Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (222)

Search Parameters:
Keywords = precision nutrition strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 938 KiB  
Review
Enhancing Oil Content in Oilseed Crops: Genetic Insights, Molecular Mechanisms, and Breeding Approaches
by Guizhen Gao, Lu Zhang, Panpan Tong, Guixin Yan and Xiaoming Wu
Int. J. Mol. Sci. 2025, 26(15), 7390; https://doi.org/10.3390/ijms26157390 (registering DOI) - 31 Jul 2025
Abstract
Vegetable oils are essential for human nutrition and industrial applications. With growing global demand, increasing oil content in oilseed crops has become a top priority. This review synthesizes recent progress in understanding the genetic, environmental, and molecular mechanisms regulating oil content, and presents [...] Read more.
Vegetable oils are essential for human nutrition and industrial applications. With growing global demand, increasing oil content in oilseed crops has become a top priority. This review synthesizes recent progress in understanding the genetic, environmental, and molecular mechanisms regulating oil content, and presents biotechnological strategies to enhance oil accumulation in major oilseed crops. Oil biosynthesis is governed by intricate genetic–environmental interactions. Environmental factors and agronomic practices significantly impact oil accumulation dynamics. Quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) have identified key loci and candidate genes involved in lipid biosynthesis pathways. Transcription factors and epigenetic regulators further fine-tune oil accumulation. Biotechnological approaches, including marker-assisted selection (MAS) and CRISPR/Cas9-mediated genome editing, have successfully generated high-oil-content variants. Future research should integrate multi-omics data, leverage AI-based predictive breeding, and apply precision genome editing to optimize oil yield while maintaining seed quality. This review provides critical references for the genetic improvement and breeding of high- and ultra-high-oil-content varieties in oilseed crops. Full article
(This article belongs to the Special Issue Rapeseed: Genetic Breeding, Key Trait Mining and Genome)
Show Figures

Figure 1

25 pages, 26404 KiB  
Review
Review of Deep Learning Applications for Detecting Special Components in Agricultural Products
by Yifeng Zhao and Qingqing Xie
Computers 2025, 14(8), 309; https://doi.org/10.3390/computers14080309 - 30 Jul 2025
Abstract
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications [...] Read more.
The rapid evolution of deep learning (DL) has fundamentally transformed the paradigm for detecting special components in agricultural products, addressing critical challenges in food safety, quality control, and precision agriculture. This comprehensive review systematically analyzes many seminal studies to evaluate cutting-edge DL applications across three core domains: contaminant surveillance (heavy metals, pesticides, and mycotoxins), nutritional component quantification (soluble solids, polyphenols, and pigments), and structural/biomarker assessment (disease symptoms, gel properties, and physiological traits). Emerging hybrid architectures—including attention-enhanced convolutional neural networks (CNNs) for lesion localization, wavelet-coupled autoencoders for spectral denoising, and multi-task learning frameworks for joint parameter prediction—demonstrate unprecedented accuracy in decoding complex agricultural matrices. Particularly noteworthy are sensor fusion strategies integrating hyperspectral imaging (HSI), Raman spectroscopy, and microwave detection with deep feature extraction, achieving industrial-grade performance (RPD > 3.0) while reducing detection time by 30–100× versus conventional methods. Nevertheless, persistent barriers in the “black-box” nature of complex models, severe lack of standardized data and protocols, computational inefficiency, and poor field robustness hinder the reliable deployment and adoption of DL for detecting special components in agricultural products. This review provides an essential foundation and roadmap for future research to bridge the gap between laboratory DL models and their effective, trusted application in real-world agricultural settings. Full article
(This article belongs to the Special Issue Deep Learning and Explainable Artificial Intelligence)
Show Figures

Figure 1

18 pages, 301 KiB  
Review
Restoring a Healthy Relationship with Food by Decoupling Stress and Eating: A Translational Review of Nutrition and Mental Health
by Alison Warren and Leigh A. Frame
Nutrients 2025, 17(15), 2466; https://doi.org/10.3390/nu17152466 - 29 Jul 2025
Viewed by 234
Abstract
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly [...] Read more.
Psychological stress and dietary behavior are interdependent forces that greatly influence mental and physical health. Thus, both what and how we eat impact our well-being. Maladaptive eating patterns, such as eating in response to emotional cues rather than physiological hunger, have become increasingly common amid modern stressors and an ultra-processed food environment. This narrative review synthesizes interdisciplinary findings from nutritional psychiatry, microbiome science, and behavioral nutrition to explore how stress physiology, gut–brain interactions, and dietary quality shape emotional regulation and eating behavior. It highlights mechanisms (e.g., HPA-axis dysregulation, blunted interoception, and inflammatory and epigenetic pathways) and examines the evidence for mindful and intuitive eating; phytochemical-rich, whole-food dietary patterns; and the emerging role of precision nutrition. Trauma-informed approaches, cultural foodways, structural barriers to healthy eating, and clinical implementation strategies (e.g., interprofessional collaboration) are considered in the context of public health equity to support sustainable mental wellness through dietary interventions. Ultimately, restoring a healthy relationship with food positions nutrition not only as sustenance but as a modifiable regulator of affect, cognition, and stress resilience, central to mental and physical well-being. Full article
(This article belongs to the Special Issue The Interdependence of Nutrition and Mental Well-Being)
30 pages, 1655 KiB  
Review
Brassinosteroids in Cucurbits: Modulators of Plant Growth Architecture and Stress Response
by Renata Słomnicka, Magdalena Cieplak, Ana Montserrat Martín-Hernández and Grzegorz Bartoszewski
Int. J. Mol. Sci. 2025, 26(15), 7234; https://doi.org/10.3390/ijms26157234 - 26 Jul 2025
Viewed by 329
Abstract
Brassinosteroids (BRs) are steroid hormones that are essential for plant growth, development, and environmental adaptation. They control the division, elongation, and differentiation of various cell types throughout the entire plant life cycle, affecting growth and the stress response. Therefore, fine-tuning of BR biosynthesis [...] Read more.
Brassinosteroids (BRs) are steroid hormones that are essential for plant growth, development, and environmental adaptation. They control the division, elongation, and differentiation of various cell types throughout the entire plant life cycle, affecting growth and the stress response. Therefore, fine-tuning of BR biosynthesis and modulation of signaling pathways offer possibilities for developing cultivars characterized by adjusted plant architecture or improved stress tolerance to benefit crop production. Additionally, precise BR treatments can be employed to increase the productivity of crop plants. This review aims to provide a comprehensive summary of the genetic basis of traits related to BR metabolism and signaling in cucurbits, the second largest vegetable family, which contributes significantly to global vegetable production and nutritional security. We summarize the current knowledge concerning BR biosynthesis mutants, the role of BRs in stress mitigation, and the potential of the exogenous application of BRs to alleviate stress during cucurbit production. We also discuss how genes related to BR metabolism can be used to develop gene editing strategies to advance precision breeding in cucurbits. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics, 3rd Edition)
Show Figures

Figure 1

13 pages, 573 KiB  
Review
Developmental Programming and Postnatal Modulations of Muscle Development in Ruminants
by Kiersten Gundersen and Muhammad Anas
Biology 2025, 14(8), 929; https://doi.org/10.3390/biology14080929 - 24 Jul 2025
Viewed by 269
Abstract
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5 [...] Read more.
Prenatal and postnatal skeletal muscle development in ruminants is coordinated by interactions between genetic, nutritional, epigenetic, and endocrine factors. This review focuses on the influence of maternal nutrition during gestation on fetal myogenesis, satellite cell dynamics, and myogenic regulatory factors expression, including MYF5, MYOD1, and MYOG. Studies in sheep and cattle indicate that nutrient restriction or overnutrition alters muscle fiber number, the cross-sectional area, and the transcriptional regulation of myogenic genes in offspring. Postnatally, muscle hypertrophy is primarily mediated by satellite cells, which are activated via PAX7, MYOD, and MYF5, and regulated through mechanisms such as CARM1-induced chromatin remodeling and miR-31-mediated mRNA expression. Hormonal signaling via the GH–IGF1 axis and thyroid hormones further modulate satellite cell proliferation and protein accretion. Genetic variants, such as myostatin mutations in Texel sheep and Belgian Blue cattle, enhance muscle mass but may compromise reproductive efficiency. Nutritional interventions, including the plane of nutrition, supplementation strategies, and environmental stressors such as heat and stocking density, significantly influence muscle fiber composition and carcass traits. This review provides a comprehensive overview of skeletal muscle programming in ruminants, tracing the developmental trajectory from progenitor cell differentiation to postnatal growth and maturation. These insights underscore the need for integrated approaches combining maternal diet optimization, molecular breeding, and precision livestock management to enhance muscle growth, meat quality, and production sustainability in ruminant systems. Full article
Show Figures

Figure 1

15 pages, 1486 KiB  
Article
Genetic Variants in Metabolic Pathways and Their Role in Cardiometabolic Risk: An Observational Study of >4000 Individuals
by Angeliki Kapellou, Thanasis Fotis, Dimitrios Miltiadis Vrachnos, Effie Salata, Eleni Ntoumou, Sevastiani Papailia and Spiros Vittas
Biomedicines 2025, 13(8), 1791; https://doi.org/10.3390/biomedicines13081791 - 22 Jul 2025
Viewed by 339
Abstract
Background/Objectives: Obesity, a major risk factor for cardiometabolic traits, is influenced by both genetic and environmental factors. Genetic studies have identified multiple single-nucleotide polymorphisms (SNPs) associated with obesity and related traits. This study aimed to examine the association between genetic risk score (GRS) [...] Read more.
Background/Objectives: Obesity, a major risk factor for cardiometabolic traits, is influenced by both genetic and environmental factors. Genetic studies have identified multiple single-nucleotide polymorphisms (SNPs) associated with obesity and related traits. This study aimed to examine the association between genetic risk score (GRS) and obesity-associated traits, while incorporating SNPs with established gene–diet interactions to explore their potential role in precision nutrition (PN) strategies. Methods: A total of 4279 participants were stratified into low- and intermediate-/high-GRS groups based on 18 SNPs linked to obesity and cardiometabolic traits. This study followed a case–control design, where cases included individuals with overweight/obesity, T2DM-positive (+), or CVD-positive (+) individuals and controls, which comprised individuals free of these traits. Logistic regression area under the curve (AUC) models were used to assess the predictive power of the GRS and traditional risk factors on BMI, T2DM and CVD. Results: Individuals in the intermediate-/high-GRS group had higher odds of being overweight or obese (OR = 1.23, CI: 1.03–1.48, p = 0.02), presenting as T2DM+ (OR = 1.56, CI: 1.03–2.49, p = 0.03) and exhibiting CVD-related traits (OR = 1.56, CI: 1.25–1.95, p < 0.0001), compared to the low-GRS group. The GRS was the second most predictive factor after age for BMI (AUC = 0.515; 95% CI: 0.462–0.538). The GRS also demonstrated a predictive power of 0.528 (95% CI: 0.508–0.564) for CVD and 0.548 (95% CI: 0.440–0.605) for T2DM. Conclusions: This study supports the potential utility of the GRS in assessing obesity and cardiometabolic risk, while emphasizing the potential of PN approaches in modulating genetic susceptibility. Incorporating gene–diet interactions provides actionable insights for personalized dietary strategies. Future research should integrate multiple gene–diet and gene–gene interactions to enhance risk prediction and targeted interventions. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

30 pages, 3982 KiB  
Article
Characterizing the Dynamic Protein and Amino Acid Deposition in Tissues of Pregnant Gilts: Implications for Stage-Specific Nutritional Strategies
by Christian D. Ramirez-Camba, Pedro E. Urriola and Crystal L. Levesque
Animals 2025, 15(14), 2126; https://doi.org/10.3390/ani15142126 - 18 Jul 2025
Viewed by 245
Abstract
Understanding protein and amino acid deposition in pregnant gilts is important for developing nutritional strategies that meet these demands and enhance reproductive performance. Current models, such as the NRC (2012) gestating sow model, assume a constant proportional protein and amino acid content in [...] Read more.
Understanding protein and amino acid deposition in pregnant gilts is important for developing nutritional strategies that meet these demands and enhance reproductive performance. Current models, such as the NRC (2012) gestating sow model, assume a constant proportional protein and amino acid content in tissues throughout pregnancy. However, empirical data suggest that gestational tissue growth and composition change dynamically. In this study, we developed a gestation model that characterizes the dynamic changes in growth, crude protein, and amino acid deposition throughout gestation. Based on a systematized search of published data, mathematical functions were developed to estimate daily protein and amino acid deposition in key tissues, including allantoic and amniotic fluid, uterus, placenta, fetus, mammary gland, and maternal body. Our results suggest that dietary crude protein levels and amino acid profiles should be adjusted to meet metabolic demands, particularly in early gestation, where a potential nutritional deficiency was identified. Additionally, the amino acid profile of deposited protein shifts during late gestation, suggesting a changing demand for specific amino acids. These findings challenge existing models and highlight the need for adaptive dietary strategies that better align with pregnancy’s biological demands. By refining protein and amino acid deposition estimates, this study provides a framework guiding future research on precision feeding, ultimately improving gilt and sow reproductive performance. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

25 pages, 1611 KiB  
Review
Microbial Interactions in Food Fermentation: Interactions, Analysis Strategies, and Quality Enhancement
by Wenjing Liu, Yunxuan Tang, Jiayan Zhang, Juan Bai, Ying Zhu, Lin Zhu, Yansheng Zhao, Maria Daglia, Xiang Xiao and Yufeng He
Foods 2025, 14(14), 2515; https://doi.org/10.3390/foods14142515 - 17 Jul 2025
Viewed by 366
Abstract
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these [...] Read more.
Food fermentation is driven by microbial interactions. This article reviews the types of microbial interactions during food fermentation, the research strategies employed, and their impacts on the quality of fermented foods. Microbial interactions primarily include mutualism, commensalism, amensalism, and competition. Based on these interaction patterns, the safety, nutritional composition, and flavor quality of food can be effectively improved. Achieving precise control of fermented foods’ qualities via microbial interaction remains a critical challenge. Emerging technologies such as high-throughput sequencing, cell sorting, and metabolomics enable the systematic analysis of core microbial interaction mechanisms in complex systems. Using synthetic microbial communities and genome-scale metabolic network models, complicated microbial communities can be effectively simplified. In addition, regulatory targets of food quality can be precisely identified. These strategies lay a solid foundation for the precise improvement of fermented food quality and functionality. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

18 pages, 10798 KiB  
Article
Integrative Analysis of Transcriptomics and Metabolomics Provides Insights into Meat Quality Differences in Hu Sheep with Different Carcass Performance
by Xiaoxue Zhang, Liming Zhao, Huibin Tian, Zongwu Ma, Qi Zhang, Mengru Pu, Peiliang Cao, Deyin Zhang, Yukun Zhang, Yuan Zhao, Jiangbo Cheng, Quanzhong Xu, Dan Xu, Xiaobin Yang, Xiaolong Li, Weiwei Wu, Fadi Li and Weimin Wang
Foods 2025, 14(14), 2477; https://doi.org/10.3390/foods14142477 - 15 Jul 2025
Viewed by 272
Abstract
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the [...] Read more.
Meat quality is a critical determinant of consumer preference and economic value in the livestock industry. However, the relationship between carcass performance and meat quality remains poorly understood. In our study, we conducted an integrative analysis of transcriptomics and metabolomics to investigate the molecular mechanisms underlying meat quality differences in Hu sheep with high (HHS, n = 10) and low (LHS, n = 10) carcass performance. Phenotypic analysis revealed that the HHS group exhibited superior meat quality traits, including higher intramuscular fat (IMF) content (reflected in elevated marbling scores), along with lower shear force, drip loss, and cooking loss, compared to the LHS group. Transcriptomic analysis identified 376 differentially expressed genes (DEGs) enriched in pathways linked to lipid metabolism, such as the PPAR signaling pathway and long-chain fatty acid metabolic process. Weighted gene co-expression network analysis (WGCNA) revealed important modules and key genes (e.g., ELOVL6, PLIN1, and ARHGEF2) associated with meat quality traits. Metabolomic profiling identified 132 differentially accumulated metabolites (DAMs), with significant enrichment in amino acid metabolism pathways, including D-amino acid metabolism, arginine biosynthesis, and glycine, serine, and threonine metabolism. Integrative analysis of transcriptomic and metabolomic data highlighted six co-enriched pathways, such as the mTOR signaling pathway and amino acid metabolism, underscoring their role in regulating meat quality. These findings provide valuable insights into the genetic and metabolic networks driving meat quality variation and offer potential biomarkers for genetic selection and nutritional strategies to enhance both carcass yield and eating quality in Hu sheep. This research enhances knowledge of the molecular basis of meat quality and supports precision breeding in livestock production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

18 pages, 3234 KiB  
Article
Optimization of Hydroponic Wheat Sprouts as an Alternative Livestock Feed: Yield and Biochemical Composition Under Different Fertilization Regimes
by Andrius Grigas, Dainius Steponavičius, Indrė Bručienė, Ričardas Krikštolaitis, Tomas Krilavičius, Aušra Steponavičienė and Dainius Savickas
Plants 2025, 14(14), 2166; https://doi.org/10.3390/plants14142166 - 14 Jul 2025
Viewed by 323
Abstract
This study investigated the effects of macronutrient type and concentration on the biomass yield and biochemical composition of hydroponically grown wheat sprouts (HWS), with the aim of identifying fertilization strategies that optimize both productivity and feed quality. HWS were cultivated using a nutrient [...] Read more.
This study investigated the effects of macronutrient type and concentration on the biomass yield and biochemical composition of hydroponically grown wheat sprouts (HWS), with the aim of identifying fertilization strategies that optimize both productivity and feed quality. HWS were cultivated using a nutrient film technique over a 7-day period under controlled environmental conditions, with treatments including calcium nitrate (CN1–CN3), potassium phosphate (CP1–CP3), potassium sulfate (CK1–CK2), and a balanced NPK 20–20–20 fertilizer (NPK1–NPK3), each applied at three increasing concentrations. The quantitative parameters assessed included biomass yield per unit of dry seed (DP, kg kg−1) and dry matter content (DM, %), while qualitative traits included crude protein (CP), ether extract (EE), crude fiber (CF), and ash content. Results indicated that balanced NPK fertilization significantly enhanced performance, with NPK3 achieving the highest biomass yield (6.39 kg kg−1), CP (24.26%), CF (5.63%), and ash (16.0%) content. In contrast, CN3 treatments reduced yield (4.84 kg kg−1) despite increasing CP (19.65%), indicating trade-offs between nitrogen enrichment and vegetative expansion. Phosphorus-based treatments (CP2–CP3) improved nutrient density without suppressing yield. Regression analyses revealed strong correlations between DM and both CF (R2 = 0.81) and ash (R2 = 0.71), supporting their utility as indirect indicators of feed quality. EE content remained stable (2.07–2.67%) across all treatments, suggesting its limited responsiveness to macronutrient manipulation. These findings highlight the importance of nutrient synergy in hydroponic systems and provide a practical framework for tailoring fertilization regimes to meet specific agronomic and nutritional objectives in precision livestock feeding and provide practical guidance for optimizing hydroponic livestock feed production. Full article
(This article belongs to the Special Issue Strategies for Nutrient Use Efficiency Improvement in Plants)
Show Figures

Figure 1

36 pages, 1414 KiB  
Review
A Systems Biology Approach to Memory Health: Integrating Network Pharmacology, Gut Microbiota, and Multi-Omics for Health Functional Foods
by Heng Yuan, Junyu Zhou, Hongbao Li, Suna Kang and Sunmin Park
Int. J. Mol. Sci. 2025, 26(14), 6698; https://doi.org/10.3390/ijms26146698 - 12 Jul 2025
Viewed by 359
Abstract
Memory impairment, ranging from mild memory impairment to neurodegenerative diseases such as Alzheimer’s disease, poses an escalating global health challenge that necessitates multi-targeted interventions to prevent progression. Health functional foods (HFFs), which include bioactive dietary compounds that not only provide basic nutrition but [...] Read more.
Memory impairment, ranging from mild memory impairment to neurodegenerative diseases such as Alzheimer’s disease, poses an escalating global health challenge that necessitates multi-targeted interventions to prevent progression. Health functional foods (HFFs), which include bioactive dietary compounds that not only provide basic nutrition but also function beyond that to modulate physiological pathways, offer a promising non-pharmacological strategy to preserve memory function. This review presents an integrative framework for the discovery, evaluation, and clinical translation of biomarkers responsive to HFFs in the context of preventing memory impairment. We examine both established clinical biomarkers, such as amyloid-β and tau in the cerebrospinal fluid, neuroimaging indicators, and memory assessments, as well as emerging nutritionally sensitive markers including cytokines, microRNAs, gut microbiota signatures, epigenetic modifications, and neuroactive metabolites. By leveraging systems biology approaches, we explore how network pharmacology, gut–brain axis modulation, and multi-omics integration can help to elucidate the complex interactions between HFF components and memory-related pathways such as neuroinflammation, oxidative stress, synaptic plasticity, and metabolic regulation. The review also addresses the translational pipeline for HFFs, from formulation and standardization to regulatory frameworks and clinical development, with an emphasis on precision nutrition strategies and cross-disciplinary integration. Ultimately, we propose a paradigm shift in memory health interventions, positioning HFFs as scientifically validated compounds for personalized nutrition within a preventative memory function framework. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

14 pages, 389 KiB  
Review
Relationship Between Vitamin D Deficiency and Postpartum Depression
by Ioanna Apostolidou, Marios Baloukas and Ioannis Tsamesidis
J. Pers. Med. 2025, 15(7), 290; https://doi.org/10.3390/jpm15070290 - 4 Jul 2025
Viewed by 571
Abstract
Background/Objectives: Postpartum depression (PPD) affects approximately 10–20% of women during and after pregnancy, posing significant risks to maternal health, infant development, and family dynamics. Identifying modifiable risk factors is essential for prevention. Emerging evidence suggests that vitamin D, a neuroactive steroid hormone involved [...] Read more.
Background/Objectives: Postpartum depression (PPD) affects approximately 10–20% of women during and after pregnancy, posing significant risks to maternal health, infant development, and family dynamics. Identifying modifiable risk factors is essential for prevention. Emerging evidence suggests that vitamin D, a neuroactive steroid hormone involved in neurotransmitter synthesis, neuroinflammation regulation, and calcium homeostasis, may play a protective role against mood disorders, including PPD. Methods: The search was conducted through a comprehensive search of the PubMed, Scopus, and Web of Science databases using a combination of Medical Subject Headings (MeSH) and free-text terms including “vitamin D”, “25-hydroxyvitamin D”, “deficiency”, “pregnancy”, “postpartum”, “depression”, “antenatal depression”, “maternal mental health”, and “perinatal mood disorders”. Results: Numerous observational studies and systematic review reports around the world reinforce the potential global relevance of vitamin D insufficiency. This study advances personalized and precision medicine approaches by emphasizing the importance of individualized screening for vitamin D deficiency during pregnancy and postpartum, enabling tailored interventions that could mitigate the risk of postpartum depression. Conclusions: In conclusion, while a definitive causal relationship between vitamin D deficiency and perinatal depression remains unproven, screening for vitamin D levels during pregnancy could serve as a low-risk intervention to support maternal mental health. Future research should focus on well designed, large-scale randomized trials and standardization of diagnostic criteria to clarify vitamin D’s role in preventing perinatal depression. Recognizing vitamin D status as a modifiable biomarker allows for targeted nutritional and pharmacological strategies to optimize maternal mental health. Full article
(This article belongs to the Special Issue Hormone Therapies for Women)
Show Figures

Figure 1

23 pages, 317 KiB  
Review
Effect of Fermented Feed on Growth Performance and Gut Health of Broilers: A Review
by Jim Kioko Katu, Tamás Tóth, Balázs Ásványi, Zoltán Hatvan and László Varga
Animals 2025, 15(13), 1957; https://doi.org/10.3390/ani15131957 - 3 Jul 2025
Viewed by 573
Abstract
The fermented feed used in broiler production has gained significant attention for its potential to improve growth performance, enhance gut health, and modulate gut microbiota. This review synthesized findings on the effects of both solid and liquid fermented feed in broilers. Fermentation processes [...] Read more.
The fermented feed used in broiler production has gained significant attention for its potential to improve growth performance, enhance gut health, and modulate gut microbiota. This review synthesized findings on the effects of both solid and liquid fermented feed in broilers. Fermentation processes enhance nutrient bioavailability; reduce anti-nutritional factors; and generate beneficial metabolites, such as short-chain fatty acids, which contribute to gut health. Incorporating fermented feed in broiler diets has been shown to improve weight gain, the feed conversion ratio, and nutrient absorption by promoting favorable gut morphology changes, including an increased villus height and villus height-to-crypt depth ratios. Additionally, fermented feed fosters a beneficial microbial environment by increasing lactic acid bacteria populations while reducing pathogenic microbes. Fermentation also modulates gut immunity by regulating cytokine production and stimulating immune cell activity. However, challenges such as inconsistent effects on feed intake and growth during the early production stages underscore the need for optimizing fermentation protocols tailored to broiler production systems. Although the implementation of liquid fermented feed presents logistical challenges, research suggests it can significantly improve feed digestibility. Advances in precision fermentation techniques and multi-strain inoculant use hold promise for further improving fermented feed efficacy. Future research should focus on assessing the long-term impacts, economic viability, and environmental sustainability of fermented feed in commercial poultry systems. Overall, fermented feed offers a promising strategy to enhance productivity and sustainability in broiler farming while reducing the reliance on conventional feed additives. This review reflects the body of knowledge at the time of writing. Full article
(This article belongs to the Section Poultry)
17 pages, 541 KiB  
Article
Multi-Sensor Comparison for Nutritional Diagnosis in Olive Plants: A Machine Learning Approach
by Catarina Manuelito, João de Deus, Miguel Damásio, André Leitão, Luís Alcino Conceição, Rocío Arias-Calderón, Carla Inês, António Manuel Cordeiro, Eduardo Fernandes, Luís Albino, Miguel Barbosa, Filipe Fonseca and José Silvestre
Appl. Biosci. 2025, 4(3), 32; https://doi.org/10.3390/applbiosci4030032 - 2 Jul 2025
Viewed by 261
Abstract
The intensification of olive growing has raised environmental concerns, particularly regarding nutrient loss from excessive fertiliser use. In line with the European Union’s Farm to Fork strategy, which aims to halve the soil nutrient losses by 2030, this study evaluates the effectiveness of [...] Read more.
The intensification of olive growing has raised environmental concerns, particularly regarding nutrient loss from excessive fertiliser use. In line with the European Union’s Farm to Fork strategy, which aims to halve the soil nutrient losses by 2030, this study evaluates the effectiveness of two sensor-based approaches—proximal sensing with a FLAME spectrometer and remote sensing via UAV-mounted multispectral imaging—compared with foliar chemical analyses as the reference standard, for diagnosing the nutritional status of olive trees. The research was conducted in Elvas, Portugal, between 2022 and 2023, across three olive cultivars (‘Azeiteira’, ‘Arbequina’, and ‘Koroneiki’) subjected to different fertilisation regimes. Machine learning (ML) models showed strong correlations between sensor data and nutrient levels: the multispectral sensor performed best for phosphorus (P) (determination coefficient [R2] = 0.75) and potassium (K) (R2 = 0.73), while the FLAME spectrometer was more accurate for nitrogen (N) (R2 = 0.64). These findings underscore the potential of sensor-based technologies for non-destructive, real-time nutrient monitoring, with each sensor offering specific strengths depending on the target nutrient. This work contributes to more sustainable and data-driven fertilisation strategies in precision agriculture. Full article
Show Figures

Figure 1

14 pages, 1114 KiB  
Review
Personalised Nutrition Approaches in the Prevention and Management of Type 2 Diabetes: A Narrative Review of Evidence and Practice
by Mabitsela Mphasha and Tebogo Mothiba
Int. J. Environ. Res. Public Health 2025, 22(7), 1047; https://doi.org/10.3390/ijerph22071047 - 30 Jun 2025
Viewed by 292
Abstract
Type 2 diabetes mellitus (T2DM) remains a significant global public health concern, largely driven by poor dietary habits, physical inactivity, and rising obesity rates. In recent years, personalised nutrition (PN) emerged as a promising approach to T2DM prevention and management. This narrative review [...] Read more.
Type 2 diabetes mellitus (T2DM) remains a significant global public health concern, largely driven by poor dietary habits, physical inactivity, and rising obesity rates. In recent years, personalised nutrition (PN) emerged as a promising approach to T2DM prevention and management. This narrative review synthesises current evidence on tailored dietary strategies, including the glycaemic index (GI), glycaemic load (GL), food insulin index (FII), and precision nutrition tools. It further explores their impact on glycaemic control, insulin sensitivity, and adherence to dietary interventions. A structured review of peer-reviewed and grey literature was conducted, taking into account behavioural, cultural, and systemic implementation factors. Although evidence supports the efficacy of PN in improving metabolic outcomes, implementation in low- and middle-income countries (LMICs) remains limited due to infrastructural, financial, and contextual challenges. This review emphasises the need for context-specific, scalable solutions integrated into primary healthcare systems. Full article
(This article belongs to the Special Issue Nutrition and Diabetes: Advances in Prevention and Management)
Show Figures

Figure 1

Back to TopTop