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Abstract: Aerosol-cloud-precipitation interactions in deep convective clouds are investigated
through numerical simulations of a heavy precipitation event over South Korea on 15–16 July 2017.
The Weather Research and Forecasting model with a bin microphysics scheme is used, and various
aerosol number concentrations in the range N0 = 50–12,800 cm−3 are considered. Precipitation
amount changes non-monotonically with increasing aerosol loading, with a maximum near a
moderate aerosol loading (N0 = 800 cm−3). Up to this optimal value, an increase in aerosol number
concentration results in a greater quantity of small droplets formed by nucleation, increasing the
number of ice crystals. Ice crystals grow into snow particles through deposition and riming,
leading to enhanced melting and precipitation. Beyond the optimal value, a greater aerosol
loading enhances generation of ice crystals while the overall growth of ice hydrometeors through
deposition stagnates. Subsequently, the riming rate decreases because of the smaller size of snow
particles and supercooled drops, leading to a decrease in ice melting and a slight suppression
of precipitation. As aerosol loading increases, cold pool and low-level convergence strengthen
monotonically, but cloud development is more strongly affected by latent heating and convection
within the system that is non-monotonically reinforced.

Keywords: aerosol-cloud-precipitation interactions; deep convective clouds; heavy precipitation;
bin cloud microphysics; WRF model

1. Introduction

Aerosols affect not only air quality but also various weather systems such as squall lines [1–3],
tropical cyclones [4–6], and hailstorms [7,8]. For this reason, studying the impact of aerosols on weather
and climate based on observations or numerical simulations has become an active area of research
in recent decades. Nevertheless, our understanding of the indirect effects of aerosols on climate is
still insufficient [9], and more comprehensive and in-depth studies on aerosol-cloud-precipitation
interactions are needed.

Whether an increase in aerosol loading has a positive or negative impact on cloud development
is still a matter of debate, yet many studies agree that the cloud type (e.g., shallow clouds or deep
convective clouds) and environmental conditions play important roles in determining the direction of
its impact [10–13]. In shallow clouds, the number of condensates increases as aerosol loading increases
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owing to the greater number of cloud condensation nuclei (CCN), which leads to a narrower size
distribution of drops, delayed generation of raindrops, and suppressed precipitation [14–16].

In many cases, such an increase in the number of CCN in deep convective clouds can
suppress warm microphysical processes in the clouds, enhancing the production of ice hydrometeors
through freezing and resulting in convective invigoration. In this way, surface precipitation can
be enhanced [1,17]. In addition, the strengthening of the cold pool in polluted conditions through
evaporation of raindrops can positively affect secondary convection and surface precipitation [3,18,19].
In contrast to the studies referenced above, there are studies reporting the opposite responses,
suggesting that a higher number concentration of CCN may in fact reduce the surface precipitation
amount if there exists strong vertical wind shear [20], if the atmosphere is dry [12,21], or if the cloud
base is cold [22,23]. Furthermore, these factors can be combined with one another [22].

The sensitivity of cloud development and precipitation to aerosol loading can be simulated
differently depending on which microphysics scheme is used [13,24,25]. Khain and Lynn [13]
considered two different microphysics schemes, namely, a bin microphysics scheme and a bulk
microphysics scheme, in their three-dimensional idealized simulations of a supercell storm using the
Weather Research and Forecasting (WRF) model. The simulation runs using the bin microphysics
scheme resulted in a non-monotonic relationship between precipitation amount and aerosol loading,
whereas in the runs using the bulk microphysics scheme, the precipitation amount decreased
monotonically with increases in aerosol loading. Lebo and Seinfeld [25] also reported opposite
responses by bin and bulk microphysics schemes on simulated precipitation amounts to increases in
the CCN number concentration. One reason for the different responses to aerosols is the saturation
adjustment, an assumption frequently used in bulk microphysics schemes to calculate condensation
and evaporation [26]. As many studies pointed out, bin microphysics schemes have advantages over
bulk microphysics schemes in that the assumptions about hydrometeor size distributions are relaxed
in the former [27,28].

Several studies have shown non-monotonic relationships between the aerosol number
concentration and precipitation from deep convective clouds [7,8,10,29,30]. The increases in
precipitation amounts due to heavier aerosol loading are mainly explained by the reinforcement
of convection and ice microphysical processes in the clouds. The decrease in the precipitation
amount in an extremely polluted condition may be due to the suppression of ice nucleation and
anvil formation [30]. It was briefly mentioned by Khain et al. [8] that the negative relationship
in their simulation may be attributed to enhanced freezing of small droplets, which brings about
suppressed riming and enhanced sublimation of ice hydrometeors. Fan et al. [10] suggested
that in a polluted condition where the amount of water vapor available for diffusional growth
of drops is small, the weakening of convection would suppress precipitation. According to the
analyses by Connolly et al. [31], the main cause of the suppressed precipitation in response to heavy
aerosol loading is the weakened storm intensity under polluted conditions. Alizadeh-Choobari and
Gharaylou [29] used a two-moment bulk microphysics scheme to simulate deep convective clouds
over the northwestern region of Iran, showing non-monotonic trends in precipitation amounts with
respect to aerosol loading, but the analyses were mostly devoted to changes in precipitation rates.

Lohmann and Feichter [32] summarized aerosol indirect effects in mixed-phased clouds as three
major mechanisms: the “thermodynamic indirect effect”, the “glaciation indirect effect”, and the
“riming indirect effect”. The thermodynamic indirect effect in Lohmann and Feichter [32] refers to
the suppression of heterogeneous immersion freezing by the overall decrease in drop size followed
by the inhibition of ice microphysical processes. Khain et al. [1] and Rosenfeld et al. [17], on the
other hand, suggested a competing phenomenon in which ice processes are enhanced due to the
invigoration of convection. The glaciation indirect effect refers to the Wegener-Bergeron-Findeisen
process becoming more active owing to the greater number of ice nuclei resulting from a higher aerosol
number concentration in a specific supersaturation range [32]. The riming indirect effect refers to
a decrease in riming efficiency due to the smaller size of cloud drops in polluted conditions [32].
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Although riming is an important process in the growth of ice hydrometeors, only a few studies have
reported the riming indirect effect mentioned above. This study attempts to fill this gap in the literature.

Most studies on non-monotonic dependency of precipitation on aerosols thus far have used
idealized two-dimensional simulations [8,10] or idealized three-dimensional simulations [13,30].
There is some evidence in support of using three-dimensional simulations over two-dimensional
simulations as the dynamic structures of the convective system can be better represented in the
former [33]. Real case simulations offer even more realistic information about the impact of aerosols,
although the degrees of freedom in the analyses of real case simulations is higher compared to that in
idealized simulations.

In this study, aerosol-cloud-precipitation interactions are investigated through three-dimensional
simulations of heavy precipitation from a mid-latitude deep convective system using the Weather
Research and Forecasting (WRF) model with a bin microphysics scheme. In Section 2, the case
description and the experimental setup are given. Section 3 provides the model validation and
describes the dependencies of cloud microphysics and precipitation on aerosol loading and the
feedback between microphysics and dynamics. Section 4 gives a summary and discussions.

2. Case Description and Experimental Setup

From 15 to 16 July 2017, a heavy precipitation event occurred in the central region of the
Korean Peninsula. The surface precipitation observations by automatic weather systems (AWSs),
which measure accumulation every hour, were used for analysis in this study. The AWSs are
operated by the Korea Meteorological Administration (KMA), and the number of AWSs is 482.
According to the observations, precipitation formed a long and narrow band over the peninsula,
and the surface precipitation amount accumulated over the 18 h from 21 local standard time (LST)
15 July to 15 LST 16 July 2017 reached ~270 mm in Chungcheong Province (located in the center of
South Korea). The equivalent potential temperature and horizontal wind from the National Centers for
Environmental Predictions (NCEP) Final (FNL) global analysis data, which have 0.25 degree horizontal
resolution [34], were analyzed. It can be seen from the analysis that warm and humid air flowed from
the southwest into the Korean Peninsula at the lower level (Figure 1a–c), and cold and dry air flowed
from the northwest at the upper level (Figure 1d–f). As a result, the conditions for a heavy rainfall
occurrence were established over the central region of the Korean Peninsula. Note that the convective
available potential energy was not large throughout the period, and strong west winds were distinct
across all vertical layers. In particular, strong low-level west winds would help moisture convergence.

This study used the WRF model, version 3.8.1 [35], coupled with the bin microphysics scheme of
the Hebrew University Cloud Model [36]. The bin microphysics scheme used in this study considers
seven hydrometeor types, which are liquid drops including cloud droplets and raindrops, three types
of ice crystals (column, plate, and dendrite), snow, graupel, and hail, with 43 mass-doubling bins.
In this study, an improved quasi-stochastic collection model, which represents the collection process
more realistically by allowing cloud particles to collide multiple times within a model time step [37],
was adopted. In this model, ice crystals form through either stochastic freezing of small droplets
following Biggs [38] or deposition and condensation–freezing nucleation following Meyers et al. [39].
Note that the ice crystal nucleation parameterizations used in this study are, respectively, a function
of temperature or supersaturation only. A more elaborate parameterization that further considers
the role aerosols play in ice nucleation processes needs to be considered in future studies. Large ice
particles melt gradually below the melting layer according to the predicted liquid water fractions,
following Phillips et al. [40]. A detailed description of the bin microphysics scheme can be found in
Lee and Baik [36]. Turbulence-induced collision enhancement is not considered in this study.
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National Centers for Environmental Predictions (NCEP) Final (FNL) 0.25-degree analysis data. 
Subfigures (d–f) are analogous to (a–c) but at 500 hPa. 
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integrations were performed for 24 h starting from 15 LST 15 July 2017, and the initial 6 h were 
regarded as the model spin-up time.  

Figure 1. 850 hPa equivalent potential temperature (K, shaded) and horizontal wind (m s−1, arrows)
fields at (a) 15 local standard time (LST) 15, (b) 03 LST 16, and (c) 15 LST 16 July 2017 using the National
Centers for Environmental Predictions (NCEP) Final (FNL) 0.25-degree analysis data. Subfigures (d–f)
are analogous to (a–c) but at 500 hPa.

The model domain configuration with terrain height and the physics schemes used in numerical
simulations are presented in Figure 2 and Table 1, respectively. Three one-way nested domains
were used with horizontal resolutions of 18, 6, and 2 km. There were 39 model levels in the vertical
direction, and the vertical grid size ranged from ~60 m at the lowest layer to ~800 m at the highest
layer. The model top was 50 hPa, which corresponds to ~20 km. Model time steps were 54, 18,
and 6 s. NCEP FNL 0.25-degree analysis data were used as the initial and boundary conditions.
Model integrations were performed for 24 h starting from 15 LST 15 July 2017, and the initial 6 h were
regarded as the model spin-up time.

Table 1. Domain configuration and physics schemes used in this study.

Domain 1 Domain 2 Domain 3

horizontal grid size (km) 18 6 2
horizontal grid number 218 × 218 280 × 280 190 × 145

vertical grid number 39
time step (s) 54 18 6

planetary boundary layer Yonsei University Scheme [41]
shortwave radiation Dudhia scheme [42]
longwave radiation Rapid radiative transfer model [43]

land surface Unified Noah land surface model [44]
subgrid-scale cumulus Kain–Fritsch scheme [45] none

microphysics Bin microphysics [36]
initial/boundary conditions NCEP FNL 0.25 degree analysis [34]
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Aerosols were also assigned 43 mass-doubling bins with the largest radius of 2 µm. All aerosols
were assumed to serve as CCN whose activation to cloud droplets is determined by supersaturation
and aerosol size. The initial aerosol size distribution was designed to follow the Twomey equation [46]
and the Köhler equation [47] as in Khain et al. [48] and Lee et al. [49]. The aerosol size distribution
N(ra) is expressed by
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Here, ra is the radius of the aerosol, N0 is the number concentration of CCN at 1% supersaturation,
k is a constant related to the hygroscopicity of the aerosol, and A and B are coefficients associated
with the curvature effect and the solution effect, respectively. Nine simulations with different initial
aerosol concentrations (N0 = 50, 100, 200, 400, 800, 1600, 3200, 6400, and 12,800 cm−3) were conducted
to investigate the effects of different aerosol loadings. The aerosol number concentration was set to
be constant up to z = 2 km and to decrease exponentially above z = 2 km with an e-folding depth of
2 km. The model includes a nucleation-scavenging process that removes aerosols as many as they
are activated, along with spatial advection of aerosols as scalars. Note that it is quite challenging to
consider all processes related to aerosols because it requires online coupling of a chemistry model and a
microphysics model, which includes many processes such as wet scavenging and aerosol regeneration
through evaporation. While some models use a simplified diagnostic aerosol model [50–52], this model
adopts an aerosol replenishment scheme suggested in Jiang and Wang [53] as was done in Lee and
Baik [36] with a relaxation time of 1 h.

Although the treatment for aerosols in this study, which introduces mass bins to represent size
distributions of aerosols, is more advanced than what is typically used in bulk microphysics schemes,
it is still somewhat idealized. In observations, the chemical composition and hygroscopicity of aerosols
vary in general, and shapes of aerosol size distributions are more complex. The simplified aerosol
size distribution considered in this study well approximates observations in most aerosol size ranges,
but it may exhibit a slightly longer tail stretching into large particles and have excessively many
very fine particles compared to typical observations, although such fine particles are less likely to be
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activated owing to their tiny size. In Equation (1), besides the aerosol number concentration parameter,
the shape parameters of aerosol size distribution, such as the slope factor k, are known to be important
for aerosol–cloud–precipitation interactions. Largely attributable to the huge computational expense
of the bin microphysics model, only variation in the aerosol number concentration is examined in
this study, and the complexity of representing aerosol particles in a numerical model deserves to be
investigated in further studies.

The aerosol number concentrations considered in this study have a broader range than some of the
previous studies; for example, Andreae et al. [14] considers up to N0 = 4000 cm−3 in a “smoky cloud”
and Gayatri et al. [54] considers N0 = 3000 cm−3 “polluted”. As air pollution becomes more severe
in Northeast Asia as a result of the increased emission of anthropogenic aerosols following rapid
industrialization and the long-range transport of dust aerosols [55–57], it is necessary to investigate
how cloud microphysics and precipitation processes change in an extremely polluted condition in
this region. A high variability in the CCN number concentration is reported even among regions
with similar geographical characteristics [58]. Therefore, it is worthwhile to examine how the cloud
microphysics and precipitation processes respond to different aerosol number concentrations on a
wide-ranging spectrum.

3. Results

3.1. Validation

Numerically simulated equivalent potential temperature and horizontal wind fields in the
N0 = 800 cm−3 case are presented in Figure 3. Comparing Figure 3 with Figure 1 reveals that the
characteristic distributions of equivalent potential temperature and air flow over and around the
peninsula are well simulated, meaning that a good agreement is expected between the observation and
the simulation regarding the location of precipitation. Figure 4a,b show, respectively, the simulated
(the N0 = 800 cm−3 case) and observed surface precipitation amounts accumulated over the 18 h period
from 21 LST 15 July to 15 LST 16 July 2017. Figure 4c displays the radar-estimated surface precipitation
amount accumulated over the same 18 h period from 1.5 km constant altitude plan position indicator
(CAPPI) data provided by the KMA. Note that any estimation of precipitation amount from radar
reflectivity profoundly depends on a Z–R relationship, so that the precipitation shown in the figure
should be regarded as an approximation. While the region with intense precipitation is narrower and
shifted northeastward in the simulation, the maximum precipitation amount in the simulation well
agrees with that in the observations.
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3.2. Cloud Microphysics and Precipitation

The spatial distributions of the surface precipitation amount accumulated over the 18 h period
in the cases with different N0 are given in Figure 5. While the overall spatial features of the
simulated precipitation do not vary substantially with changes in the aerosol number concentration,
the proportion and location of heavy precipitation exhibit meaningful variations from one another.
The variation in the precipitation intensity will be analyzed. Note that instead of focusing on the
entire domain, we focus on a specific analysis region, which is marked as a black box in each panel of
Figure 5, corresponding to where strong precipitation is concentrated.
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processes under polluted conditions. In addition, the accumulated precipitation amount experiences 
a ~13% increase going from N0 = 50 cm−3 to N0 = 800 cm−3 but decreases by ~2% from N0 = 800 cm−3 to 
N0 = 12,800 cm−3 (Figure 6d). Because of these noticeable differences in the behavior of the indicators 
between the aerosol number concentration ranges N0 = 50–800 cm−3 and N0 = 800–12,800 cm−3, the 

Figure 5. Spatial distributions of the surface precipitation amount accumulated over the 18 h period in
the cases of N0 = (a) 50, (b) 100, (c) 200, (d) 400, (e) 800, (f) 1600, (g) 3200, (h) 6400, and (i) 12,800 cm−3.
The boxed region in each figure defines the analysis region for this study, corresponding to where the
precipitation is concentrated.

Figure 6 plots the liquid water path (LWP), the ice water path (IWP), the sum of the LWP
and the IWP, and the accumulated surface precipitation amount as functions of N0 averaged over
the analysis region. An increase in aerosol loading in relatively clean conditions significantly
enhances cloud development and precipitation. Beyond a certain threshold value of N0, on the
other hand, cloud development and precipitation stagnate or recede with increasing aerosol loading.
More specifically, with an increase in aerosol number concentration beyond N0 = 800 cm−3, the LWP
does not show noticeable changes (Figure 6a), but there is a small but clear suppression of ice-phased
cloud (a ~4% decrease in IWP from N0 = 800 cm−3 to N0 = 12,800 cm−3, Figure 6b). This suggests
that the ice microphysical processes are more sensitive to aerosol loading compared to the warm
microphysical processes under polluted conditions. In addition, the accumulated precipitation amount
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experiences a ~13% increase going from N0 = 50 cm−3 to N0 = 800 cm−3 but decreases by ~2%
from N0 = 800 cm−3 to N0 = 12,800 cm−3 (Figure 6d). Because of these noticeable differences in
the behavior of the indicators between the aerosol number concentration ranges N0 = 50–800 cm−3

and N0 = 800–12,800 cm−3, the analysis hereafter will primarily focus on the following three cases:
N0 = 50, 800, and 12,800 cm−3. Note that the amount of ice-type hydrometeors is approximately
twice that of liquid-type hydrometeors; therefore, considering the changes in mixed-phase cloud
microphysics is imperative in this study.
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Figure 7 shows the spatial proportions of weak, moderate, and strong precipitation in terms of the
percent area of the analysis domain covered by precipitation in the N0 = 50, 800, and 12,800 cm−3 cases.
In this study, weak precipitation, moderate precipitation, and heavy precipitation are defined as 0 mm
< P < 20 mm, 20 mm ≤ P < 200 mm, and 200 mm ≤ P, respectively. Here, P is the accumulated surface
precipitation amount at each surface grid point. The area proportion of weak precipitation decreases
with increasing aerosol number concentration, while the area proportions of moderate and heavy
precipitation exhibit non-monotonic trends with respect to aerosol loading. In particular, the area
proportion of heavy precipitation in the N0 = 12,800 cm−3 case is smaller than that in the N0 = 800 cm−3

case (Figure 7c), while the area proportion of moderate precipitation in the N0 = 12,800 cm−3 case
is larger than that in the N0 = 800 cm−3 case (Figure 7b). From these results, it can be inferred that
the increase in the aerosol number concentration from N0 = 800 cm−3 to N0 = 12,800 cm−3 weakens
heavy precipitation occurrences to a certain extent, leading instead to more moderate precipitation
occurrences. This rather drastic change in the relative frequency of precipitation intensity implies that
the underlying cloud microphysics experiences significant changes if the aerosol loading increases
in the range N0 = 800–12,800 cm−3. Many studies have reported a larger proportion of heavy rain
rate in polluted conditions [24,29,59]. In particular, Chen et al. [59] reported that the frequency of
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heavy rain rate increases monotonically with increasing aerosol loading. In this study, however,
the spatial proportion of heavy precipitation in the N0 = 12,800 cm−3 case is lower than that in the
N0 = 800 cm−3 case.
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Figure 8 shows vertical profiles of hydrometeor mass contents and mass change rates caused
by microphysical processes in the N0 = 800 cm−3 case. Here, the mass change rate is defined as the
rate of mass change (production) of the resulting phase of water, for example, liquid water or ice for
nucleation, liquid water for melting, and water vapor for evaporation. The freezing level is z~5 km,
and the temperature reaches −38 ◦C, which is associated with homogeneous freezing, at z~11 km
in this case. Above the freezing level, snow is dominant, and the deposition rate is relatively high,
which is associated with comparatively high relative humidity in upper layers and a large capacitance
of snow compared to other ice particles. Below the freezing level, rainwater is dominant. Evaporation
of rainwater and cloud water in the lower layer is noticeable. Riming, which refers to collision between
ice particles and supercooled drops, is active near the freezing level.
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Figure 9a,b show size distributions of drop mass at z = 3 km and snow mass at z = 6 km,
respectively. Figure 9c–f show the differences in the size distributions between the N0 = 800 cm−3

and N0 = 50 cm−3 cases (Figure 9c,d) and between the N0 = 12,800 cm−3 and N0 = 800 cm−3 cases
(Figure 9e,f). For the drops with radii less than 30 µm or greater than 800 µm, the mass content of
drops is larger in the N0 = 800 cm−3 case than in the N0 = 50 cm−3 case, whereas the mass content
of drops whose radii fall in the size range 30–800 µm is smaller in the N0 = 800 cm−3 case than
in the N0 = 50 cm−3 case. The average size of cloud droplets is smaller in the N0 = 800 cm−3 case
compared to the N0 = 50 cm−3 case, which is attributable to the enhanced nucleation. The increase
in the mass content in the size range of raindrops in the N0 = 800 cm−3 case is associated with
enhanced precipitation. Compared to the N0 = 50 cm−3 case, the mass content of snow particles in the
N0 = 800 cm−3 case is larger overall, except in the size range 500–1600 µm.
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800, and 12,800 cm−3 cases. Differences in the size distributions of (c) drops and (d) snow particles
between the N0 = 800 cm−3 and N0 = 50 cm−3 cases. Subfigures (e,f) are analogous to (c,d), but for the
differences between the N0 = 12,800 cm−3 and N0 = 800 cm−3 cases.

Compared to the N0 = 800 cm−3 case, the mass content of drops is larger in the N0 = 12,800 cm−3

case for drops with radii less than 20 µm, which is attributable to the enhanced nucleation.
Many previous studies have shown that as CCN concentration increases, the number concentration of
activated drops increases, and the average size of the drops becomes smaller [60–62]. This can
cause lower efficiency of the collision-coalescence, which suppresses the production of warm
rain [1,8,14,17,63]. For drops with radii greater than 20 µm, however, the mass content is smaller in
the N0 = 12,800 cm−3 case than in the N0 = 800 cm−3 case. The mass content of snow particles with
radii less than 300 µm is larger in the N0 = 12,800 cm−3 case. Overall, the increase in aerosol number
concentration from N0 = 50 cm−3 to 800 cm−3 leads to an increase in snow particles and liquid drops
at both tails of particle size distributions, as well as a decrease in those particles with moderate size;
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however, a further increase in aerosol number concentration from N0 = 800 cm−3 to 12,800 cm−3 causes
a decrease in relatively large snow particles and liquid drops and an increase in relatively small snow
particles and liquid drops.

Figure 10 shows vertical profiles of differences in hydrometeor mass contents between the
N0 = 800 cm−3 and N0 = 50 cm−3 cases and between the N0 = 12,800 cm−3 and N0 = 800 cm−3

cases. The amounts of cloud water and rainwater (categorized with a threshold radius of 40 µm) in the
N0 = 800 cm−3 case are larger than those in the N0 = 50 cm−3 case at almost all altitudes. The mass
content of ice crystals is generally larger in the N0 = 800 cm−3 case than in the N0 = 50 cm−3 case except
near the freezing level. The mass content of snow particles increases by ~17% in the N0 = 800 cm−3

case compared to the N0 = 50 cm−3 case. The graupel mass content also increases, presumably resulting
from the increase in mass contents of snow and supercooled cloud water. The increase in the mass
contents of snow and graupel is mainly responsible for the increase in the rainwater content and
precipitation in the N0 = 800 cm−3 case. On the other hand, Figure 10f shows the mass content of
hail particles being smaller in the N0 = 800 cm−3 case than in the N0 = 50 cm−3 case at all altitudes.
This decrease in the mass content of hail particles in a relatively polluted case was also reported in
Ilotoviz et al. [7], where it was mainly explained by the decreased amount of large freezing drops.
Due to the decreased mass content of hail particles in the N0 = 800 cm−3 case, the surface precipitation
induced by melting of hail particles would be suppressed compared to the N0 = 50 cm−3 case. However,
the decrease in hail mass content is more than offset by the increase in the mass contents of snow
and graupel.
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Figure 10. Vertical profiles of differences in mass contents of (a) cloud water, (b) rainwater, (c) ice
crystal, (d) snow, (e) graupel, and (f) hail (blue) between the N0 = 800 cm−3 and N0 = 50 cm−3 cases and
(red) between the N0 = 12,800 cm−3 and N0 = 800 cm−3 cases. Note that each panel uses its own scale.

The changes in hydrometeor mass content from N0 = 800 cm−3 to 12,800 cm−3 show somewhat
different trends to those are seen in the changes from N0 = 50 cm−3 to 800 cm−3. While the cloud
water mass content is greater in the N0 = 12,800 cm−3 case, the ice crystal mass content is smaller
in the N0 = 12,800 cm−3 case except near the freezing level, which is opposite to that is seen in the
comparison between the N0 = 800 cm−3 and N0 = 50 cm−3 cases, although the number concentration of
ice crystals is larger in the N0 = 12,800 cm−3 case than in the N0 = 800 cm−3 case (not shown). The snow
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mass content is smaller in the N0 = 12,800 cm−3 case, particularly at z = ~6–11 km. The overall
reduced mass content of snow particles is intimately related to the mass contents of graupel and
rainwater, which are smaller in the more polluted case. The difference in the mass content of hail
particles is also negative, which might be caused by the decrease in the mass content of large-sized
drops going from N0 = 800 cm−3 to N0 = 12,800 cm−3; the drops are then converted into hail through
freezing. In summary, all hydrometeor mass contents except for the hail mass content associated with
large drops increase with increasing aerosol loading from N0 = 50 cm−3 to 800 cm−3. As the aerosol
loading increases further to N0 = 12,800 cm−3, only the cloud water mass content increases, and all ice
hydrometeor mass contents, as well as the rainwater mass content, decrease.

Figure 11 shows vertical profiles of differences in mass change rates attributable to microphysical
processes between the N0 = 800 cm−3 and N0 = 50 cm−3 cases and between the N0 = 12,800 cm−3 and
N0 = 800 cm−3 cases. An increase in mass change rate attributable to nucleation in the N0 = 800 cm−3

case is shown, which is directly related to the increase in the mass content of cloud water (Figure 10a),
and moreover, causes the enhanced condensation. Since the average size of drops is smaller in
the N0 = 800 cm−3 case than in the N0 = 50 cm−3 case, the drop mass content that is converted
into hail through freezing would be reduced. The difference in mass change rate attributable to
freezing has a small but negative value very near the freezing level in the N0 = 800 cm−3 case, which is
speculated to be caused by the suppressed generation of hail particles by freezing of large drops. On the
other hand, the drop mass content that is converted into ice crystals through freezing is estimated to be
comparatively large in the N0 = 800 cm−3 case compared to that in the N0 = 50 cm−3 case. The number
concentration of supercooled drops near the freezing level is larger in the N0 = 800 cm−3 case than in
the N0 = 50 cm−3 case (not shown), which can lead to active growth of snow particles due to enhanced
riming. Sublimation and evaporation are also enhanced at all altitudes.
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Figure 11. Vertical profiles of differences in the mass change rates attributable to (a) nucleation,
(b) condensation, (c) freezing, (d) deposition, (e) riming, (f) melting, (g) evaporation, and (h)
sublimation processes (blue) between N0 = 800 cm−3 and N0 = 50 cm−3 cases and (red) between
N0 = 12,800 cm−3 and N0 = 800 cm−3. Note that each panel uses its own scale.

The difference in mass change rate attributable to melting is negative near the freezing level but
positive below this level. The size distribution of snow particles (Figure 9d) can be used to explain why
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melting is negative near the freezing level. In the N0 = 800 cm−3 case, the mass content of mid-sized
snow particles is smaller than that in the N0 = 50 cm−3 case. Therefore, more of these mid-sized
snow particles in the N0 = 50 cm−3 case can melt near the freezing level by gradual melting. On the
other hand, in the N0 = 800 cm−3 case, more of the large-sized snow particles which are produced by
enhanced deposition and riming can melt with latent heat absorption while traversing a relatively
long distance upon falling, resulting in a larger mass change rate attributable to melting in the lower
layer. Note that the mass change rate attributable to melting comprises melting of all ice hydrometeors,
but the melting of snow particles is expected to be predominant considering its proportion.

In the N0 = 12,800 cm−3 case, while nucleation is enhanced and the cloud water mass content
is larger compared to the N0 = 800 cm−3 case, freezing and melting are suppressed overall.
Deposition and sublimation are enhanced in the N0 = 12,800 cm−3 case near z~6 km but suppressed
at higher altitudes. Evaporation is enhanced below z~2 km. Condensation is also enhanced below
z~2 km; however, the enhanced condensation is smaller than the enhanced evaporation. Riming is
suppressed almost entirely. These imply that some cloud microphysical processes react differently to
changes in aerosol loading depending on whether the air is clean or polluted. Note that the enhanced
evaporation would cause a change in cold pool intensity, which will be discussed in the next section.

Changes in the major microphysical processes concerning the growth of ice hydrometeors
introduced by the changes in aerosol loading were examined. Figure 12 shows the mass change rate
attributable to deposition, riming, and the sum of deposition and riming as functions of aerosol loading,
averaged vertically from the surface to z~15 km. The mass change rate through deposition tends to
increase with increasing aerosol loading until N0 = 800 cm−3, beyond which it tends to stagnate.
As the CCN concentration increases, the number of supercooled drops increases; consequently,
the total surface area of the drops would increase, making the diffusional growth of ice hydrometeors,
which form via freezing of drops, more active. In the range beyond N0 = 800 cm−3, the sensitivity to
aerosol loading becomes low, which can be attributed to the limited amount of available water vapor
in the system. On the other hand, riming starts to decrease ahead of N0 = 800 cm−3, at which the
accumulated precipitation amount starts to decrease (Figure 6d) and the stagnation of the averaged
deposition rate begins. This might be attributed to the size distributions of the hydrometeors involved
in riming. In relatively clean conditions, as the aerosol loading increases, riming is enhanced because
the number of supercooled drops increases. In the range beyond a certain value (here, N0 = 100 cm−3),
however, the mean size of supercooled drops becomes very small; consequently, the growth of snow
particles via riming is suppressed. The overall enhanced deposition and the hastened suppression of
riming are combined to show a tendency similar to Figure 6b–d.
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Dagan et al. [64] showed that development of cloud systems and precipitation have a nonlinear
relationship with aerosol loading, suggesting that there exist optimal values of aerosol loading.
This study also finds the existence of such optimal aerosol loading values not only for cloud
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development and precipitation, but also for some cloud microphysical processes. Of course,
these optimal values can vary depending on environmental conditions, and, in some cases, they may
not even exist.

3.3. Microphysics-Dynamics Feedback

In addition to changes in cloud microphysics, the non-monotonic changes in surface precipitation
and cloud development can be closely related to changes in the dynamics of clouds as well. Figure 13
provides vertical profiles of vertical velocity in the N0 = 800 cm−3 case, proportions of grid points
with relatively strong updrafts (where the updraft velocity is larger than 1 m s−1) to all grid points,
and water vapor vertical flux. Active convection (i.e., positive vertical velocity) is clearly seen in
the N0 = 800 cm−3 case at almost all altitudes. The difference in the proportions among the cases
is particularly significant between z~5 km and z~11 km, where the vertical velocity is strongest
and the growth of ice hydrometeors is most active. Convection becomes stronger with increasing
aerosol loading from N0 = 50 cm−3 to N0 = 800 cm−3. However, as aerosol loading further increases
from N0 = 800 cm−3 to N0 = 12,800 cm−3, convection is suppressed, which shows that additional
aerosol loading in an extremely polluted atmosphere would weaken deep convection within the
cloud systems. These changes in convection with respect to aerosol loading are associated with the
changes in latent heat release. Condensation, deposition, and riming increase with increasing aerosol
number concentration from N0 = 50 cm−3 to 800 cm−3, which leads to the enhanced convection.
In contrast to that, with increasing aerosol number concentration from N0 = 800 cm−3 to 12,800 cm−3,
condensation, deposition, and riming decrease, which leads to the weaker convection. These changes in
convection caused by latent heat release further affect microphysics by altering the upward transport
of water vapor, which causes a change in latent heat release. Therefore, we can find the cloud
microphysics-dynamics feedback.
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Figure 13. Vertical profiles of (a) vertical velocity in the N0 = 800 cm−3 case, (b) proportions of grid
points where the updraft velocity is larger than 1 m s−1 to all grid points, and (c) water vapor vertical
flux in the N0 = 50, 800, and 12,800 cm−3 cases.

In addition to the invigoration of convection caused mainly by latent heat release,
the intensification of a cold pool by evaporation of raindrops in the lower layer can affect the dynamics
of cloud systems. Figure 14 shows the horizontal distribution of density potential temperature (θρ)
at z = 1 km in the N0 = 800 cm−3 case and the differences in θρ between the N0 = 800 cm−3 and
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N0 = 50 cm−3 cases and between the N0 = 12,800 cm−3 and N0 = 800 cm−3 cases. Here, the density
potential temperature is defined following Emanuel [65] as

θρ = θv
1 + qv

1 + qt
, (2)

where θv is the virtual potential temperature, qv is the water vapor mixing ratio, and qt is the total
mixing ratio, which is the sum of water vapor mixing ratio, liquid water mixing ratio, and ice water
mixing ratio. The density potential temperature includes the hydrometeor loading effect and is used
to indicate cold pool strength [66].
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Horizontal distributions of the differences in θρ (b) between the N0 = 800 cm−3 and N0 = 50 cm−3 cases
and (c) between the N0 = 12,800 cm−3 and N0 = 800 cm−3 cases. The area with gray represents where
the terrain height is higher than z = 1 km.

The N0 = 800 cm−3 case shows a generally lower θρ than that in the N0 = 50 cm−3 case except
in the rightmost area of the analysis region. In particular, the area where the noticeably lower θρ

occurs approximately coincides with where heavy precipitation occurs (Figure 5). This reveals that
the increased evaporation and precipitation with increasing aerosol number concentration from
N0 = 50 cm−3 to 800 cm−3 enhance low-level convergence and upward mass flux from the lower level.
This, in turn, would further enhance convection, as shown in Figure 15, which shows the time series
of low-level convergence and upward mass flux averaged in lower levels. The N0 = 12,800 cm−3

case shows a θρ even lower than that in the N0 = 800 cm−3 case, which is caused by the more active
evaporation in the N0 = 12,800 cm−3 case (Figure 11g) owing to the overall size of hydrometeors being
small (Figure 9e,f). However, unlike the comparison between the N0 = 800 cm−3 and N0 = 50 cm−3

cases, the enhanced decrease in θρ between the N0 = 12,800 cm−3 and N0 = 800 cm−3 cases is spread
throughout the analysis region except for the area with heavy precipitation. As a result, low-level
convergence and upward mass flux from the lower level increase, but the increases are quite small
(Figure 15).
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Figure 15. Time series of averaged (a) horizontal gradients of density potential temperature√(
∂θρ/∂x

)2
+
(
∂θρ/∂y

)2, (b) |∂u/∂x + ∂v/∂y|, and (c) upward flux of water vapor and cloud droplets
in the N0 = 50, 800, and 12,800 cm−3 cases below z = 2 km.

Tao and Li [3] investigated the role of cold pool in the enhancement of precipitation through
two-dimensional idealized simulations of a squall line. In their study, the total precipitation amount
decreased when the evaporation in the lower layer was turned off during the first few hours
of the numerical integration. In addition, it was reported that the reinforcement of cold pool
results in secondary convection through near-surface convergence, leading to enhanced precipitation.
However, the present study shows that the enhanced cold pool does not always coincide with
enhanced precipitation.

The changes in the dynamics of deep convective clouds shown in Figures 13 and 14 can be
explained by the difference in the latent heat release amount. Figure 16a shows vertical profiles of
latent heat release and absorption rates. Figure 16b–e show the accumulated latent heat release and
absorption amounts above z = 5 km and below z = 2 km. Note that latent cooling above z~7 km
almost vanishes in all cases, largely attributable to high relative humidity (not shown). The total
amount of latent heat release is largest in the N0 = 800 cm−3 case and is associated with the largest
proportion of strong updraft in the N0 = 800 cm−3 case (Figure 13b). Above z = 5 km, the total
amount of latent heat absorption is approximately one order smaller than that of latent heat release.
Therefore, latent heat release, which shows a non-monotonic trend, more affects convection than
does latent heat absorption. On the other hand, the orders of the total amounts of latent heat release
and absorption below z = 2 km are similar to each other, and both amounts increase going from
N0 = 50 cm−3 to N0 = 12,800 cm−3. As a result, the net latent heat absorption (i.e., cooling) is greater
in the N0 = 12,800 cm−3 case compared to the N0 = 800 cm−3 case; this can explain the strengthened
cold pool in the N0 = 12,800 cm−3 case (Figure 14c). However, the difference is not large and is spread
over the entire domain except for the heavy precipitation region; hence, it would be less likely to affect
the low-level convergence as discussed above.
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the accumulated (b) latent heat release amount and (c) latent heat absorption amount above z = 5 km in
the N0 = 50, 800, and 12,800 cm−3 cases. Subfigures (d,e) are analogous to (b,c) but for below z = 2 km.

4. Summary and Discussion

In this study, changes in aerosol-cloud-precipitation interactions due to different aerosol loadings
were investigated based on numerical simulations of a heavy precipitation event that occurred over
South Korea on 15–16 July 2017. For this, the Weather Research and Forecasting model coupled with
the bin microphysics scheme of the Hebrew University Cloud Model [36] was used.

The results show that the dependencies of cloud development and precipitation amount
on aerosol loading vary for different levels of aerosol loading. Given a relatively weak aerosol
loading (N0 = 50–800 cm−3 in this study), the development of cloud is strengthened, and the
surface precipitation amount increases with increasing aerosol loading. Given a relatively heavy
aerosol loading (N0 = 800–12,800 cm−3 in this study), however, there is little change in or even
suppression of cloud development and surface precipitation corresponding to increasing aerosol
number concentrations. Note that there are several factors other than aerosol number concentration that
affect aerosol-cloud-precipitation interactions: for instance, environmental conditions, vertical velocity
in clouds, and aerosol size distributions. Therefore, the specific optimum value of aerosol number
concentration found in this study can be applied only to the case and the experimental settings in this
study, and the non-monotonic response of cloud microphysics processes and surface precipitation to
change in aerosol number concentration should be regarded as the conclusion of this study.

These non-monotonic dependencies of cloud development and surface precipitation amount
on aerosol loading were analyzed in detail in terms of changes in cloud microphysical processes.
Figure 17 is a schematic diagram that summarizes the changes in cloud microphysics and dynamics
responding to different levels of aerosol loading. As the aerosol loading increases in the range
N0 = 50–800 cm−3, drop nucleation becomes active and the average size of the cloud drops becomes
smaller. This leads to an increase in the mass content of supercooled drops near the freezing level and
greater supply of ice crystals above the freezing level; consequently, there is an increase in the mass
content of large-sized snow particles, mainly through deposition and riming. The surface precipitation
is enhanced through the melting of snow particles in increased amount. However, hail formation
through drop freezing is suppressed in the N0 = 800 cm−3 case. As the aerosol loading increases in the
range N0 = 800–12,800 cm−3, riming is suppressed despite the increases in the number concentration
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of ice crystals and the mass content of supercooled drops because the overall size of hydrometeors is
noticeably small under heavier aerosol loading conditions.
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Figure 17. Schematic diagram that depicts the changes in cloud microphysics and dynamics due to
different aerosol loadings.

In this study, deposition and riming were found to be active as the aerosol loading increases up to
an optimal value. Beyond this value, they are suppressed or stagnate. For this reason, the proportion of
strong updraft is largest in the N0 = 800 cm−3 case. In the results related to the dynamics of the system,
it was found that cold pool is strengthened as the aerosol loading increases, but the enhancement is
not clear in a polluted environment.

As in this study, Connolly et al. [31] showed that an invigoration of convection in a hailstorm
might occur if the cloud droplet number concentration increases up to a certain value, followed by
a weakened intensity of the storm beyond this value. Such optimal values of aerosol loading also
appeared in some microphysical processes. In that study, however, non-monotonic dependencies of
riming were not found. In the present study, we focused on riming and presented optimal values
for riming. Other collision processes than riming, such as aggregation and coalescence, might also
affect these aerosol-cloud-precipitation interactions, but their impacts might be limited because those
processes themselves do not yield any changes in latent heat release nor in total mass. Their impacts
will be investigated in future studies.

Khain et al. [12] reported that effects of aerosol loading on precipitation are sensitive to the
surrounding environmental conditions (e.g., vertical wind shear, relative humidity). For deep
convective clouds in dry (humid) conditions, surface precipitation amount decreases (increases)
as the aerosol loading increases. In the real atmosphere, environmental conditions can be changed
temporally and spatially. Different environmental conditions might alter aerosol-cloud-precipitation
interactions. Therefore, it is worthwhile to examine aerosol-cloud-precipitation interactions in
different stages of convective systems corresponding to evolving environmental conditions, deserving
further investigations.

The impacts of aerosols on microphysics are the focus of this study. Nevertheless, the impacts
of aerosols on radiation (direct, semidirect, and indirect) also need proper attention considering
its importance. Although several studies have investigated aerosol-cloud-radiation-precipitation
interactions [29,67], they are based on the simulation results obtained using bulk microphysics
schemes. When the impacts of aerosols on radiation are investigated in addition to the impacts
of aerosols on microphysics, changes in the size distribution of aerosols also become important.
Furthermore, changes in the chemical composition of aerosols can induce significant changes in the
cloud microphysics and radiation properties in the atmosphere. In future studies, using an online
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coupled meteorology-aerosol-chemistry model with a bin microphysics scheme may promote our
understanding of aerosol-cloud-radiation-precipitation interactions in deep convective cloud systems.
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