the development of the industrial complex and the production sector, and the surfaces of transport roads should be of [...] Read more.
Road infrastructure is a key public asset because it benefits the social and economic development of any country. It plays an important role in the development of the industrial complex and the production sector, and the surfaces of transport roads should be of high quality and have a long service life. Road infrastructure, like all infrastructure, requires preservation, maintenance and repair. There are special requirements for roadways that must be observed during construction or repair. The uncertainty of the composition, temperature sensitivity and viscoelastic characteristics of road materials make the structural analysis of pavement very difficult compared to other civil structures, such as bridges, tunnels and buildings. For this reason, the question of how to improve fiber sensors based on fiber Bragg grating (FBG) arose. The novelty of this study is to modernize fiber sensors based on FBG so that they display deformation, stress and displacement, temperature and other parameters with much greater accuracy, which would provide a reliable scientific basis for modifying the theory, as well as the use of a fiber sensor based on FBG for simultaneous measurement of deformation and temperature when monitoring the road surface. This article is devoted to a detailed study of the use of fiber-optic sensors (FOS) based on fiber Bragg grating for road surface monitoring. Such a fiber sensor, consisting of a fiber Bragg grating and a pair of grids, can offer the possibility of simultaneous measurement of deformation and temperature for monitoring the pavement. Temperature and deformation measurements were carried out by installing a sensor on the surface of a made asphalt sample. The built-in fiber sensor based on FBG provides important information about how the pavement structure can withstand the load and subsidence of soil and implement road safety and stability measures in a timely manner to evaluate and predict the service life of the pavement. The results of the study showed that the synchronicity, repeatability and linearity of the characteristics of the fiber sensor are excellent. The difference between the experimental and theoretical results was about 7%. Thus, based on the results of the obtained data, the fiber sensor on the FBG can be used for monitoring and designing road surfaces and in general transport infrastructure. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

29 pages, 4403 KB  
Article
Steel Arch Support Deformations Forecast Model Based on Grey–Stochastic Simulation and Autoregressive Process
by Luka Crnogorac, Suzana Lutovac, Rade Tokalić, Miloš Gligorić and Zoran Gligorić
Appl. Sci. 2023, 13(7), 4559; https://doi.org/10.3390/app13074559 - 4 Apr 2023
Cited by 2 | Viewed by 1806
Abstract
Relatively large deformations of the steel arch support in underground coal mines in the Republic of Serbia present one of the main problems for achieving the planned production of coal. Monitoring of the critical sections of the steel arch support in the underground [...] Read more.
Relatively large deformations of the steel arch support in underground coal mines in the Republic of Serbia present one of the main problems for achieving the planned production of coal. Monitoring of the critical sections of the steel arch support in the underground roadways is necessary to gather quality data for the development of a forecasting model. With a new generation of 3D laser scanners that can be used in potentially explosive environments (ATEX), deformation monitoring is facilitated, while the process of collecting precise data is much shorter. In this paper, we used a combination of grey and stochastic system theory combined with an autoregressive process for processing collected data and the development of a forecasting model of the deformations of the steel arch support. Forecasted data accuracy based on the positions of the markers placed along the internal rim of support construction shows high accuracy with MAPE of 0.2143%. The proposed model can successfully be used by mining engineers in underground coal mines for steel arch support deformations prediction, consequentially optimizing the maintenance plan of the underground roadways and achieving planned production. Full article
Show Figures

Figure 1

20 pages, 3023 KB  
Article
Predicting California Bearing Ratio of Lateritic Soils Using Hybrid Machine Learning Technique
by T. Vamsi Nagaraju, Alireza Bahrami, Ch. Durga Prasad, Sireesha Mantena, Monalisa Biswal and Md. Rashadul Islam
Buildings 2023, 13(1), 255; https://doi.org/10.3390/buildings13010255 - 16 Jan 2023
Cited by 23 | Viewed by 4399
Abstract
The increase in population has made it possible for better, more cost-effective vehicular services, which warrants good roadways. The sub-base that serves as a stress-transmitting media and distributes vehicle weight to resist shear and radial deformation is a critical component of the pavement [...] Read more.
The increase in population has made it possible for better, more cost-effective vehicular services, which warrants good roadways. The sub-base that serves as a stress-transmitting media and distributes vehicle weight to resist shear and radial deformation is a critical component of the pavement structures. Developing novel techniques that can assess the sub-base soil’s geotechnical characteristics and performance is an urgent need. Laterite soil abundantly available in the West Godavari area of India was employed for this research. Roads and highways construction takes a chunk of geotechnical investigation, particularly, California bearing ratio (CBR) of subgrade soils. Therefore, there is a need for intelligent tool to predict or analyze the CBR value without time-consuming and cumbersome laboratory tests. An integrated extreme learning machine-cooperation search optimizer (ELM-CSO) approach is used herein to predict the CBR values. The correlation coefficient is utilized as cost functions of the CSO to identify the optimal activation weights of the ELM. The statistical measures are separately considered, and best solutions are reported in this article. Comparisons are provided with the standard ELM to show the superiorities of the proposed integrated approach to predict the CBR values. Further, the impact of each input variable is studied separately, and reduced models are proposed with limited and inadequate input data without loss of prediction accuracy. When 70% training and 30% testing data are applied, the ELM-CSO outperforms the CSO with Pearson correlation coefficient (R), coefficient of determination (R2), and root mean square error (RMSE) values of 0.98, 0.97, and 0.84, respectively. Therefore, based on the prediction findings, the newly built ELM-CSO can be considered an alternative method for predicting real-time engineering issues, including the lateritic soil properties. Full article
(This article belongs to the Special Issue Machine Learning Applications for Engineered Geomaterials Development)
Show Figures

Figure 1

17 pages, 18323 KB  
Article
Deformation and Failure Laws of Surrounding Rocks of Coal Roadways under High Dynamic Load and Intelligent Prediction
by Aoran Li, Guangzhen Cui, Peng Wang, Xinjie Wang, Zhengtao Hong, Jiangrong Kong and Jiaguang Kan
Sustainability 2023, 15(2), 1313; https://doi.org/10.3390/su15021313 - 10 Jan 2023
Cited by 6 | Viewed by 1693
Abstract
Under high dynamic load, roadway deformation and failure may occur, posing great challenges. As for now, few studies have been carried out on the impacts of various factors on the deformation of roadway surrounding rocks under high dynamic load, not to mention those [...] Read more.
Under high dynamic load, roadway deformation and failure may occur, posing great challenges. As for now, few studies have been carried out on the impacts of various factors on the deformation of roadway surrounding rocks under high dynamic load, not to mention those on intelligent prediction of the deformation and failure laws. This paper fills these research gaps by studying the deformation and failure characteristics of roadway surrounding rocks and the intelligent prediction method under high dynamic load. The finite difference software Flac3D was used to analyze the influences of roadway buried depth, lithology, and side pressure coefficient on the stability of surrounding rocks and a model was constructed for deformation prediction under high dynamic load. Finally, the influence of various factors on the deformation and their weight was obtained and the deformation can be predicted in line with the BP neural network prediction theory. The results show that the prediction effect is good, with high accuracy. Full article
(This article belongs to the Special Issue Green and Scientific Design of Deep Underground Engineering)
Show Figures

Figure 1

24 pages, 8850 KB  
Article
Research on the Creep Model of Deep Coal Roadway and Its Numerical Simulation Reproduction
by Qiming Zhang, Enyuan Wang and Zeng Ding
Int. J. Environ. Res. Public Health 2022, 19(23), 15920; https://doi.org/10.3390/ijerph192315920 - 29 Nov 2022
Cited by 1 | Viewed by 1789
Abstract
The long-term stability of coal mine roadway engineering is critical to the safe mining of coal resources and the protection of the surface environment. In this paper, the creep test of coal samples in coal roadway was carried out by multi-stage constant load [...] Read more.
The long-term stability of coal mine roadway engineering is critical to the safe mining of coal resources and the protection of the surface environment. In this paper, the creep test of coal samples in coal roadway was carried out by multi-stage constant load method, and the test results showed that when the stress level was low, the creep curve had a attenuated stage and a steady-state stage, and the steady-state creep rate tended to increase with the increase in the stress level; When the stress level was higher than the yield stress, the creep rate curve appeared to have an acceleration stage after the steady-state stage. The instability failure mode of the coal sample was mainly shear failure with local tension failure. For this, a New Fractional-order Nonlinear Viscoelastic-plastic Rheological Model (NFNVRM) was established by introducing Abel elements and Nonlinear elements, and the constitutive equation of the model was deduced. The new model can fully reflect the stable decay stage and accelerated rheological stages of coal samples, and the parameter identification curve was consistent with the experimental results, which verifies the correctness and reasonableness of the NFNVRM. Meanwhile, based on the FLAC3D secondary development interface, the constitutive equations of the NFNVRM were written into the software to obtain new Dynamic Link Library (DLL) files. The simulation results were consistent with the experimental results when the DLL file was called. Finally, the NFNVRM.dll was applied to predict the surrounding rock deformation of an S mine. The study’s findings offer suggestions for environmental protection. Full article
(This article belongs to the Special Issue Full Life-Cycle Safety Management of Coal and Rock Dynamic Disasters)
Show Figures

Figure 1

22 pages, 3346 KB  
Article
Roof Fractures of Near-Vertical and Extremely Thick Coal Seams in Horizontally Grouped Top-Coal Drawing Method Based on the Theory of a Thin Plate
by Guojun Zhang, Quansheng Li, Zhuhe Xu and Yong Zhang
Sustainability 2022, 14(16), 10285; https://doi.org/10.3390/su141610285 - 18 Aug 2022
Cited by 11 | Viewed by 2206
Abstract
During the mining process of the near-vertical seam, there will be movement and collapse of the “roof side” rock layer and the “overlying coal seam,” as well as the emergence of the “floor side” rock layer roof which is more complicated than the [...] Read more.
During the mining process of the near-vertical seam, there will be movement and collapse of the “roof side” rock layer and the “overlying coal seam,” as well as the emergence of the “floor side” rock layer roof which is more complicated than the inclined and gently inclined coal seams, which causes problems with slippage or overturning damage. With the increase of the inclination of the coal seam, the impact of the destruction of the immediate roof on the stope and roadway gradually becomes prominent, while the impact of the destruction of the basic roof on the stope and the roadway gradually weakens. The destruction of the immediate roof of the near-vertical coal seam will cause a large area of coal and rock mass to suddenly rush to the working face and the two lanes, resulting in rapid deformation of the roadway, overturning of equipment, overturning of personnel, and even severe rock pressure disaster accidents, all of which pose a serious threat to coal mine safety and production. It is necessary to carry out research on the mechanical response mechanism of the immediate roof of near-upright coal seams, to analyse the weighting process of steeply inclined thick coal seam sub-level mining. A four fixed support plate model and top three clamped edges simply supported plate model for roof stress distribution are established before the first weighting of the roof during the upper and lower level mining process. The bottom three clamped edges simply supported plate model and two adjacent edges clamped on the edge of a simply supported plate model are established for roof stress distribution before periodic weighting of the roof during the upper and lower level mining process. The Galerkin method is used to make an approximate solution of deflection equation under the effect of sheet normal stress, and then roof failure criterion is established based on the maximum tensile stress strength criterion and generalized Hooke law. This paper utilizes FLAC3D finite element numerical simulation software, considering the characteristics of steeply inclined thick coal seam sub-level mining. It undertakes orthogonal numerical simulation experiment in three levels with different depths, coal seam angles, lateral pressure coefficient, and orientation of maximum horizontal principal stress, and translates roof stress of corresponding 9 simulation experiment into steeply inclined roof normal stress. We conclude that the distribution law of normal stress along dip and dip direction of a roof under the circumstance of different advancing distances and different sub-levels. The caving pace of first weight and periodical weight were counted under the effect of the roof uniform normal stress. It can better predict the weighting situation of the working face and ensure the safe, efficient, and sustainable mining of coal mines. Full article
(This article belongs to the Topic Mining Safety and Sustainability)
Show Figures

Figure 1

Back to TopTop