Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = predicted heat strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

20 pages, 18429 KiB  
Article
Automated Strain-Based Processing Route Generation for Curved Plate Forming in Shipbuilding
by Lichun Chang, Yao Zhao, Zhenshuai Wei and Hua Yuan
J. Mar. Sci. Eng. 2025, 13(8), 1399; https://doi.org/10.3390/jmse13081399 - 23 Jul 2025
Viewed by 148
Abstract
Curved plate forming is essential in shipbuilding but traditionally relies on manual methods with low efficiency. Achieving automation in curved plate forming requires robust methods to generate processing solutions. This paper introduces a novel method for deriving the processing routes and strain distributions [...] Read more.
Curved plate forming is essential in shipbuilding but traditionally relies on manual methods with low efficiency. Achieving automation in curved plate forming requires robust methods to generate processing solutions. This paper introduces a novel method for deriving the processing routes and strain distributions necessary to form complex curve plate using integrated heating and mechanical rolling forming equipment. The key aspects of this method include analyzing the target surface and solving for the required processing strains based on finite element analysis, discretizing the strain paths and refining them into engineering-feasible processing routes, deriving processing schemes from the calculated strains, and predicting and validating the processing schemes using the inherent strain method. The method is validated by applying it to typical surface of ship hull plates. Key outcomes demonstrate the method’s effectiveness and applicability: (1) The proposed method effectively establishes a quantitative relationship between the target surface geometry, processing routes, and the required processing strains. (2) By analyzing various target surface cases, the method demonstrates wide applicability. Standardized procedures can be applied to different surface shapes to derive the necessary processing routes and strains, thereby laying a solid foundation for the automation of curved hull plate forming. (3) Experimental forming tests on typical curved surfaces confirm that the processing schemes based on the proposed strain generation method can reliably achieve the desired geometries, showcasing the method’s capability to guide practical forming processes. The comparison between the formed and target shapes shows that the processing deviation of the schemes generated by this method remains within 5 mm, demonstrating high accuracy. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 40657 KiB  
Article
Development and Analysis of a Sustainable Interlayer Hybrid Unidirectional Laminate Reinforced with Glass and Flax Fibres
by York Schwieger, Usama Qayyum and Giovanni Pietro Terrasi
Polymers 2025, 17(14), 1953; https://doi.org/10.3390/polym17141953 - 16 Jul 2025
Viewed by 257
Abstract
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because [...] Read more.
In this study, a new fibre combination for an interlayer hybrid fibre-reinforced polymer laminate was investigated to achieve pseudo-ductile behaviour in tensile tests. The chosen high-strain fibre for this purpose was S-Glass, and the low-strain fibre was flax. These materials were chosen because of their relatively low environmental impact compared to carbon/carbon and carbon/glass hybrids. An analytical model was used to find an ideal combination of the two materials. With that model, the expected stress–strain relation could also be predicted analytically. The modelling was based on preliminary tensile tests of the two basic components investigated in this research: unidirectional laminates reinforced with either flax fibres or S-Glass fibres. Hybrid specimens were then designed, produced in a heat-assisted pressing process, and subjected to tensile tests. The strain measurement was performed using distributed fibre optic sensing. Ultimately, it was possible to obtain repeatable pseudo-ductile stress–strain behaviour with the chosen hybrid when the specimens were subjected to quasi-static uniaxial tension in the direction of the fibres. The intended damage-mode, consisting of a controlled delamination at the flax-fibre/glass-fibre interface after the flax fibres failed, followed by a load transfer to the glass fibre layers, was successfully achieved. The pseudo-ductile strain averaged 0.52% with a standard deviation of 0.09%, and the average load reserve after delamination was 145.5 MPa with a standard deviation of 48.5 MPa. The integrated fibre optic sensors allowed us to monitor and verify the damage process with increasing strain and load. Finally, the analytical model was compared to the measurements and was partially modified by neglecting the Weibull strength distribution of the high-strain material. Full article
Show Figures

Figure 1

19 pages, 4647 KiB  
Article
The Prediction of High-Temperature Bulging Deformations in Non-Uniform Welded Tubes and Its Application to Complex-Shaped Tubular Parts
by Zhenyu Zhang, Yanli Lin, Xianggang Ruan, Jiangkai Liang, Tianyu Wang, Junzhuo Wang and Zhubin He
Materials 2025, 18(12), 2882; https://doi.org/10.3390/ma18122882 - 18 Jun 2025
Viewed by 301
Abstract
Boron steel welded tubes show strong potential as blanks in the integrated hot gas forming–quenching process for fabricating complex thin-walled automotive parts. Nonetheless, the non-uniform characteristics of the base metal and the weld in the high-heat welded tube can result in uneven deformation [...] Read more.
Boron steel welded tubes show strong potential as blanks in the integrated hot gas forming–quenching process for fabricating complex thin-walled automotive parts. Nonetheless, the non-uniform characteristics of the base metal and the weld in the high-heat welded tube can result in uneven deformation during the bulging process. This inconsistency hampers precise predictions of the deformation behavior of the welded tubes at high temperatures. Accordingly, this research explored the flow characteristics and mechanical properties of PHS1500 boron steel welded tubes. This research was conducted at 850 °C and 900 °C, with strain rates of 0.01 s−1–1 s−1. The Johnson–Cook model was modified for both the base metal and the weld using experimental stress–strain data. Meanwhile, to assess the model precisions, the correlation coefficient r and the average absolute relative error (AARE) were employed. Finally, hot gas forming of PHS1500 boron steel welded tubular parts with complex shapes was predicted through a finite element analysis. This research showed a positive correlation of the strain rate with both the yield and tensile strengths in the base metal and the weld. The average yield strength and tensile strength of the weld were 12.8% and 3.9% higher than those of the base metal, respectively. The r and AARE of the modified Johnson–Cook constitutive model for the base metal’s and the weld’s flow stress were 0.99 and 2.23% and 0.982 and 5.31%, respectively. The maximum deviation in the predictions of the distribution of the wall thickness of a typical cross-section of the formed complex-shaped tubular parts was less than 8%. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Engineering Materials (2nd Edition))
Show Figures

Figure 1

18 pages, 11001 KiB  
Article
Temperature Prediction Model for Horizontal Shale Gas Wells Considering Stress Sensitivity
by Jianli Liu, Fangqing Wen, Hu Han, Daicheng Peng, Qiao Deng and Dong Yang
Processes 2025, 13(6), 1896; https://doi.org/10.3390/pr13061896 - 15 Jun 2025
Viewed by 471
Abstract
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore [...] Read more.
In the production process of horizontal wells, wellbore temperature data play a critical role in predicting shale gas production. This study proposes a coupled thermo-hydro-mechanical (THM) mathematical model that accounts for the influence of the stress field when determining the distribution of wellbore temperature. The model integrates the effects of heat transfer in the temperature field, gas transport in the seepage field, and the mechanical deformation of shale induced by the stress field. The coupled model is solved using the finite difference method. The model was validated against field data from shale gas production, and sensitivity analyses were conducted on seven key parameters related to the stress field. The findings indicate that the stress field exerts an influence on both the wellbore temperature distribution and the total gas production. Neglecting the stress field effects may lead to an overestimation of shale gas production by up to 12.9%. Further analysis reveals that reservoir porosity and Langmuir volume are positively correlated with wellbore temperature, while permeability, Young’s modulus, Langmuir pressure, the coefficient of thermal expansion, and adsorption strain are negatively correlated with wellbore temperature. Full article
Show Figures

Figure 1

26 pages, 4898 KiB  
Article
Antibacterial Crosslinker for Ternary PCL-Reinforced Hydrogels Based on Chitosan, Polyvinyl Alcohol, and Gelatin for Tissue Engineering
by Karina Del Angel-Sánchez, Ana Victoria Treviño-Pacheco, Imperio Anel Perales-Martínez, Oscar Martínez-Romero, Daniel Olvera-Trejo and Alex Elías-Zúñiga
Polymers 2025, 17(11), 1520; https://doi.org/10.3390/polym17111520 - 29 May 2025
Cited by 1 | Viewed by 809
Abstract
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and [...] Read more.
Current hydrogels used for cartilage tissue engineering often lack the mechanical strength and structural integrity required to mimic native human cartilage. This study addresses this limitation by developing reinforced hydrogels based on a ternary polymer blend of poly(vinyl) alcohol (PVA), gelatin (GL), and chitosan (CH), with gentamicin sulfate (GS) as an antimicrobial agent and a crosslinker. The hydrogels were produced using two crosslinking methods, the freeze/thaw and heated cycles, and reinforced with forcespun polycaprolactone (PCL) nanofiber to improve mechanical performance. Chemical characterization revealed that GS forms weak hydrogen bonds with the ternary polymers, leading to esterification with PVA, and covalent bonds are formed as the result of the free amino group (-NH2) of chitosan that reacts with the carboxylic acid group (-COOH) of gelatin. SEM images help us to see how the hydrogels are reinforced with polycaprolactone (PCL) fibers produced via force spinning technology, while mechanical properties were evaluated via uniaxial tensile and compressive tests. Water retention measurements were performed to examine the crosslinking process’s influence on the hydrogel’s water retention, while the hydrogel surface roughness was obtained via confocal microscopy images. A constitutive model based on non-Gaussian strain energy density was introduced to predict experimental mechanical behavior data of the hydrogel, considering a non-monotonous softening function. Loading and unloading tests demonstrated that GS enhanced crosslinking without compromising water retention or biocompatibility because of the reaction between the free amino group of CH and the carboxylic group of gelatin. The PCL-reinforced PVA/GL/CH hydrogel shows strong potential for cartilage repair and tissue engineering applications. Full article
Show Figures

Figure 1

17 pages, 7596 KiB  
Article
Graphene Oxide-Modulated Nanocellulose/Polyacrylamide/Sodium Alginate Hierarchical Network Hydrogel for Flexible Sensing
by Yanan Wang, Yanan Lu, Jiaming Wang, Chensen Huang, Minghui Guo and Xing Gao
Gels 2025, 11(6), 379; https://doi.org/10.3390/gels11060379 - 22 May 2025
Viewed by 425
Abstract
The application of hydrogels in flexible sensing has received increasing attention, but the simultaneous preparation of hydrogels with good structural stability, strain sensing sensitivity, freezing resistance, and drying resistance remains a challenge. Based on this, a GG-nanocellulose/sodium alginate/polyacrylamide composite hydrogel with a hierarchical [...] Read more.
The application of hydrogels in flexible sensing has received increasing attention, but the simultaneous preparation of hydrogels with good structural stability, strain sensing sensitivity, freezing resistance, and drying resistance remains a challenge. Based on this, a GG-nanocellulose/sodium alginate/polyacrylamide composite hydrogel with a hierarchical network structure was constructed by one-step synthesis by incorporating graphene oxide (GO) and glycerol into the hydrogel. The hydrogel remained structurally intact after 100 compression cycles. In addition, the hydrogel was dried at 30 °C for 24 h. The mass retention rate was 48%, the melting peak was as low as −13.87 °C, and the hydrogel remained flexible and stable at low temperatures. GO modulated the network structure arrangement of the hydrogel through various mechanisms, thereby conferring to the hydrogel an excellent sensing performance, with a sensitivity (GF) of 2.21. In conclusion, this hierarchical network hydrogel has good drying, freezing, and sensing properties, which provides a new viable strategy for monitoring motion signals. Moreover, the hydrogel is predicted to function as a dressing, thereby facilitating the absorption of heat from the skin’s surface, with the aim of alleviating the discomfort associated with joint and muscle injuries caused by strenuous exercise. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

27 pages, 6433 KiB  
Article
Application of Advanced Multi-Parameter Monitoring in Concrete Structure Defect Detection: Integrating Thermal Integrity Profiling and Strain Analysis
by Linhai Lu, Xin Zhang, Xiaojun Li and Yanyun Lu
Buildings 2025, 15(8), 1350; https://doi.org/10.3390/buildings15081350 - 18 Apr 2025
Viewed by 476
Abstract
Thermal Integrity Profiling (TIP) effectively monitors concrete integrity. TIP detects structural defects and locates them through anomalies in hydration–temperature curves. However, TIP alone cannot accurately identify the defect types. To resolve this limitation, strain monitoring is integrated with TIP. A dual-parameter temperature–strain monitoring [...] Read more.
Thermal Integrity Profiling (TIP) effectively monitors concrete integrity. TIP detects structural defects and locates them through anomalies in hydration–temperature curves. However, TIP alone cannot accurately identify the defect types. To resolve this limitation, strain monitoring is integrated with TIP. A dual-parameter temperature–strain monitoring system using fiber-optic sensing was implemented in a diaphragm wall of Weizishan Station, Jinan. This study investigated the spatial distribution and variation patterns of concrete temperature–strain during the different stages of hydration. A thermal–mechanical–chemical multi-field coupling model was established based on the concrete mix ratio and the theoretical thermal parameters, and its feasibility was verified. This study also analyzed the impact mechanisms of four defect types—voids, mud inclusions, necking, and widening—on the surrounding concrete’s heat release and deformation during hydration. It presents specific hydration–temperature–strain characteristic curves that can accurately differentiate the defect types and established the correspondence between the defect types and these characteristic patterns. Finally, a rapid and accurate defect identification process is proposed for practical application, improving efficiency and precision in detecting anomalies. The findings provide a reference for implementing appropriate defect prevention and remediation measures on-site and hold promise for enhancing the prediction and control of defects during the hydration period of concrete structures. Full article
Show Figures

Figure 1

19 pages, 3928 KiB  
Article
Impact of Heat Treatment Parameters on the Plastic Properties of 6061 Aluminum Alloy
by Xiangdong Jia, Zhenyu Fan, Zhan Luo, Gang Hu and Hongyao Zhang
Materials 2025, 18(8), 1705; https://doi.org/10.3390/ma18081705 - 9 Apr 2025
Cited by 2 | Viewed by 598
Abstract
The 6061 aluminum alloy is extensively utilized in the production of aircraft components, valve parts, and maritime equipment, owing to its exceptional corrosion resistance, weldability, machinability, and anodic oxidation performance. This study investigates the effects of different heat treatment parameters on the mechanical [...] Read more.
The 6061 aluminum alloy is extensively utilized in the production of aircraft components, valve parts, and maritime equipment, owing to its exceptional corrosion resistance, weldability, machinability, and anodic oxidation performance. This study investigates the effects of different heat treatment parameters on the mechanical properties of 6061 aluminum alloy. A series of orthogonal experiments were conducted, including quasi-static tensile tests using a QJBV212F-300KN universal testing machine following different solution and aging treatments. Scanning electron microscopy (SEM) was employed for microstructural characterization, revealing the mechanisms by which different heat treatment conditions impact the alloy’s mechanical properties. The test results indicate that the plasticity of 6061 aluminum alloy improves progressively within the temperature range of 510 °C to 540 °C. However, when the solution treatment temperature is elevated to 570 °C, significant grain coarsening occurs, leading to increased brittleness at the grain boundaries and reduced plasticity. Additionally, the elongation of 6061 aluminum alloy initially decreases and then increases as the aging time increases. Based on the experiments, a Hansel–Spittel constitutive model was developed, incorporating temperature, strain rate, and strain effects to accurately predict the flow stress of 6061 aluminum alloy under varying heat treatment conditions. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 11567 KiB  
Article
Micromechanical Fracture Model of High-Strength Welded Steel Under Cyclic Loading
by Xiyue Liu, Yuanqing Wang, Xingyu Zhen, Yilin Yue, Manchao He and Yicong Ye
Buildings 2025, 15(8), 1218; https://doi.org/10.3390/buildings15081218 - 8 Apr 2025
Cited by 1 | Viewed by 428
Abstract
To investigate the micromechanical fracture behavior of high-strength steel, an integrated experimental and numerical study was conducted on Q460C steel and its welded joints, with specimens extracted from the base metal, weld metal, and the heat-affected zone (HAZ). Eighteen smooth round bars were [...] Read more.
To investigate the micromechanical fracture behavior of high-strength steel, an integrated experimental and numerical study was conducted on Q460C steel and its welded joints, with specimens extracted from the base metal, weld metal, and the heat-affected zone (HAZ). Eighteen smooth round bars were tested under monotonic and cyclic loading to analyze mechanical performance and stress–strain curves. A constitutive model was developed based on the experimental results and numerical simulations. Additionally, eighteen notched round bars with three different notch sizes and three different zones were tested under monotonic loading, and thirty-six notched round bars with three different notch sizes, three different zones, and two loading protocols were tested under cyclic loading. The stress-modified critical strain model (SMCS) and void growth model (VGM) were calibrated and validated using the test results. The study reveals that the HAZ is more susceptible to cracking under cyclic loading. A positive correlation between toughness parameters and plasticity was discovered. The validated VGM and SMCS provide a reliable tool for predicting ductile fracture in Q460C steel and its welds, offering significant insights for the design and safety assessment of high-strength steel structures. Full article
Show Figures

Figure 1

35 pages, 3888 KiB  
Article
Predictive Modeling of Surface Integrity and Material Removal Rate in Computer Numerical Control Machining: Effects of Thermal Conductivity and Hardness
by Mohammad S. Alsoufi and Saleh A. Bawazeer
Materials 2025, 18(7), 1557; https://doi.org/10.3390/ma18071557 - 29 Mar 2025
Cited by 4 | Viewed by 453
Abstract
This study investigates the influence of thermal conductivity and hardness on computer numerical control (CNC) turning performance, focusing on key machining metrics—material removal rate (MRR), surface roughness (Ra), and surface waviness (Wa)—across five engineering materials: aluminum 6061, [...] Read more.
This study investigates the influence of thermal conductivity and hardness on computer numerical control (CNC) turning performance, focusing on key machining metrics—material removal rate (MRR), surface roughness (Ra), and surface waviness (Wa)—across five engineering materials: aluminum 6061, brass C26000, bronze C51000, carbon steel 1020, and stainless steel 304. Experimental results reveal a strong correlation between material properties and machining efficiency. Materials with high thermal conductivity (>100 W/m·K) exhibited up to 38% higher MRR and improved surface integrity compared to low-conductivity counterparts. Aluminum 6061 achieved the highest MRR (7.5 mm3/min at a 0.25 mm/rev feed rate), with the lowest Ra (~0.58 µm) and Wa (~0.4576 µm), confirming its excellent machinability and heat dissipation. Conversely, stainless steel 304, characterized by low thermal conductivity (16 W/m·K) and high hardness (210 HBW), recorded the lowest MRR (1.125 mm3/min), elevated Ra (>1.0 µm), and substantial waviness (Wa ~0.9442 µm), indicating severe tool wear and thermal deformation. A multivariable regression model incorporating cutting speed, feed rate, thermal conductivity, and hardness was developed to predict MRR, achieving high predictive accuracy (R2 > 0.92) for high-conductivity materials. Deviations of ±0.5 mm3/min were observed in harder, low-conductivity materials due to nonlinear effects such as strain hardening and thermal expansion. Measurement uncertainty analysis, with an estimated expanded uncertainty of ±2.5% for MRR and ±0.02 µm for surface metrics, ensures the reliability of these findings. These results underscore the importance of material-specific machining parameter optimization to enhance productivity, surface quality, and tool longevity in high-precision industries, including aerospace, automotive, and biomedical manufacturing. Full article
Show Figures

Figure 1

22 pages, 5551 KiB  
Article
Primary and Low-Strain Creep Models for 9Cr Tempered Martensitic Steels Including the Effects of Irradiation Softening and High-Helium Re-Hardening
by Md Ershadul Alam, Takuya Yamamoto and George Robert Odette
Metals 2025, 15(4), 354; https://doi.org/10.3390/met15040354 - 24 Mar 2025
Viewed by 485
Abstract
Primary and low-strain creep represents a very important integrity challenge to large, complex structures, like fusion reactors. Here, we develop a predictive empirical primary creep model for 9Cr tempered martensitic steels (TMS), relating the applied stress (σ) to strain (ε), time (t) and [...] Read more.
Primary and low-strain creep represents a very important integrity challenge to large, complex structures, like fusion reactors. Here, we develop a predictive empirical primary creep model for 9Cr tempered martensitic steels (TMS), relating the applied stress (σ) to strain (ε), time (t) and temperature (T). The most accurate model is based on the applied σ normalized by the steel’s T-dependent ultimate tensile stress (σo), σ/σo(T). The model, fit to 17 heats of 9Cr TMS, yielded a σ root mean square error (RMSE) of ≈±11 MPa. Notably, the model also provides robust predictions for all the other TMS, when calibrated only by the fusion candidate Eurofer97 database. The model was extended to explore two possible effects of neutron irradiation, which produces both displacements per atom (dpa) and helium (He in atomic parts per million, appm) damage. These effects, which have not been previously considered, include: (a) softening, as a function of dpa, at T > ≈400–450 °C, in low-He fission environments (<1 He/dpa); and (b) subsequent re-hardening in high-He (≥10 He/dpa) fusion first-wall environments. The irradiation effect models predict (a) accelerated primary creep due to irradiation softening; and (b) fully arrested creep due to high-He re-hardening. Full article
(This article belongs to the Special Issue Manufacture, Properties and Applications of Advanced Nuclear Alloys)
Show Figures

Figure 1

19 pages, 8557 KiB  
Article
Bearing Behaviors of Grouted Sleeve Connections After High Temperature Followed by Water Cooling Under Cyclic Loading
by Wangxi Zhang, Jialu Wang, Yibo Zhou, Jia Wang and Weijian Yi
Buildings 2025, 15(7), 1014; https://doi.org/10.3390/buildings15071014 - 21 Mar 2025
Cited by 1 | Viewed by 252
Abstract
As a common rebar connector in prefabricated projects, the grouted sleeve connection (GSC) affects structural performance during fire and seismic events. However, the combined impact of both factors may alter GSC performance, although most studies concentrate on high temperature or loading schemes. Few [...] Read more.
As a common rebar connector in prefabricated projects, the grouted sleeve connection (GSC) affects structural performance during fire and seismic events. However, the combined impact of both factors may alter GSC performance, although most studies concentrate on high temperature or loading schemes. Few quantitative models are available for predicting the mechanical characteristics of post-fire GSCs under unidirectional tension, let alone cyclic loading. In this study, 18 GSC specimens were made and subjected to heating, water cooling, and cyclic loading. Thermal and mechanical loads caused rebar fracture below 400 °C, but pullout failure occurred beyond 400 °C. GSC performance declined as temperature and loading cycles increased. Based on this test and several previous investigations, predictive models with guaranteed rates for GSC performance after high temperature by water cooling under uniaxial and cyclic loading were constructed. According to the predictive models, the four parameters (including yield strength, ultimate strength, elastic modulus, and ultimate strain) of the GSCs using HRB400 rebars can be obtained. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 11957 KiB  
Article
Improving Simulation Model Accuracy for Friction Stir Welding of AA 2219
by Kennen Brooks, Bryan Ramos, David J. Prymak, Tracy W. Nelson and Michael P. Miles
Materials 2025, 18(5), 1046; https://doi.org/10.3390/ma18051046 - 27 Feb 2025
Viewed by 808
Abstract
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive [...] Read more.
Modeling of friction stir welding (FSW) is challenging, as there are large gradients in both strain rate and temperature (typically between 450 and 500 °C in aluminum alloys) that must be accounted for in the constitutive law of the material being joined. Constitutive laws are most often calibrated using flow stresses from hot compression or hot torsion testing, where strain rates are much lower than those seen in the stir zone of the FSW process. As such, the current work employed a recently developed method to measure flow stresses at high strain rates and temperatures in AA 2219-T67, and these data were used in the development of a finite element (FE) simulation of FSW. Because heat generation during FSW is primarily a function of friction between the rapidly spinning tool and the plate, the choice of friction law and associated parameters were also studied with respect to FE model predictions. It was found that the Norton viscoplastic friction law provided the most accurate modeling results, for both the transient and steady-state phases of an FSW plunge experiment. It is likely that the superior performance of the Norton law was its ability to account for temperature and rate sensitivity of the plate material sheared by the tool, while the Tresca-limited Coulomb law favored contact pressure, with essentially no temperature or rate dependence of the local material properties. With optimized friction parameters and more accurate flow stresses for the weld zone, as measured by a high-pressure shear test, a 65% overall reduction in model error was achieved, compared to a model that employed a material law calibrated with hot compression or hot torsion test results. Model error was calculated as an equally weighted comparison of temperatures, torques, and forces with experimentally measured values. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Elastic Characterization of Acrylate-Based Liquid Crystal Elastomers
by Gevorg S. Gevorgyan, Maksim L. Sargsyan, Mariam R. Hakobyan, Matthew Reynolds, Helen F. Gleeson and Rafik S. Hakobyan
Polymers 2025, 17(5), 614; https://doi.org/10.3390/polym17050614 - 25 Feb 2025
Viewed by 1013
Abstract
Liquid crystal elastomers (LCEs) are innovative materials best known for their reversible shape and optical property changes in response to external stimuli such as heat, light, and mechanical forces. These unique features position them as promising candidates for applications in emerging technologies. The [...] Read more.
Liquid crystal elastomers (LCEs) are innovative materials best known for their reversible shape and optical property changes in response to external stimuli such as heat, light, and mechanical forces. These unique features position them as promising candidates for applications in emerging technologies. The determination of the mechanical properties of these materials is important for the study of the interaction between orientational and mechanical deformations of LCEs. Importantly, thoroughly characterizing the mechanical and elastic properties of LCEs is essential for their efficient design and integration into various devices. In this study, a full elastic characterization of promising acrylate-based LCE materials that are auxetic above a material-dependent strain threshold (~0.4 for the material studied here) was carried out. Highly aligned macroscopic samples were fabricated, allowing us to determine, for the first time, the five elasticity coefficients that enter into the elastic-free energy density of acrylate-based LCE materials, as well as the Young’s moduli and Poisson ratios. Our approach involves connecting measured strains with elasticity coefficients and using data obtained from three tensile experiments. Specifically, the measured Young’s moduli are on the order of MPa, with an anisotropy ratio (E‖/E⊥) of ~4.5. Moreover, the longitudinal Poisson ratios are both close to 0.5, confirming a uniaxial elastic response at low strains in these LCE samples. These findings align with theoretical predictions, indicating a good correspondence between experimental results and established theories. Full article
Show Figures

Figure 1

Back to TopTop