Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = precipitation enhancement for cold cloud

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 26505 KiB  
Article
Dynamic Diagnosis of an Extreme Precipitation Event over the Southern Slope of Tianshan Mountains Using Multi-Source Observations
by Jiangliang Peng, Zhiyi Li, Lianmei Yang and Yunhui Zhang
Remote Sens. 2025, 17(9), 1521; https://doi.org/10.3390/rs17091521 - 25 Apr 2025
Viewed by 596
Abstract
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using [...] Read more.
The southern slope of the Tianshan Mountains features complex terrain and an arid climate, yet paradoxically experiences frequent extreme precipitation events (EPEs), which pose significant challenges for weather forecasting. This study investigates an EPE that occurred from 20 to 21 August 2019 using multi-source data to examine circulation patterns, mesoscale characteristics, moisture dynamics, and energy-instability mechanisms. The results reveal distinct spatiotemporal variability in precipitation, prompting a two-stage analytical framework: stage 1 (western plains), dominated by localized convective cells, and stage 2 (northeastern mountains), characterized by orographically enhanced precipitation clusters. The event was associated with a “two ridges and one trough” circulation pattern at 500 hPa and a dual-core structure of the South Asian high at 200 hPa. Dynamic forcing stemmed from cyclonic convergence, vertical wind shear, low-level convergence lines, water vapor (WV) transport, and jet-induced upper-level divergence. A stronger vorticity, divergence, and vertical velocity in stage 1 resulted in more intense precipitation. The thermodynamic analysis showed enhanced low-level cold advection in the plains before the event. Sounding data revealed increases in precipitable water and convective available potential energy (CAPE) in both stages. WV tracing showed vertical differences in moisture sources: at 3000 m, ~70% originated from Central Asia via the Caspian and Black Seas; at 5000 m, source and path differences emerged between stages. In stage 1, specific humidity along each vapor track was higher than in stage 2 during the EPE, with a 12 h pre-event enhancement. Both stages featured rapid convective cloud growth, with decreases in total black body temperature (TBB) associated with precipitation intensification. During stage 1, the EPE center aligned with a large TBB gradient at the edge of a cold cloud zone, where vigorous convection occurred. In contrast to typical northern events, which are linked to colder cloud tops and vigorous convection, the afternoon EPE in stage 2 formed near cloud edges with lesser negative TBB values. These findings advance the understanding of multi-scale extreme precipitation mechanisms in arid mountains, aiding improved forecasting in complex terrains. Full article
Show Figures

Figure 1

34 pages, 10549 KiB  
Review
Multi-Sensor Precipitation Estimation from Space: Data Sources, Methods and Validation
by Ruifang Guo, Xingwang Fan, Han Zhou and Yuanbo Liu
Remote Sens. 2024, 16(24), 4753; https://doi.org/10.3390/rs16244753 - 20 Dec 2024
Cited by 2 | Viewed by 1517
Abstract
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation [...] Read more.
Satellite remote sensing complements rain gauges and ground radars as the primary sources of precipitation data. While significant advancements have been made in spaceborne precipitation estimation since the 1960s, the emergence of multi-sensor precipitation estimation (MPE) in the early 1990s revolutionized global precipitation data generation by integrating infrared and microwave observations. Among others, Global Precipitation Measurement (GPM) plays a crucial role in providing invaluable data sources for MPE by utilizing passive microwave sensors and geostationary infrared sensors. MPE represents the current state-of-the-art approach for generating high-quality, high-resolution global satellite precipitation products (SPPs), employing various methods such as cloud motion analysis, probability matching, adjustment ratios, regression techniques, neural networks, and weighted averaging. International collaborations, such as the International Precipitation Working Group and the Precipitation Virtual Constellation, have significantly contributed to enhancing our understanding of the uncertainties associated with MPEs and their corresponding SPPs. It has been observed that SPPs exhibit higher reliability over tropical oceans compared to mid- and high-latitudes, particularly during cold seasons or in regions with complex terrains. To further advance MPE research, future efforts should focus on improving accuracy for extremely low- and high-precipitation events, solid precipitation measurements, as well as orographic precipitation estimation. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Figure 1

26 pages, 14451 KiB  
Article
IMERG V07B and V06B: A Comparative Study of Precipitation Estimates Across South America with a Detailed Evaluation of Brazilian Rainfall Patterns
by José Roberto Rozante and Gabriela Rozante
Remote Sens. 2024, 16(24), 4722; https://doi.org/10.3390/rs16244722 - 17 Dec 2024
Cited by 1 | Viewed by 1306
Abstract
Satellite-based precipitation products (SPPs) are essential for climate monitoring, especially in regions with sparse observational data. This study compares the performance of the latest version (V07B) and its predecessor (V06B) of the Integrated Multi-satellitE Retrievals for GPM (IMERG) across South America and the [...] Read more.
Satellite-based precipitation products (SPPs) are essential for climate monitoring, especially in regions with sparse observational data. This study compares the performance of the latest version (V07B) and its predecessor (V06B) of the Integrated Multi-satellitE Retrievals for GPM (IMERG) across South America and the adjacent oceans. It focuses on evaluating their accuracy under different precipitation regimes in Brazil using 22 years of IMERG Final data (2000–2021), aggregated into seasonal totals (summer, autumn, winter, and spring). The observations used for the evaluation were organized into 0.1° × 0.1° grid points to match IMERG’s spatial resolution. The analysis was restricted to grid points containing at least one rain gauge, and in cases where multiple gauges were present within a grid point the average value was used. The evaluation metrics included the Root Mean Square Error (RMSE) and categorical indices. The results reveal that while both versions effectively capture major precipitation systems such as the mesoscale convective system (MCS), South Atlantic Convergence Zone (SACZ), and Intertropical Convergence Zone (ITCZ), significant discrepancies emerge in high-rainfall areas, particularly over oceans and tropical zones. Over the continent, however, these discrepancies are reduced due to the correction of observations in the final version of IMERG. A comprehensive analysis of the RMSE across Brazil, both as a whole and within the five analyzed regions, without differentiating precipitation classes, demonstrates that version V07B effectively reduces errors compared to version V06B. The analysis of statistical indices across Brazil’s five regions highlights distinct performance patterns between IMERG versions V06B and V07B, driven by regional and seasonal precipitation characteristics. V07B demonstrates a superior performance, particularly in regions with intense rainfall (R1, R2, and R5), showing a reduced RMSE and improved categorical indices. These advancements are linked to V07B’s reduced overestimation in cold-top cloud regions, although both versions consistently overestimate at rain/no-rain thresholds and for light rainfall. However, in regions prone to underestimation, such as the interior of the Northeastern region (R3) during winter, and the northeastern coast (R4) during winter and spring, V07B exacerbates these issues, highlighting challenges in accurately estimating precipitation from warm-top cloud systems. This study concludes that while V07B exhibits notable advancements, further enhancements are needed to improve accuracy in underperforming regions, specifically those influenced by warm-cloud precipitation systems. Full article
Show Figures

Figure 1

29 pages, 23715 KiB  
Article
Forecasting In-Flight Icing over Greece: Insights from a Low-Pressure System Case Study
by Petroula Louka, Ioannis Samos and Flora Gofa
Atmosphere 2024, 15(8), 990; https://doi.org/10.3390/atmos15080990 - 17 Aug 2024
Cited by 1 | Viewed by 1915
Abstract
Forecasting in-flight icing conditions is crucial for aviation safety, particularly in regions with variable and complex meteorological configurations, such as Greece. Icing accretion onto the aircraft’s surfaces is influenced by the presence of supercooled water in subfreezing environments. This paper outlines a methodology [...] Read more.
Forecasting in-flight icing conditions is crucial for aviation safety, particularly in regions with variable and complex meteorological configurations, such as Greece. Icing accretion onto the aircraft’s surfaces is influenced by the presence of supercooled water in subfreezing environments. This paper outlines a methodology of forecasting icing conditions, with the development of the Icing Potential Algorithm that takes into consideration the meteorological scenarios related to icing accretion, using state-of-the-art Numerical Weather Prediction model results, and forming a fuzzy logic tree based on different membership functions, applied for the first time over Greece. The synoptic situation of an organized low-pressure system passage, with occlusion, cold and warm fronts, over Greece that creates dynamically significant conditions for icing formation was investigated. The sensitivity of the algorithm was revealed upon the precipitation, cloud type and vertical velocity effects. It was shown that the greatest icing intensity is associated with single-layer ice and multi-layer clouds that are comprised of both ice and supercooled water, while convectivity and storm presence lead to also enhancing the icing formation. A qualitative evaluation of the results with satellite, radar and METAR observations was performed, indicating the general agreement of the method mainly with the ground-based observations. Full article
(This article belongs to the Special Issue Numerical Weather Prediction Models and Ensemble Prediction Systems)
Show Figures

Figure 1

28 pages, 15405 KiB  
Article
Influence of Atmospheric Non-Uniform Saturation on Extreme Hourly Precipitation Cloud Microphysical Processes in a Heavy Rainfall Case in Zhengzhou
by Jin Xu, Liren Xu, Yufei Wang, Fan Ping and Lei Yin
Sustainability 2023, 15(20), 15047; https://doi.org/10.3390/su152015047 - 19 Oct 2023
Cited by 1 | Viewed by 1270
Abstract
Heavy rainfall not only affects urban infrastructure, it also impacts environmental changes, and which then influence the sustainability of development and ecology. Therefore, researching and forecasting heavy rainfall to prevent disaster-related damages is essential. A high-resolution numerical simulation was carried out for a [...] Read more.
Heavy rainfall not only affects urban infrastructure, it also impacts environmental changes, and which then influence the sustainability of development and ecology. Therefore, researching and forecasting heavy rainfall to prevent disaster-related damages is essential. A high-resolution numerical simulation was carried out for a heavy rainfall case in Zhengzhou, Henan Province, China, from 19–20 July 2021. The analysis of weather conditions revealed that the main cause of heavy rainfall in Zhengzhou was the supersaturation and condensation of water vapor, resulting from the invasion of dry and cold air from the upper and middle atmospheric layers. This weather condition is ideally suited for applying generalized potential temperature that is informed by the non-uniform saturation theory. Based on this, the new scheme revised the cloud microphysical scheme of the cloud water condensation parameterization process by substituting generalized potential temperature. The characteristics of the mesoscale environment and water condensates were comparatively analyzed between the original and the new scheme. Then, the quantitative mass budget and latent heat budget related to microphysical conversions were comparatively calculated over Zhengzhou. Furthermore, the possible two-scheme mechanisms through which the cloud microphysics processes affected the rainfall were investigated and discussed. It was found that: (1) The new scheme, which takes into account generalized potential temperature, produced precipitation fields more in line with observations and simulated stronger hourly precipitation compared to the original scheme. (2) The conversions of snow were the main source of microphysical processes that produced precipitation and released latent heat due to the dry and cold air invasion. (3) Given that the condensation of water vapor was hypothesized to occur at 70% relative humidity (RH) or above, rather than the original 100% RH, the new scheme simulated more supercooled water and ice-phase particles than the original scheme. This enhancement, in turn, intensified convective development owing to positive feedback within the cloud microphysics processes and cloud environment, ultimately leading to the simulation of more intense hourly precipitation. Full article
(This article belongs to the Special Issue Advances in Weather Prediction and Numerical Simulation)
Show Figures

Figure 1

22 pages, 5716 KiB  
Article
Spatial–Temporal Variations in Temperature and Precipitation Extremes during 1960–2019 in Guizhou Province, China
by Xu Xue, Shuangshuang Hou and Chuncan Meng
Atmosphere 2023, 14(7), 1162; https://doi.org/10.3390/atmos14071162 - 18 Jul 2023
Cited by 3 | Viewed by 1920
Abstract
Under the background of global warming, climate extremes have become a crucial issue with distinct heterogeneity features in different regions. Hence, spatial–temporal changes in temperature and precipitation extremes in Guizhou Province were investigated utilizing daily maximums and minimums of temperature and daily precipitation [...] Read more.
Under the background of global warming, climate extremes have become a crucial issue with distinct heterogeneity features in different regions. Hence, spatial–temporal changes in temperature and precipitation extremes in Guizhou Province were investigated utilizing daily maximums and minimums of temperature and daily precipitation data during 1960–2019 based on trend analysis. It was concluded that, firstly, all warm extremes but warm spell duration indicator (WSDI) are significantly enhanced, whereas for cold extremes, the monthly minimum value of daily minimum temperature (TNn) is significantly enhanced, while cool nights (TN10P), frost days (FD0), ice days (ID0), and cold spell duration indicator (CSDI) are significantly decreased. And all precipitation extremes but consecutive wet days (CWD) have no significant variational trend in Guizhou Province. Secondly, variational trends of temperature extremes are more prominent and robust in western Guizhou Province. Temperature and precipitation extremes show large differences from spring to winter. Thirdly, temperature extremes are closely correlated with strength, area, and the westernmost ridge point index of western Pacific subtropical high (WPSH), whereas precipitation extremes show no distinct correlation with WPSH. The WPSH has significantly strengthened and shifted westward in the past 60 years, leading to less total cloud cover and more downward solar wave flux reaching Earth’s surface, accordingly, exacerbating warm extremes and weakening cold extremes. These results will benefit understanding the heterogeneity of climate extremes at a regional scale. Full article
Show Figures

Figure 1

17 pages, 5185 KiB  
Article
A Numerical Study of Critical Variables on Artificial Cold Cloud Precipitation Enhancement in the Qilian Mountains, China
by Jing Ren, Wenyu Zhang, Menggang Kou, Yongjing Ma and Xinyu Zhang
Atmosphere 2023, 14(7), 1086; https://doi.org/10.3390/atmos14071086 - 28 Jun 2023
Cited by 3 | Viewed by 1868
Abstract
In this study, a mesoscale Weather Research and Forecast (WRF) model coupled with an AgI (silver iodide) cold cloud catalytic module were used to explore the potential impact of the catalytic position and rate in the catalytic module based on a ground rain [...] Read more.
In this study, a mesoscale Weather Research and Forecast (WRF) model coupled with an AgI (silver iodide) cold cloud catalytic module were used to explore the potential impact of the catalytic position and rate in the catalytic module based on a ground rain enhancement operation in the Qilian Mountains, on 16 August 2020. Results show that the simulated precipitation, liquid water content (LWC), and water vapor content (PWV) are in good agreement with the observations, demonstrating that the WRF model using the coupled AgI cloud-seeding scheme is well-applicable to the precipitation simulation of the Qilian Mountains. It is also observed that there are some differences in the catalytic effect of catalysis at different cloud temperatures. The precipitation enhancement effect is the most favorable in the fifth layer of 15 km, followed by that in the fourth layer of 12 km and the sixth layer of 18 km. Considering the flight cost and catalytic efficiency, the fourth layer is highly recommended for seeding. Furthermore, the AgI seeding rate also plays a crucial impact on ground precipitation. In the case of a seeding rate of about 1.2 g·s−1, the precipitation enhancement effect tends to be stable, and the percentage of the precipitation increase reaches up to 10.4%. While in the case of a seeding rate of about 1.5 g·s−1, the percentage of ground precipitation increase is 10%, which is 0.4% lower than that of 1.2 g·s−1. In summary, the introduction of a AgI catalyst with a seeding rate of 1.2 g·s−1 can significantly increase the ground precipitation at a height of 12 km and a temperature of −3 °C in the Qilian Mountains. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 6207 KiB  
Article
Analysis of Precipitation Process and Operational Precipitation Enhancement in Panxi Region Based on Cloud Parameters Retrievals from China’s Next−Generation Geostationary Meteorological Satellite FY−4A
by Xiaomei Guo, Dan Lin and Fan Wu
Atmosphere 2023, 14(6), 922; https://doi.org/10.3390/atmos14060922 - 25 May 2023
Cited by 3 | Viewed by 1958
Abstract
Geostationary meteorological satellite data with high spatial and temporal resolution can be used to retrieve cloud physical parameters, which has significant advantages in tracking cloud evolution and development. Based on satellite multispectral RGB composite image and cloud physical analysis methods, we quantitatively analyze [...] Read more.
Geostationary meteorological satellite data with high spatial and temporal resolution can be used to retrieve cloud physical parameters, which has significant advantages in tracking cloud evolution and development. Based on satellite multispectral RGB composite image and cloud physical analysis methods, we quantitatively analyze the evolution characteristics of cloud parameters in the pre-, mid- and post-artificially influenced weather process, explore the application potential benefits of satellite data in monitoring the operating conditions of the artificially influenced weather in the Panxi region, and verify the feasibility analysis of the evaluation of their effects. In this study, cloud parameters such as cloud particle effective radius (Re), cloud liquid water path (LWP), cloud ice water path (IWP), and cloud top height and temperature (CTH and CTT) are retrieved using FY−4A satellite data. For the Panxi region, the evolution characteristics of typical cloud parameters in the affected area before and after two aircraft artificial operational precipitation enhancements are analyzed. The results show that the satellite retrieval of cloud characteristic parameters in the Panxi region has good application value, which can be used to guide the artificial Operational Precipitation Enhancement. In this precipitation process, there are solid particles in the upper layer cloud and supercooled water in the lower layer cloud. After the cold cloud catalysis, the cloud top height, liquid water and ice water content, particle effective radius and ground precipitation in the operational area increased, and the cloud top temperature decreased. Thus, it effectively alleviated the drought in the Panxi region. The satellite retrieval of cloud characteristic parameters in the Panxi region has a good application value, which can provide a basis and guidance for future weather modification operations in the Panxi region. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 6332 KiB  
Article
Formation Mechanisms of the “5·31” Record-Breaking Extreme Heavy Rainfall Process in South China in 2021
by Fangli Chen, Huiqi Li, Sheng Hu, Shuai Jiang, Jiaojiao Li and Ruoting Wu
Atmosphere 2023, 14(5), 872; https://doi.org/10.3390/atmos14050872 - 16 May 2023
Cited by 3 | Viewed by 1528
Abstract
Based on the fifth-generation European Center for Medium-Range Weather Forecasts reanalysis data (ERA5), the real-time observation data from weather stations, and the radar products in Guangdong Province, we analyze the precipitation properties and formation mechanisms of the “5·31” extreme heavy rainfall process with [...] Read more.
Based on the fifth-generation European Center for Medium-Range Weather Forecasts reanalysis data (ERA5), the real-time observation data from weather stations, and the radar products in Guangdong Province, we analyze the precipitation properties and formation mechanisms of the “5·31” extreme heavy rainfall process with record-breaking 3-h accumulated rainfall in South China during 2021. The results show that the extreme heavy rainfall process is caused by the joint actions of weather systems such as a weak upper-level short-wave trough, a surface stationary front, and a low-level southwesterly jet. Before the heavy precipitation process, there is large precipitable water content and deep warm clouds, which provides a potential for the occurrence and development of the heavy rainfall process in Longhua Town of Longmen County and its surrounding areas. Simultaneously, the low-level southwesterly jet provides abundant warm-wet water vapor for the heavy rainfall area. The vertical atmospheric environmental conditions, such as strong horizontal temperature gradient, high convective available potential energy, high-temperature difference between 850 hPa and 500 hPa, and low convective inhibition, maintain for a long duration in the heavy rainfall area, which are favorable for the occurrence and development of high-efficiency convective precipitation caused by water vapor condensation due to the uplift of low-level warm-wet airflows. The combined effects of the enhanced low-level southwesterly airflow, the stationary front, the mesoscale surface convergence line generated by cold pool outflows, the terrain influence, and the train effect of the precipitation echoes make heavy precipitation near Longhua last longer and stronger than other areas, leading to the extreme heavy rainfall with the record-breaking 3-h accumulated rainfall in Longhua. Full article
(This article belongs to the Special Issue Monsoon and Typhoon Precipitation in Asia: Observation and Prediction)
Show Figures

Figure 1

23 pages, 6385 KiB  
Article
An Empirical Relationship among Characteristics of Severe Convective Storms, Their Cloud-Top Properties and Environmental Parameters in Northern Eurasia
by Alexander Chernokulsky, Andrey Shikhov, Yulia Yarinich and Alexander Sprygin
Atmosphere 2023, 14(1), 174; https://doi.org/10.3390/atmos14010174 - 13 Jan 2023
Cited by 9 | Viewed by 3317
Abstract
Severe convective storms that produce tornadoes and straight-line winds usually develop under particular environmental conditions and have specific signatures on the cloud tops associated with intense updrafts. In this study, we performed a comparative analysis of satellite-derived characteristics, with a focus on cloud-top [...] Read more.
Severe convective storms that produce tornadoes and straight-line winds usually develop under particular environmental conditions and have specific signatures on the cloud tops associated with intense updrafts. In this study, we performed a comparative analysis of satellite-derived characteristics, with a focus on cloud-top properties, and ERA5-based environmental parameters of convective storms in forested regions of the western part of Northern Eurasia in 2006–2021. The analyzed sample includes 128 different convective storms that produced 138 tornadoes and 143 linear windstorms. We found most tornadoes and linear windstorms are generated by quasi-linear convective storms or supercells. Such supercells form under lower convective instability and precipitable water content compared to those for other types of storms. We found a significant negative correlation of minimum temperature on the storm cloud top with instability parameters. In turn, the longevity of convective storms significantly correlates with wind shear and storm-relative helicity. About half of the tornadoes and 2/3 of linear windstorms are associated with the presence of cloud-top signatures, such as overshooting tops, cold-ring or cold U/V features. The events associated with such signatures are formed under high values of instability parameters. Our results can be used for further analysis of peculiarities of tornado and linear windstorm formation and to enhance the predictability of such severe events, especially in regions with a lack of weather radar coverage. Full article
(This article belongs to the Special Issue Extreme Weather Events in Siberia)
Show Figures

Figure 1

18 pages, 6568 KiB  
Article
Identification of Supercooled Cloud Water by FY-4A Satellite and Validation by CALIPSO and Airborne Detection
by Xiaohong Xu, Yi Zeng, Xing Yu, Guihua Liu, Zhiguo Yue, Jin Dai, Qiujuan Feng, Pu Liu, Jin Wang and Yannian Zhu
Remote Sens. 2023, 15(1), 126; https://doi.org/10.3390/rs15010126 - 26 Dec 2022
Cited by 6 | Viewed by 3021
Abstract
Cold clouds are the main operation target of artificial precipitation enhancement, and its key is to find a supercooled cloud water area where the catalyst can be seeded to promote the formation of precipitation particles and increase precipitation to the ground. Based on [...] Read more.
Cold clouds are the main operation target of artificial precipitation enhancement, and its key is to find a supercooled cloud water area where the catalyst can be seeded to promote the formation of precipitation particles and increase precipitation to the ground. Based on the multi-spectral characteristics of the Fengyun-4A (FY-4A) satellite, a methodology for identifying supercooled cloud water is developed. Superimposed by a cloud top brightness temperature of 10.8 µm, a combination of 0.46 µm, 1.6 µm, and 2.2 µm red–green–blue (RGB) composites are used to identify the cloud phase and to obtain the real-time supercooled cloud water distribution every 5 min and in a 2 km resolution for the whole coverage of China. Based on the RGB composition, the supervised machine learning method K-mean clustering was applied to classify the cloud top phase. The results were validated extensively with Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). It is worthwhile to highlight that the corresponding hit rate reached 87% over the full disk domain for both the summer and winter seasons. Furthermore, on 29 November 2019, microphysical properties were measured, and the data of supercooled cloud droplets and ice crystals were obtained using YUN-12 transport aircraft in Taiyuan. After simultaneously matching the satellite with an airborne track, the cloud particle image data were obtained near the cloud top and within the clouds during the climb and descending stages of the flight. The phase obtained from the microphysical properties of supercooled cloud droplets and ice crystals was compared with cloud phase results identified by FY-4A and Moderate Resolution Imaging Spectroradiometer (MODIS) cloud phase products. The case study and comparison show that (1) the supercooled water clouds and ice particles identified by FY-4A are in good agreement with those from the airborne measurement at the cloud top and within the cloud and (2) the positions and shapes of water clouds and ice clouds identified by FY-4A correspond well with MODIS cloud phase products. However, there is a small deviation in the extent of ice clouds, which is mainly located in the transition area between ice clouds and water clouds. The extent of ice clouds identified by FY-4A is slightly larger than that of MODIS products. Combined with airborne detection, the comparison shows that the ice clouds identified by the FY-4A satellite are consistent with aircraft detection. The supercooled cloud water identified by FY-4A can meet the needs of the operational precipitation enhancement of cold clouds, improve operational effectiveness, and promote the application of satellite technology for weather modification. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosol, Cloud and Their Interactions)
Show Figures

Graphical abstract

22 pages, 4694 KiB  
Article
Warming Trend and Cloud Responses over the Indochina Peninsula during Monsoon Transition
by Mien-Tze Kueh and Chuan-Yao Lin
Remote Sens. 2022, 14(16), 4077; https://doi.org/10.3390/rs14164077 - 20 Aug 2022
Cited by 2 | Viewed by 1844 | Correction
Abstract
An exacerbated precipitation–temperature relationship can lead to compound extremes. The role of clouds in such a relationship is relatively uncertain. Here, we investigate the cloud–precipitation–temperature relationships over the Indochina Peninsula during the summer monsoon transition. The negative correlation between cloudiness/precipitation and surface maximum [...] Read more.
An exacerbated precipitation–temperature relationship can lead to compound extremes. The role of clouds in such a relationship is relatively uncertain. Here, we investigate the cloud–precipitation–temperature relationships over the Indochina Peninsula during the summer monsoon transition. The negative correlation between cloudiness/precipitation and surface maximum temperature is valid on seasonal and interannual timescales. The near-surface temperature exhibits interdecadal variability and a long-term warming trend. The warming trend has accelerated in the past two decades. In the anomalous warm years, the remarkably strong western Pacific subtropical high inhibits the development of clouds, especially the middle and high cloud-top regimes, leading to the suppression of deep convection and precipitation. There are more optically thin (moderate to thick) clouds with smaller (larger) effective radii in the high cloud-top regime for the warm (cold) years. The dominance of shallow cumulus is a distinct feature in the warm years. The daytime heating of enhanced surface insolation due to decreased cloudiness is worsened by the dry condition of the precipitation deficit. The water vapor warming effect can prevent an efficient drop in nighttime temperature, thereby exacerbating the warm condition under the warming trend. The cloud–precipitation–temperature relationships coupling with the monsoon development can be used to diagnose the regional scale cloud–climate interactions in climate models. Full article
(This article belongs to the Special Issue Satellite-Based Cloud Climatologies)
Show Figures

Figure 1

31 pages, 7999 KiB  
Article
Modelling the Effects of Aerosol on Mei-Yu Frontal Precipitation and Physical Processes
by Yun Zhang, Zuhang Wu, Lifeng Zhang, Yanqiong Xie, Hengchi Lei, Hepeng Zheng and Xiaolin Ma
Appl. Sci. 2019, 9(18), 3802; https://doi.org/10.3390/app9183802 - 11 Sep 2019
Cited by 2 | Viewed by 3081
Abstract
The Mei-Yu front is a significantly important summer precipitation system in eastern Asia. In recent years, anthropogenic air pollution over the Yangtze-Huaihe region of China has been aggravating continuously. A cloud-resolving model coupled with an idealized frontal model is used to investigate the [...] Read more.
The Mei-Yu front is a significantly important summer precipitation system in eastern Asia. In recent years, anthropogenic air pollution over the Yangtze-Huaihe region of China has been aggravating continuously. A cloud-resolving model coupled with an idealized frontal model is used to investigate the response of aerosols on the Mei-Yu frontal precipitation. The results indicate that increasing droplet concentrations lead to significant precipitation enhancement with the current pollution levels in Mei-Yu frontal system. Under the polluted conditions, the enhanced cold-cloud process is of great importance. Moreover, with the “towing” of active cold-cloud process, cold-cloud and warm-cloud processes developed mutually. These account for the complicated and special microphysical mechanism for aerosol impacts on Mei-Yu frontal system. Furthermore, two types of “microphysical-dynamic positive feedback loop” caused by the interactions of various physical processes and effects (direct dynamic effect, frontogenesis effect, and vapor pump effect) can be found in the Mei-Yu precipitation, which in turn reinforce the microphysical processes. The combined effect is to increase Mei-Yu front precipitation. The interaction of microphysical processes and dynamic processes, and the positive feedback loops they create are the main physical mechanisms behind the significant impacts of aerosol on Mei-Yu frontal precipitation. This may also be an important feature of climate change in eastern Asia. Full article
(This article belongs to the Special Issue Air Pollution)
Show Figures

Figure 1

23 pages, 6853 KiB  
Article
Non-Monotonic Dependencies of Cloud Microphysics and Precipitation on Aerosol Loading in Deep Convective Clouds: A Case Study Using the WRF Model with Bin Microphysics
by Ye-Lim Jeon, Sungju Moon, Hyunho Lee, Jong-Jin Baik and Jambajamts Lkhamjav
Atmosphere 2018, 9(11), 434; https://doi.org/10.3390/atmos9110434 - 8 Nov 2018
Cited by 9 | Viewed by 5189
Abstract
Aerosol-cloud-precipitation interactions in deep convective clouds are investigated through numerical simulations of a heavy precipitation event over South Korea on 15–16 July 2017. The Weather Research and Forecasting model with a bin microphysics scheme is used, and various aerosol number concentrations in the [...] Read more.
Aerosol-cloud-precipitation interactions in deep convective clouds are investigated through numerical simulations of a heavy precipitation event over South Korea on 15–16 July 2017. The Weather Research and Forecasting model with a bin microphysics scheme is used, and various aerosol number concentrations in the range N0 = 50–12,800 cm−3 are considered. Precipitation amount changes non-monotonically with increasing aerosol loading, with a maximum near a moderate aerosol loading (N0 = 800 cm−3). Up to this optimal value, an increase in aerosol number concentration results in a greater quantity of small droplets formed by nucleation, increasing the number of ice crystals. Ice crystals grow into snow particles through deposition and riming, leading to enhanced melting and precipitation. Beyond the optimal value, a greater aerosol loading enhances generation of ice crystals while the overall growth of ice hydrometeors through deposition stagnates. Subsequently, the riming rate decreases because of the smaller size of snow particles and supercooled drops, leading to a decrease in ice melting and a slight suppression of precipitation. As aerosol loading increases, cold pool and low-level convergence strengthen monotonically, but cloud development is more strongly affected by latent heating and convection within the system that is non-monotonically reinforced. Full article
(This article belongs to the Special Issue Aerosol-Cloud Interactions)
Show Figures

Figure 1

20 pages, 1966 KiB  
Article
Effects of Mixed Phase Microphysical Process on Precipitation in a Simulated Convective Cloud
by Jing Sun, Zheng Shi, Jian Chai, Guirong Xu and Ben Niu
Atmosphere 2016, 7(8), 97; https://doi.org/10.3390/atmos7080097 - 29 Jul 2016
Cited by 10 | Viewed by 5576
Abstract
The effects of the liquid water content (LWC) and mixing ratio of hydrometeors in the simulation of convective precipitation in Wuhan, Hubei Province, China, are investigated using a three-dimensional convective rainstorm model. The microphysical processes of warm and cold clouds are considered into [...] Read more.
The effects of the liquid water content (LWC) and mixing ratio of hydrometeors in the simulation of convective precipitation in Wuhan, Hubei Province, China, are investigated using a three-dimensional convective rainstorm model. The microphysical processes of warm and cold clouds are considered into microphysical parameterization. The warm-cloud process is dominated by the combined effects of condensation and drop coalescence. The cold-cloud process is initiated mainly by production of graupel, and the microphysical parameterizations are used to predict the mixing ratio of cloud droplets, rain, ice crystals, snow, and graupel. The simulations results show that 80% rainfall is derived from warm cloud microphysical processes, and the rest is produced by cold cloud microphysical processes. The mixed phase microphysical process can invigorate the production of convective rainfall and enhance the liquid water content (LWC). In addition, the vertical distribution of LWC is mainly concentrated at the height isotherms of −10 to −20 °C in precipitation and the concentration area of LWC matches the distribution range of graupel particles. However, the growth of graupel particles depend on the microphysical processes of nucleation and propagation between rain and graupel particles (NUrg) and collision and coalescence between cloud droplets and graupel (CLcg), in which NUrg is a major source of graupel particles and the contribution of the process accounts for 77% of the amount of graupel particles. Full article
(This article belongs to the Special Issue Advances in Clouds and Precipitation)
Show Figures

Figure 1

Back to TopTop