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Abstract: With the continuous expansion of the application range of gob–side entry retaining technol-
ogy, the depth, height, and advancing speed of coal seams also increase, which brings great problems
to the stability control of surrounding rock structures of gob–side entry retaining. As one of the main
bearing structures of the surrounding rock, the stability of the roadway–side support body is a key
factor for the success of gob–side entry retaining. In order to study the deformation characteristics and
instability mechanism of roadway-side support body, based on the roadway–side support materials
of gob-side entry retaining, the dynamic expansion test of back–filling concrete cracks under uniaxial
compression was carried out. The YOLOv5 algorithm was applied to establish the fine identification
and quantitative characterization method of macroscopic cracks of the samples, and the dynamic
expansion rule of roadway-side support body cracks and its dimensional effect were revealed by
combining the fractal theory. The results show that the F1 value and average precision mean of the
intelligent dynamic crack identification model reached 75% and 71%, respectively, the GIoU loss value
tends to fit around 0.038, and the model reached the overall optimal solution. During the uniaxial
compression process, micro cracks on the surface of the back–filling concrete first initiated at the end,
and after reaching the yield stress, the macroscopic cracks developed significantly. Moreover, several
secondary cracks expanded, pooled, and connected from the middle of the specimen to the two
ends, inducing the overall instability of the specimen. The surface crack expansion rate, density, and
fractal dimension all show stage change characteristics with the increase in stress, and the main crack
expansion rate has obvious precursor characteristics. With the increase in the size, the decrease in
crack density after back–filling concrete failures gradually decreases from 93.19% to 4.08%, the surface
crack network develops from complex to simple, and the failure mode transits from tensile failure to
shear failure. The above research results provide a basic experimental basis for design optimization
and instability prediction of a roadway–side support body for engineering-scale applications.

Keywords: gob-side entry retaining; back–filling concrete; YOLOv5; crack identification; size effect

1. Introduction

Gob–side entry retaining technology has significant advantages in alleviating the
tension of mining replacements, reducing the loss of coal resources, and improving the
efficiency of coal production; it has become an important development direction of green
and efficient coal mining technology [1,2]. With the continuous expansion of the application
scope of gob–side entry retaining technology, the increase in mining depth, mining height,
and advancing speed of coal seams brings great problems to the control of surrounding rock
structures, stress state, and stability control of roadway–side support [3]. Roadway–side
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support is one of the main methods for gob-side entry retaining in coal mines in China;
reasonable and effective structural design of roadway–side support body has become a key
factor for the success of gob–side entry retaining, and its stability is increasingly receiving
more attention [4]. Therefore, from the perspective of controlling the surrounding rock
structure of gob–side entry retaining, analyzing the effect of roadway–side support and
balancing the pressure of surrounding rock is necessary. In addition, studying the perfor-
mance degradation mechanism and size effect of back–filling concrete under high stress
state is of great importance. It is of great significance for optimizing the size parameters of
the deep roadway–side support body, and achieving long-term stability of the surrounding
rock of the gob–side entry retaining.

In recent years, our scholars have conducted a lot of work on the stress state, de-
formation characteristics, and width optimization design of roadway–side support in
gob-side entry retaining [5]. Feng Guorui et al. [6] calculated the working resistance of
roadway–side back–filling body by establishing a superimposed laminate model, and ana-
lyzed the stress distribution and deformation characteristics of roadway–side back–filling
body. Han Changliang et al. [7] revealed the collapse characteristics and superimposed
disturbance mechanism of the overlying strata of the gob–side entry retaining through
physical simulation and theoretical analysis, and proposed a method for calculating the load
on the back–filling wall. Chen et al. [8] believed that the high stress of the roadway–side
back–filling body during the breaking movement of the overlying strata is the root cause
of the initiation, development, and penetration of the surface cracks of the roadway–side
back–filling body and the deterioration of its own bearing capacity. Zhang Jixiong, He
Fengzhen, and Feng Chao et al. [9–11] calculated the reasonable width of the roadway–side
back–filling body, and analyzed the maintenance effect of gob–side entry retaining with
different widths based on the field engineering geological conditions, which laid a solid
foundation for the stability control of the surrounding rock and the popularization and
application of the technology. However, with the continuous increase in coal seam mining
depth, deep gob–side entry retaining will face more complex stress environments and
mining technical conditions; the roadway–side support body deserves further study in
terms of back–filling material, instability mechanism, and stability control.

The expansion and penetration of the roadway–side filling body cracks is the key
factor for the instability of its body under the balanced pressure of the overlying strata of
mining face [12–14], proactively identifying and analyzing the dynamic crack expansion
law of the road–side back–filling body in advance is essential for assessing the overall
stability of filling body [15,16]. In terms of intelligent identification of dynamic expansion
of rock mass cracks, deep learning methods are increasingly used in laboratory and field
real–time monitoring. Liu Yu, Wu Peirong, and Ye Guanting et al. [17–19] proposed an
improved single–stage target detection network model for the accurate identification of
concrete cracks at different scales. Jiang yongqing et al. [20] realized the detection and
classification of concrete surface damage through deep separable convolution, inverse
residual network, and linear bottleneck structure optimization target detection algorithms.
Cui Xiaoning et al. [21] achieved an accurate identification of concrete erosion damage
based on the YOLO algorithm model. Song Ee Park et al. [22] proposed a target detection
method by combining deep learning and structured light technology that was capable of
real-time and high–precision detection and quantification of structural surface cracks. This
provided a new approach for advanced identification of coal and rock mass fractures and
the capture of instability precursor information.

Therefore, the author considers the bearing stress state of the roadway–side support
body of gob–side entry retaining by conducting dynamic crack extension tests on roadside
filling concrete materials. The high–speed camera was used to record the deformation and
failure process of the sample in real time, and the expansion and evolution characteristics
of the main cracks were quantitatively analyzed. Based on the YOLOv5 algorithm, a fine
identification and characterization method of macroscopic crack expansion was established
and combined with fractal theory. The mechanical behavior, crack dynamic expansion law,
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and size effect of back–filling concrete under the action of roof equilibrium pressure are an-
alyzed. It provides the basic test basis for the design optimization and instability prediction
of gob–side entry retaining back–filling bodies for engineering–scale applications.

2. Mechanical Test Design
2.1. Sample Preparation

Procedures were based on the ratio of back–filling concrete materials along the
gob-side entry retaining in 3307 working faces of a mine. Cement (PO 42.5), gravel
(particle size grading 5–16 mm), river sand (modulus in 2.6–3.0), water reducing agent,
and water according to the proportion of 0.56:0.85:1:0.0013:0.32 were mixed and stirred for
3 min. Pour the stirred slurry into the mold and vibrate it thoroughly for 30 s. Let it stand
for 24 h before demolding. Place the sample in a standard curing box, set the temperature at
20 ± 2 ◦C, relative humidity of 90%, cure 28 d after the preparation of back–filling concrete
samples [23]. The preparation process is shown in Figure 1. A total of 5 groups of size
samples were prepared for this test, 3 samples in each group, and the sample sizes and
numbers are shown in Table 1.

Materials 2023, 16, x FOR PEER REVIEW 3 of 16 
 

 

of the main cracks were quantitatively analyzed. Based on the YOLOv5 algorithm, a fine 
identification and characterization method of macroscopic crack expansion was estab-
lished and combined with fractal theory. The mechanical behavior, crack dynamic expan-
sion law, and size effect of back–filling concrete under the action of roof equilibrium pres-
sure are analyzed. It provides the basic test basis for the design optimization and instabil-
ity prediction of gob−side entry retaining back–filling bodies for engineering−scale appli-
cations. 

2. Mechanical Test Design 
2.1. Sample Preparation 

Procedures were based on the ratio of back–filling concrete materials along the gob-
side entry retaining in 3307 working faces of a mine. Cement (PO 42.5), gravel (particle 
size grading 5–16 mm), river sand (modulus in 2.6–3.0), water reducing agent, and water 
according to the proportion of 0.56:0.85:1:0.0013:0.32 were mixed and stirred for 3 min. 
Pour the stirred slurry into the mold and vibrate it thoroughly for 30 s. Let it stand for 24 
h before demolding. Place the sample in a standard curing box, set the temperature at 20 
± 2 °C, relative humidity of 90%, cure 28 d after the preparation of back–filling concrete 
samples [23]. The preparation process is shown in Figure 1. A total of 5 groups of size 
samples were prepared for this test, 3 samples in each group, and the sample sizes and 
numbers are shown in Table 1. 

 
Figure 1. Sample preparation procedures. 

Table 1. Sample size and number. 

Sample size/mm 50 × 50 × 50 70 × 70 × 70 100 × 100 × 100 150 × 150 × 150 200 × 200 × 200 
Sample number Sj50 Sj70 Sj100 Sj150 Sj200 

2.2. Test Equipment and Methods 
The sample loading and recording systems are shown in Figure 2a, and the testing 

principle is shown in Figure 2b. The uni−axial compression test was carried out using a 
microcomputer−controlled electro−hydraulic servo pressure testing machine (Shenzhen 
Wance Testing Equipment Co., Ltd., Shenzhen, China), setting a stress control mode, and 
a loading rate of 0.5 MPa/s. The development and evolution characteristics of surface 
cracks were recorded using a Phantom VE0710L high-speed camera (York Technologies 
Limited, Hong Kong, China) during the loading process in real-time, with a resolution of 
512 × 256, shooting frame rate 400FPS, exposure time 30 µs, the exposure index was 20,000. 

Figure 1. Sample preparation procedures.

Table 1. Sample size and number.

Sample size/mm 50 × 50 × 50 70 × 70 × 70 100 × 100 × 100 150 × 150 × 150 200 × 200 × 200

Sample number Sj50 Sj70 Sj100 Sj150 Sj200

2.2. Test Equipment and Methods

The sample loading and recording systems are shown in Figure 2a, and the testing
principle is shown in Figure 2b. The uni–axial compression test was carried out using a
microcomputer–controlled electro–hydraulic servo pressure testing machine (Shenzhen
Wance Testing Equipment Co., Ltd., Shenzhen, China), setting a stress control mode, and a
loading rate of 0.5 MPa/s. The development and evolution characteristics of surface cracks
were recorded using a Phantom VE0710L high-speed camera (York Technologies Limited,
Hong Kong, China) during the loading process in real-time, with a resolution of 512 × 256,
shooting frame rate 400FPS, exposure time 30 µs, the exposure index was 20,000.
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3. Intelligent Identification Method of Back–Filling Concrete Cracks Based on
YOLOv5 Algorithm
3.1. YOLOv5 Detection Algorithm

The image of crack expansion and evolution on the surface of the sample were obtained
during the loading process of back–filling the concrete, and an intelligent detection model
based on the YOLOv5 algorithm was built to realize the intelligent identification of dynamic
cracks of back–filling concrete samples under uniaxial compression.

The network structure of the YOLOv5 detection algorithm is shown in Figure 3. The
YOLOv5 algorithm based on Pytorch has advantages such as fast detection speed, high
accuracy, and lightweight model; its network structure is mainly composed of input,
backbone, neck, and prediction. Input was mainly composed of Mosaic data enhancement,
adaptive anchor frame calculations, and adaptive crack expansion image scaling. Backbone
mainly includes focus structure, CSP (cross stage partial) structure, CBL structure, and SPP
(spatial pyramid pooling) structure. The focus structure sliced the input crack expansion
image to obtain a double sampling feature map with complete information [24]. The
CSP structure divided the input crack expansion image into two parts and a convolution
operation was performed on them, respectively, and then the results of the two parts were
spliced, which can increase the depth of the network structure, maintain the computational
efficiency of the network structure, and improve the model learning ability [25]. CBL is
a standard convolutional structure consisting of a common convolution layer (Conv), a
batch normalization layer (BN), and an activation function layer (LeakyReLU). The SPP
structure increased the receptive field range and feature expression ability of the model by
maximum pooling after multiple convolutions of the feature layer [26]. The neck section
is based on upsampling and Concat modules, adopts the structure of FPN + PAN, which
conveyed high-level semantic information from top to bottom, and transmitted positioning
features from bottom to top, complementing each other, significantly enhancing the network
structure feature fusion ability [27]. In the prediction stage, GIOU_LOSS was used as the
loss function of the bounding box, which greatly improved the accuracy of the bounding
box. The NMS non-maximum suppression was used to screen the optimal bounding box at
each target position and eliminate the redundant bounding box. Simultaneously, the Conv
structure is used to downsample the input image and extract target features.

3.2. Detection Method Steps

The dynamic surface crack detection and recognition process of the sample is shown
in Figure 4.

(1) Dividing the crack image into N × N grid units for image feature extraction, each cell
generates a bounding box for different targets, with each bounding box containing
the center point position (x, y), bounding box width and height (w, h), and conf
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(confidence). conf is a measure of the accuracy of the model’s prediction of the
target box.

con f = Pr(object)× IoU(pred, truth)× Pr(class) (1)

where conf is divided into three part: Pr (object) represents the probability of the
existence of the target. If there is no crack in the prediction box, Pr (object) = 0,
otherwise it is 1; IoU (pred, truth) represents the intersection and union ratio of the
prediction box and the real box; Pr (class) represents the probability that the prediction
box belongs to each category.

(2) Extracting features from the normalized data set using a feature extraction network.
(3) Setting prediction box, calculating the coordinates of the center point for the different

detection targets.
(4) Calculating the position of the target center point and the width and height of the

prediction box based on the predicted coordinate offset value.
(5) Output crack detection results.
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3.3. Construction of Crack Expansion Image Data Set

Creation of deep learning data sets from crack extension images of sample surfaces
recorded by a high–speed camera during the loading process. A total of 2000 sample
images of specimen surface cracks were selected for the loading process of 5 groups of
size specimens; a total of 1500 labeled sample images were used as the training set and
500 unlabeled sample images were used as the test set. The open source software Labelimg
(https://github.com/tzutalin/labellmg) was used to mark the cracks in 1500 sample im-
ages. The surface cracks on the image were marked as tensile cracks (TFs) and compression

https://github.com/tzutalin/labellmg
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shear cracks (CSFs), respectively. At the same time, the Mosaic data enhancement tech-
nology was used to expand the data set [28]. The multiple crack expansion images were
selected randomly and scaled, segmented, and then spliced into one image, which enriched
the sample image data set to make the detection of small cracks more accurate, and im-
proved the universality and robustness of the YOLOv5 network structure. The principles
of data enhancement technology are shown in Figure 5.
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3.4. Analysis of Detection Results

The YOLOv5 algorithm model was built using Python 3.8 and Pytorch 2.0.0 versions.
The input image size was 640 × 640 Pixels, the weight attenuation factor was 0.001, the
momentum coefficient of the model was 0.98, the learning rate was 0.1, and the iterative
training was 100 rounds. After the training was completed, the test set image was input
into the trained YOLOv5 model, and the target prediction box and confidence were output
and the surface cracks detection results of the sample were shown in Figure 6. The YOLOv5
algorithm identified and marked all the surface cracks on the sample. The classification
was accurate, the recognition accuracy was high, and the average confidence was 0.7.
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in the prediction box is confidence. Table format for output results can be found in Table S1.

3.5. Algorithm Evaluation
3.5.1. Model Recognition Accuracy Measurement Indicators

(1) F1 value (F-Measure)

In order to evaluate the model more comprehensively, a comprehensive index F-Measure
was used combining P (precision rate) and R (recall rate) as the evaluation index, and the
calculation formula was shown in Equation (2).

F−Measure =
2PR

P + R
(2)

The F–Measure depended on the calculation of the confusion matrix, P (precision rate)
and the R (recall rate), where the confusion matrix was a summary of the prediction results
for crack classification problems. The confusion matrix obtained from YOLOv5 model
training is shown in Figure 7.
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Figure 7. Identification of the model confusion matrix.

The results of YOLOv5 model detection are as follows:
TP: The model predicts CSF and the label value is also CSF, indicating correct

detection results;
FN: The model predicts TF, the labeled value is CSF, and the detection result is incorrect;
FP: The model predicts CSF, the label value is TF, and the detection result is incorrect;
TN: The model predicts TF and the label value is also TF, indicating correct

detection results.
The P (precision rate) is the proportion of TF and CSF in all predictions, which

measures the accuracy of the prediction; the R (recall rate) represents the accuracy rate of
each category, which measures whether the detection is comprehensive. The calculation
formula is shown in Equations (3) and (4).

P =
TP

FP + TP
(3)

R =
TP

FN + TP
(4)

(2) Average precision mean (mAp@0.5)

The average precision mean (mAp@0.5) was used to evaluation model, mAp can
measure the performance of various label predictions. The higher the mAp, the better
the performance.

(3) Generalized loss function (GIoU)

The generalized loss function evaluation model was adopted. The smaller the GIoU
loss value, the better the detection convergence effect. The specific calculation formula is
shown in Formulas (5)–(7).

IoU =
|A ∩ B|
|A ∪ B| (5)

GIoU = IoU − |C/(A ∪ B)|
|C| (6)

GIoUloss = 1− GIoU (7)

where GIoUloss is the loss value; A and B are the area of the target box and the prediction
box, respectively; C is the minimum closure area of two boxes.
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3.5.2. Evaluation Results Analysis

The training curve of the intelligent recognition algorithm model is shown in Figure 8.
With the increase in the number of iterations training, the F1 value (F–Measure) and the
average precision mean (mAp@0.5) gradually increased. When the iteration was close to
100 times, the F1 value and the average precision mean curve reached an equilibrium.
After balancing, the F1 value and the average precision mean reached more than 70%, the
F1 value was 75%, and the average precision mean was 71%. It shows that the constructed
model achieved a better training effect.
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The curve of GIoU loss function with the number of iterative training times is shown
in Figure 9. The GIoU loss rate curve shows a downward trend. The initial loss value of
the model is about 0.124, the GIoU loss value reached 0.038 after 100 iterative training, and
the model tended towards a stable state. It showed that after 100 iterative training, the
YOLOv5 model achieved the overall optimal solution and the detection convergence effect
was better.
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4. Cracks Dynamic Expansion Law of Back–Filling Concrete under
Uniaxial Compression
4.1. Crack Expansion and Collection

Based on the YOLOv5 crack identification algorithm, the surface crack expansion
and evolution characteristics of the sample were obtained as shown in Figure 10. During
the uniaxial compression process, micro cracks on the surface of the back–filling concrete
sample first initiated at the end, and multiple secondary cracks developed in the middle of
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the sample and expanded and converged towards both ends. After reaching the yield stress,
the cracks entered an unstable development stage, and the secondary cracks gradually
connected to form one or more master cracks until instability and failure occurred.
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Due to space limitations, sample Sj200 was taken as an example. At the initial stage
of loading, the original cracks inside the sample were compacted and closed during the
initial loading stage, the stress–strain curve showed an upward concave shape, and there
were no cracks developed on the surface of the sample. When the stress was loaded to
9.97 MPa, the microcracks inside the sample gradually developed and expanded, and
secondary cracks sprouted in the lower left corner of the sample under the influence of
the end effect. When the stress was loaded to 12.56 MPa, cracks 1 and 2 simultaneously
initiated in the middle of the sample and continuously expanded towards both ends,
with angles of 10◦and 15◦ with the direction of the loading stress, respectively. When
the loading stress was 15.01 MPa, cracks 1 and 2 intersected to form cracks 3 with an
angle of 15◦ to the direction of loading stress. At the same time, cracks 4 initiated and
developed from the lower left end of the sample upwards, with an angle of 25◦ to the
direction of loading stress. When the stress was loaded to 17.02 MPa, the stress–strain
curve deviated from the straight line, and cracks 3 and 4 continue to expand upward.
In addition, cracks 5 , 6 , and 7 appeared on the right side of the sample, which were
paralleled to the direction of loading stress. When the loading stress reached 17.21 MPa, the
cracks 5 , 6 , and 7 on the right side of the sample were connected to each other to form
crack 8 . The cracks 10 , 11 , and 12 at the upper end of the sample expanded downward,
and were connected with cracks 3 , 4 , and 8 , respectively, to form penetrating master
cracks 1, 2 and 3. At the same time, crack 9 expanded rapidly from the lower end of the
sample in the direction of parallel principal stress, and connected with the crack zone at the
upper end to form penetrating master crack 4, the overall instability rupture of the sample
occurred due to the penetration of the main cracks 1, 2, 3, and 4. It can be seen that the
master crack 4 was approximately parallel to the direction of loading stress, and that it was a
tension crack. The angles between the master cracks 1, 2, and 3 and the direction of loading
stress are 25◦, 43◦, and 30◦, respectively, all of which were compression shear cracks. When
the sample was destroyed, the master crack was mainly compression-shear crack.

4.2. Fractal Characteristics of Crack Expansion and Evolution

The crack expansion and evolution law of the surface of the back–filling concrete
sample was indirectly reflected through calculating the fractal dimension of the surface of
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the sample under different loading stress levels [29–31]. The calculation of fractal dimension
based on box counting method is shown in Formula (8):

log N(d) = log A− D log d (8)

where A is constant; d is the grid side length, mm; N(d) is the number of grids covering the
crack zone; and D is the fractal dimension.

The relationship between the fractal dimension and the stress level during the loading
process of the Sj200 sample is shown in Figure 11. During the uniaxial compression process,
the fractal dimension of the surface cracks of the sample was basically consistent with the
evolution characteristics of the stress–strain curve, showing a phased change characteristic
of slowly increasing first and then suddenly rising. As the loading progresses, the fractal
dimension of the surface cracks of the sample shows a slow increasing trend with increasing
stress, and the complexity of the surface crack network of the sample gradually increases.
When the loading stress value reached 57.9% σc, there was a secondary crack initiation
on the sample surface, and the fractal dimension is 2.0421. When the stress was loaded to
86.8% σc, the fractal dimension increased to 2.0424. At this time, the sample reached the
yield stress limit, and the crack development entered the unstable development stage. As
the stress level continued to increase, a large number of cracks inside the sample expanded
and converged to form a macroscopic master crack, and a large number of secondary cracks
developed around the master crack. At this time, the growth trend of fractal dimension
changed from a slow increase to a sudden increase, and the complexity of the crack network
on the surface of the sample increased. When the stress was loaded to 98.8% σc, the crack
further expanded to form multiple penetrating master cracks. The fractal dimension was
2.0431, and the fractal dimension growth rate increased again. The fractal dimension
suddenly increased to the maximum value of 2.0440 at the peak stress.
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4.3. Characteristics of Master Crack Expansion Rate

During the loading process of the sample, the high-speed camera was used to capture
the crack expansion process at a frame rate of 400 FPS. The coordinates of the upper left and
lower right corners of the detection frame for the real–time expansion position of cracks
were obtained through the YOLOv5 algorithm model. If the crack expansion direction
was approximately parallel to the loading direction, the ordinate of the detection frame
were subtracted, and the difference values can be substituted into Equation (9) to obtain
the crack expansion length ∆l. If the crack expansion direction and the loading direction
were at a certain angle, the horizontal and vertical coordinates of the detection frame
were processed by their difference, the obtained horizontal and vertical coordinates were
substituted into Equation (10), respectively, and the crack expansion length ∆l can be also
obtained. The calculation of crack expansion length is shown in Figure 12. In addition, the
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crack expansion rate v (mm/s) is the ratio of the crack expansion length ∆l to the time t
required for the crack expansion.

∆l =
d× py

p
(9)

∆l =
d×

√
px2 + py2

p
(10)

where d is the sample size, mm; Px is the difference in the horizontal axis of the detection
boxes, pixels; Py is the difference in the vertical coordinates of the detection boxes, pixels;
P is the pixel height of the sample, pixels.
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The relationship curve between the master crack expansion rate and the stress level of
the Sj200 sample is shown in Figure 13. During the uniaxial loading process of back–filling
concrete, the propagation rate of the master crack showed a phased change characteristic
of ‘slow decrease—minor fluctuations—sudden increase’ with the increase in stress. After
loading to the yield stress, the master crack expansion rate of the sample suddenly increased,
forming one or more through cracks in a short period of time and the brittle instability
failure of the sample happened. The sudden change in crack expansion rate can be used as
a key indicator to determine the precursor information of back–filling concrete failure.

Materials 2023, 16, x FOR PEER REVIEW 12 of 16 
 

 

The relationship curve between the master crack expansion rate and the stress level 
of the Sj200 sample is shown in Figure 13. During the uniaxial loading process of back–
filling concrete, the propagation rate of the master crack showed a phased change charac-
teristic of ‘slow decrease—minor fluctuations—sudden increase’ with the increase in 
stress. After loading to the yield stress, the master crack expansion rate of the sample sud-
denly increased, forming one or more through cracks in a short period of time and the 
brittle instability failure of the sample happened. The sudden change in crack expansion 
rate can be used as a key indicator to determine the precursor information of back–filling 
concrete failure. 

When the stress was loaded to 56.4% σc, the secondary cracks converged to form the 
master crack 1, the total length of crack expansion was 10.85 mm, and the corresponding 
initial crack expansion rate was 6.17 mm/s. With the increase in stress, the crack was in a 
stable expansion stage. When the stress was loaded to 69.2% σc, the crack expansion length 
was 45.45 mm, and the expansion rate was reduced to 2.46 mm/s. During the propagation 
process, the expansion rate of the master crack showed a slow decrease or a small fluctu-
ation (2.46~10.40 mm/s) because of the larger aggregates or particles with strong cemen-
tation. When the stress was loaded to 84.3% σc, the crack entered the unstable expansion 
stage, with the master crack 1 expanded to 164.05 mm in a short time, and the expansion 
rate suddenly increased to the maximum value of 312 mm/s. 

 
Figure 13. The relationship curve between the crack propagation speed and the stress level of the 
back–filling concrete. 

4.4. The Influence of Size Change on the Dynamic Expansion Law of Cracks 
The crack density M was defined as the ratio of the number of surface cracks W on 

the back–filling concrete sample to its surface area S, and it can be quantitatively analyzed 
the crack expansion law of the back–filling concrete under uniaxial loading conditions. 

The relationship curve between crack density and stress level of Sj200 sample is 
shown in Figure 14. Under uniaxial loading, the number of surface cracks increased with 
the increase in stress level, and the increase in crack density amplification showed the 
characteristics of stage change. When the stress of the sample was loaded to 57.9% σc, the 
internal small−scale cracks began to develop, expand, and connect with each other. The 
macroscopic performance was the initial crack initiation, and the crack density increased 
from 0 to 50 bands/m2. As the loading continues, the internal micro cracks of the sample 
develop steadily, and secondary cracks continued to sprout on the surface, promoting a 
slow increase in crack density. When the stress was loaded to 86.8% σc, the crack density 
increased to 175 bands/m2. The sample reached the yield stress limit, forming multiple 
macro master cracks and accompanying a large number of secondary cracks. When the 
stress was loaded to 98.8% σc, the crack density suddenly increased, and the crack density 

Figure 13. The relationship curve between the crack propagation speed and the stress level of the
back–filling concrete.



Materials 2023, 16, 7503 12 of 16

When the stress was loaded to 56.4% σc, the secondary cracks converged to form the
master crack 1, the total length of crack expansion was 10.85 mm, and the corresponding
initial crack expansion rate was 6.17 mm/s. With the increase in stress, the crack was in
a stable expansion stage. When the stress was loaded to 69.2% σc, the crack expansion
length was 45.45 mm, and the expansion rate was reduced to 2.46 mm/s. During the
propagation process, the expansion rate of the master crack showed a slow decrease or
a small fluctuation (2.46~10.40 mm/s) because of the larger aggregates or particles with
strong cementation. When the stress was loaded to 84.3% σc, the crack entered the unstable
expansion stage, with the master crack 1 expanded to 164.05 mm in a short time, and the
expansion rate suddenly increased to the maximum value of 312 mm/s.

4.4. The Influence of Size Change on the Dynamic Expansion Law of Cracks

The crack density M was defined as the ratio of the number of surface cracks W on the
back–filling concrete sample to its surface area S, and it can be quantitatively analyzed the
crack expansion law of the back–filling concrete under uniaxial loading conditions.

The relationship curve between crack density and stress level of Sj200 sample is
shown in Figure 14. Under uniaxial loading, the number of surface cracks increased with
the increase in stress level, and the increase in crack density amplification showed the
characteristics of stage change. When the stress of the sample was loaded to 57.9% σc, the
internal small–scale cracks began to develop, expand, and connect with each other. The
macroscopic performance was the initial crack initiation, and the crack density increased
from 0 to 50 bands/m2. As the loading continues, the internal micro cracks of the sample
develop steadily, and secondary cracks continued to sprout on the surface, promoting a
slow increase in crack density. When the stress was loaded to 86.8% σc, the crack density
increased to 175 bands/m2. The sample reached the yield stress limit, forming multiple
macro master cracks and accompanying a large number of secondary cracks. When the
stress was loaded to 98.8% σc, the crack density suddenly increased, and the crack density
increased to 300 bands/m2. When the peak stress σc was reached, the crack density
increased to a maximum of 475 bands/m2.
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Due to the different sizes of the back–filling concrete samples, there were some dif-
ferences in the crack density after the failure of the samples. The curve of crack density
with size was shown in Figure 15. When the size increased from 50 mm to 150 mm, the
difference of crack density was 6710 bands/m2, and the decrease was 93.19%. When the
size increased from 150 mm to 200 mm, the difference of crack density was 20 bands/m2

and the decrease was only 4.08%. It can be seen that under uniaxial compression, the crack
density of the back–filling concrete sample showed the characteristics of first decline before
stabilization with the increase in the size.
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Typical failure characteristics of samples with different sizes are shown in Table 2.
When the size of the back–filling concrete sample was small, the master crack after sample
failure was mainly tensile crack, and the failure mode was tensile failure. After the sample
exceeded 150 mm, the development of secondary cracks was less, and the development of
through compression shear cracks was obvious. The failure mode gradually transitioned
from tensile failure to shear failure. When the Sj50 and Sj70 samples were damaged, the
tensile master cracks were link up and accompanied by a large number of secondary
cracks. When the sample of Sj100 was damaged, the left master cracks were parallel to the
principal stress direction, the angle between the right master cracks and the principal stress
direction was about 30◦. At the same time, some secondary crack were developed at the
end, the failure mode was tensile and shear compound destruction. When the samples of
Sj150 and Sj200 were destroyed, the master cracks of compression–shear were penetrated.
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5. Conclusions

(1) The dynamic expansion test of roadway–side back–filling concrete cracks under uni-
axial compression was carried out. An intelligent identification algorithm for dynamic
cracks of back–filling concrete samples was established by using a convolutional neu-
ral network YOLOv5 based on the real–time recording images of the surface cracks of
the samples. The evaluation results show that the F1 values of the evaluation index
and the average precision mean of the identification model reached 75% and 71%,
respectively, and the GIoU loss value was stable at 0.038; the YOLOv5 model achieved
the overall optimal solution and the detection convergence effect was good, which
can intelligently and accurately identify dynamic cracks.

(2) The micro cracks on the surface of the back–filling concrete first initiated at the end dur-
ing the uniaxial compression process. As the loading progressed, multiple secondary
cracks developed in the middle of the sample, and expanded and converged to both
ends. After reaching the yield stress, the surface cracks of the sample expanded unsta-
bly, and the secondary cracks gradually penetrated to form one or more master cracks
until they fail. The surface cracks of back–filling concrete samples increased with
the increase in stress level, and the increase in crack density and fractal dimensions
showed the characteristics of stage change. The expansion rate of the master crack
showed the stage characteristics of a “slow decrease—minor fluctuations—sudden
increase”; with the increase in stress, a macroscopic through master crack of time can
be formed in a short period. The precursory characteristics of crack development of
back–filling concrete were significant.

(3) The size effects of the dynamic crack expansion law and failure mode of back–filling
concrete were obvious. After the failure of the back–filling concrete, the crack density
rapidly decreased and then steadily developed with the increase in the size. When the
size was small, the crack network on the surface of the back–filling concrete tended
to be complex, and the failure mode of the sample was mainly tensile failure. As the
size increased, the crack network developed from complex to simple and the failure
mode gradually transitioned from tensile failure to shear failure. At the same time, the
research results can provide some reference for the mechanical properties experiment
of back–filling concrete and the optimization design of field size.

6. Future Prospect

This article prepared samples of different sizes of back–filling concrete and conducted
dynamic crack extension experiments on back–filling concrete under uniaxial compression.
The YOLOv5 algorithm was used and was combined with fractal theory to reveal the
dynamic crack expansion rule and size effect of the roadway–side support body. In the
future, the discrete element numerical simulation method can be used to study the dynamic
crack expansion rule and size effect of larger size filling concrete. The above research results
provide a basic experimental basis for the design optimization and instability prediction of
a roadway–side support body for engineering–scale applications.
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back–filling concrete samples.
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