Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (521)

Search Parameters:
Keywords = precipitated carbides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7997 KiB  
Article
Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)99.25C0.75 Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion
by So-Yeon Park, Young-Kyun Kim, Hyoung Seop Kim and Kee-Ahn Lee
Materials 2025, 18(15), 3656; https://doi.org/10.3390/ma18153656 - 4 Aug 2025
Viewed by 66
Abstract
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong [...] Read more.
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (Cr23C6) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation–precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 307
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

11 pages, 9979 KiB  
Article
The Microstructure Evolution of a Ni-Based Superalloy Turbine Blade at Elevated Temperature
by Xuyang Wang, Yanna Cui, Yang Zhou, Ze Li, Yuzhu Zhao and Jun Wang
Coatings 2025, 15(7), 835; https://doi.org/10.3390/coatings15070835 - 17 Jul 2025
Viewed by 288
Abstract
GTD 111 has been employed in first-stage blades in different gas turbines. The study of microstructural evolution is essential for the lifetime assessment and development of turbine blades. The microstructural stability of a 130 MW gas turbine first-stage blade at 800 °C was [...] Read more.
GTD 111 has been employed in first-stage blades in different gas turbines. The study of microstructural evolution is essential for the lifetime assessment and development of turbine blades. The microstructural stability of a 130 MW gas turbine first-stage blade at 800 °C was studied. The microstructure’s evolution was analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermodynamic calculation. As thermal exposure time increases, the shape of γ′ precipitates changes from square to spherical. During thermal exposure, MC particles formed and coarsened along the grain boundaries, and primary MC carbide decomposed into the η phase and M23C6. The stability of MC carbide at the grain boundaries was lower than that within the grains. MC carbide precipitated at the grain boundaries tends to grow along the boundaries and eventually forms elongated carbide. High-resolution transmission electron microscopy (HRTEM) images indicate that the orientation of the γ′ precipitate changes during the coarsening process. The GTD 111 alloy can be deformed through dislocation shearing at 800 °C. The hardness value initially increases, then decreases with further exposure, which is related to the reduced precipitation strengthening by γ′ precipitates and the reduction in the hardness of the γ matrix. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

16 pages, 35029 KiB  
Article
Effects of Process Parameters on Defect Formation in Laser Additive Manufacturing of a Novel Ni-Based Superalloy
by Wen-Tao Liu, Jing-Cheng Zhou, Jing-Jing Ruan, Hua Zhang, Xin Zhou, Liang Jiang and Li-Long Zhu
Materials 2025, 18(13), 3102; https://doi.org/10.3390/ma18133102 - 1 Jul 2025
Viewed by 386
Abstract
Laser additive manufacturing offers significant advantages for fabricating and repairing complex components. However, the complex solidification and remelting processes in nickel-based superalloys for additive manufacturing can introduce defects such as voids and cracks. Therefore, process parameters are crucial, as they significantly impact solidification [...] Read more.
Laser additive manufacturing offers significant advantages for fabricating and repairing complex components. However, the complex solidification and remelting processes in nickel-based superalloys for additive manufacturing can introduce defects such as voids and cracks. Therefore, process parameters are crucial, as they significantly impact solidification and remelting, thereby affecting defect formation. In this study, laser-directed energy deposition was employed to evaluate the effects of our key process parameters on the formation of voids and cracks in a novel superalloy. The findings reveal that laser power and linear energy density significantly influence the void content and crack density. However, the influence of other process parameters on defect formation is relatively minimal. The optimal parameter space is characterized by a laser power range of 600~700 W, a linear energy density range of 60~90 J/mm and a powder feeding rate of 0.7~0.8 rpm. Moreover, the precipitation of fine MC-type carbides near the dendrites and grain-boundary misorientations within the range of 31~42° are associated with a higher propensity for crack formation. These insights provide a valuable reference for controlling the process parameters and understanding the cracking mechanisms in laser additive manufacturing of superalloys. Full article
(This article belongs to the Special Issue Intelligent Processing Technology of Materials)
Show Figures

Graphical abstract

14 pages, 6081 KiB  
Article
Investigation on Tensile Behavior of Solid Solution-Strengthened Ni-Co-Cr-Based Superalloy During Long-Term Aging
by Wanqi Hou, Xianjun Guan, Jiaqi Wang, Jinrong Wu, Lanzhang Zhou and Zheng Jia
Crystals 2025, 15(7), 617; https://doi.org/10.3390/cryst15070617 - 30 Jun 2025
Viewed by 216
Abstract
This study investigated how long-term aging (750 °C and 950 °C) affects the microstructure and room-temperature tensile properties of the Ni-Co-Cr superalloy GH3617. Characterization (SEM, EDS, EBSD) showed that initial aging (750 °C, 500 h) formed discontinuous M23C6 carbides, pinning [...] Read more.
This study investigated how long-term aging (750 °C and 950 °C) affects the microstructure and room-temperature tensile properties of the Ni-Co-Cr superalloy GH3617. Characterization (SEM, EDS, EBSD) showed that initial aging (750 °C, 500 h) formed discontinuous M23C6 carbides, pinning grain boundaries and improving strength. Prolonged aging (750 °C, 5000 h) caused M23C6 to coarsen into brittle chain-like structures (width up to 1.244 μm) and precipitated M6C carbides, degrading grain boundaries. Aging at 950 °C accelerated this coarsening via LSW kinetics (rate constant: 6.83 × 10−2 μm3/s), with Mo segregation promoting M6C formation. Tensile properties resulted from competing γ′ precipitation strengthening (post-aging strength increased up to 23.3%) and grain boundary degradation (elongation dropped from 70.1% to 43.3%). Fracture shifted from purely intergranular (cracks along M23C6/γ interfaces at 750 °C) to mixed mode (cracks initiated by M6C fragmentation at 950 °C). These insights support superalloy microstructure optimization and lifetime prediction. Full article
(This article belongs to the Special Issue Crystal Plasticity (4th Edition))
Show Figures

Figure 1

23 pages, 10696 KiB  
Article
High-Temperature Wear Properties of Laser Powder Directed Energy Deposited Ferritic Stainless Steel 430
by Samsub Byun, Hyun-Ki Kang, Jongyeob Lee, Namhyun Kang and Seunghun Lee
Micromachines 2025, 16(7), 752; https://doi.org/10.3390/mi16070752 - 26 Jun 2025
Viewed by 414
Abstract
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims [...] Read more.
Ferritic stainless steels (FSSs) have attracted considerable attention due to their excellent corrosion resistance and significantly lower cost compared with nickel-bearing austenitic stainless steels. However, the high-temperature wear behavior of additively manufactured FSS 430 has not yet been thoroughly investigated. This study aims to examine the microstructural characteristics and wear properties of laser powder directed energy deposition (LP-DED) FSS 430 fabricated under varying laser powers and hatch distances. Wear testing was conducted at 25 °C and 300 °C after subjecting the samples to solution heat treating at 815 °C and 980 °C for 1 h, followed by forced fan cooling. For comparison, an AISI 430 commercial plate was also tested under the same test conditions. The microstructural evolution and worn surfaces were analyzed using SEM-EDS and EBSD techniques. The wear performance was evaluated based on the friction coefficients and cross-sectional profiles of wear tracks, including wear volume, maximum depth, and scar width. The average friction coefficients (AFCs) of the samples solution heat treated at 980 °C were higher than those treated at 815 °C. Additionally, the AFCs increased with hatch distance at both testing temperatures. A strong correlation was observed between Rockwell hardness and wear resistance, indicating that higher hardness generally results in improved wear performance. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

13 pages, 2792 KiB  
Article
Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal
by Tran Ngo Quan, Le Phan Hoang Chieu and Pham Trung Kien
Coatings 2025, 15(6), 733; https://doi.org/10.3390/coatings15060733 - 19 Jun 2025
Viewed by 605
Abstract
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, [...] Read more.
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, 1.2), and hydrothermally treated at 180 °C for 96 h to yield C-S-H with tunable morphology and crystallinity. Comprehensive characterization using XRD, FT-IR, SEM-EDX, and UV-Vis spectroscopy revealed that a Ca/Si ratio of 1.0 produced a well-ordered tobermorite/xonotlite structure with a high surface area and fibrous network, which is optimal for adsorption. Batch adsorption experiments showed that this material achieved rapid and efficient Cr(III) removal, exceeding 90% uptake within 9 h through a combination of surface complexation, ion exchange (Ca2+/Na+ ↔ Cr3+), and precipitation of CaCrO4 phases. Morphological and structural evolution during adsorption was confirmed by SEM, FT-IR, and XRD, while EDX mapping established the progressive incorporation of Cr into the C-S-H matrix. These findings highlight the viability of upcycling industrial waste into advanced C-S-H sorbents for heavy metal remediation. Further work is recommended to address sorbent regeneration, long-term stability, and application to other contaminants, providing a foundation for circular approaches in advanced wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 5972 KiB  
Article
Developing NiAl-Strengthened ULCB Steels by Controlling Nanoscale Precipitation and Reversed Austenite
by Jize Guo, Xiyang Chai, Shuo Gong, Zemin Wang and Tao Pan
Materials 2025, 18(12), 2822; https://doi.org/10.3390/ma18122822 - 16 Jun 2025
Viewed by 322
Abstract
In this study, a strategy was adopted to promote the formation of NiAl precipitates with the aim of enhancing strength by incorporating a 0.2 wt.% Al into a traditional ultra-low carbon bainitic (ULCB) steel alloy. By integrating thermo-mechanical control processing (TMCP) and a [...] Read more.
In this study, a strategy was adopted to promote the formation of NiAl precipitates with the aim of enhancing strength by incorporating a 0.2 wt.% Al into a traditional ultra-low carbon bainitic (ULCB) steel alloy. By integrating thermo-mechanical control processing (TMCP) and a tailored tempering process, a new-generation steel with an outstanding combination of properties has been successfully developed for shipbuilding and marine engineering equipment. It features a yield strength of 880 MPa, a yield ratio of 0.84, and an impact toughness of 175 J. The precipitation characteristics of nanoscale particles in this steel, including NiAl intermetallics and carbides, were systematically investigated. The results show that the alloy with low Al addition formed NiAl precipitates during tempering. The high-density distributions of NiAl, (Mo, V)C, and (Ti, V, Nb)C precipitates, which exhibit slow coarsening kinetics, played a dominant role in enhancing the strength of the tempered steel. In addition to precipitation, the microstructure before and after tempering was also analyzed. It was observed that a granular bainite morphology was favorable for decreasing the yield ratio. Additionally, the formation of reverse-transformed austenite during tempering was critical for retaining toughness despite substantial strength gains. Finally, theoretical modeling was employed to quantitatively assess the contributions of these microstructural modifications to yield strength enhancement of thermo-mechanical controlled processing (TMCP) and tempered steel. This study establishes a fundamental basis for subsequent industrial-scale development and practical engineering applications of novel products. Full article
Show Figures

Figure 1

16 pages, 10435 KiB  
Article
Effect of Heat Treatment on Microstructure and Properties of 304/Q235 Composite Round Steel
by Xiexin Zheng and Yi Ding
Materials 2025, 18(11), 2497; https://doi.org/10.3390/ma18112497 - 26 May 2025
Viewed by 450
Abstract
During the heat treatment of stainless steel (SS)/carbon steel (CS) bimetal composites, the carbon in the CS diffuses into the SS, and carbides precipitate on the grain boundary and in the grains, affecting the microstructure and properties of the composite steel. In order [...] Read more.
During the heat treatment of stainless steel (SS)/carbon steel (CS) bimetal composites, the carbon in the CS diffuses into the SS, and carbides precipitate on the grain boundary and in the grains, affecting the microstructure and properties of the composite steel. In order to change the precipitation and distribution of the carbides seen on hot-rolled 304/Q235 after cold drawing (HR), the microstructure and properties of composite round steel were investigated by optical microscopy, SEM/EDS, and hardness, tensile, fatigue, and electrochemical tests while changing the temperature of the full annealing and aging treatments. The results showed that dispersed chromium carbide particles precipitated at the grain boundaries, and intragranular and slip lines promoted simultaneous dispersion strengthening and fine-grain strengthening and greatly improved the hardness, yield strength, tensile strength, and fatigue strength of the composite round steel. However, the increase in chromium carbide particles leads to the formation of stress concentration points and accelerates the creation of fatigue cracks, resulting in a decrease in the fatigue strength of the steel. Simultaneously, the corrosion resistance of the composite round steel samples was reduced due to the precipitation of a large amount of chromium carbide. Full article
Show Figures

Figure 1

16 pages, 11068 KiB  
Article
Effect of Interlayers on Microstructure and Corrosion Resistance of 304/45 Stainless Steel Cladding Plate
by Yongtong Chen and Yi Ding
Materials 2025, 18(11), 2473; https://doi.org/10.3390/ma18112473 - 24 May 2025
Viewed by 549
Abstract
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This [...] Read more.
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This study designed NiP and NiCuP interlayer alloys to effectively block carbon diffusion in stainless steel cladding plates. The effect of adding interlayers on the microstructure of stainless steel cladding plate was studied by using optical microscopy and scanning electron microscopy. Electrochemical tests were subsequently conducted to evaluate the impact of interlayer incorporation on the corrosion resistance of stainless steel cladding. The results demonstrated that 304/45 specimens exhibited severe carbon diffusion, resulting in the poorest corrosion resistance. The addition of interlayers improved the corrosion resistance of stainless steel cladding to varying degrees. Among these, the 304/NiCuP/45 specimen showed the best performance. It had an intergranular corrosion susceptibility of only 0.25% and pitting potential as high as 0.336 V, which indicated its superior corrosion resistance. The passive film of stainless steel cladding exhibited n-type semiconductor characteristics. And 304/NiCuP/45 specimen demonstrated the lowest carrier density of 3.02 × 1018 cm−3, which indicated the formation of the densest passive film. Full article
Show Figures

Figure 1

11 pages, 7824 KiB  
Article
Effects of Heat Treatment Cooling Methods on Precipitated Phase and Tensile Properties of Fe-18Mn-10Al-1C-5Ni Lightweight Steel
by Yu Wang, Heng Cao, Yanchun Lou, Lei Cao, Yunbao Gao and Ling Zhao
Materials 2025, 18(10), 2364; https://doi.org/10.3390/ma18102364 - 19 May 2025
Cited by 1 | Viewed by 424
Abstract
This research focuses on Fe-18Mn-10Al-1C-5Ni lightweight steel and deeply explores the influences of three different cooling methods, namely, water quenching (WQ), air cooling (AQ), and furnace cooling (FQ), on the precipitation behavior of the B2 phases and κ-carbides in the lightweight steel. The [...] Read more.
This research focuses on Fe-18Mn-10Al-1C-5Ni lightweight steel and deeply explores the influences of three different cooling methods, namely, water quenching (WQ), air cooling (AQ), and furnace cooling (FQ), on the precipitation behavior of the B2 phases and κ-carbides in the lightweight steel. The intrinsic relationship among the precipitated phases, mechanical properties, and fracture behavior is revealed. Compared with the WQ sample, the size of the intragranular B2 phase in the AQ sample did not change significantly (an increment of 9 nm), but nano-sized κ-carbides appeared at the grain boundaries and inside the grains. The yield strength and tensile strength of the AQ sample significantly increased to 1232 MPa and 1347 MPa, respectively, while an elongation of 17.4% was still maintained, which benefitted from the synergistic effect of the grain boundary B2, intragranular B2, and nano-sized κ-carbides. When the cooling rate of the heat treatment was further reduced, the size of the intragranular B2 phase in the FQ sample increased slightly (332 nm), and the κ-carbides at the grain boundaries became obviously coarsened (170 nm), resulting in a severe reduction in the elongation (2.3%) because, during the tensile deformation process, the coarsened κ-carbides at the grain boundaries promoted the nucleation of voids and microcracks. The present work provides new insights into the cooling heat treatment process of lightweight steel. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

17 pages, 24112 KiB  
Article
The Effect of Austempering Temperature on the Matrix Morphology and Thermal Shock Resistance of Compacted Graphite Cast Iron
by Aneta Jakubus, Marek Sławomir Soiński, Grzegorz Stradomski, Maciej Nadolski and Marek Mróz
Materials 2025, 18(10), 2200; https://doi.org/10.3390/ma18102200 - 10 May 2025
Viewed by 725
Abstract
The significance of the matrix morphology of vermicular cast iron for the alloy’s thermal shock resistance was determined. The study included vermicular cast iron subjected to heat treatment in order to obtain an ausferritic matrix. Heat treatment involved austenitization at 960 °C for [...] Read more.
The significance of the matrix morphology of vermicular cast iron for the alloy’s thermal shock resistance was determined. The study included vermicular cast iron subjected to heat treatment in order to obtain an ausferritic matrix. Heat treatment involved austenitization at 960 °C for 90 min, followed by two different austempering variants at 290 °C and 390 °C, each for 90 min. Austempering at 390 °C resulted in a higher content of retained austenite compared to austempering at 290 °C. A test stand was used to determine thermal shock resistance, enabling repeated heating and cooling of the samples. The samples were heated inductively and subsequently cooled in water at a constant temperature of approximately 30 °C. The total length of cracks formed on the wedge-shaped surfaces of the tested samples was adopted as a characteristic value inversely proportional to the material’s thermal shock resistance. The samples heated to 500 °C were subjected to 2000 heating–cooling test cycles. It was found that in as-cast iron, structural changes were minor, whereas in the heat-treated material, changes in the structure were more noticeable. Under the influence of thermal shocks, ausferrite transforms into ferrite with carbides. Among the analyzed materials, the most resistant cast iron was the one austempered at 290 °C. Oxide precipitates were observed near cracks and graphite regions. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

26 pages, 12548 KiB  
Article
Sustainable Utilization of Modified Electrolytic Manganese Residue as a Cement Retarder: Workability, Mechanical Properties, Hydration Mechanisms, Leaching Toxicity, and Environmental Benefits
by Liang Tang, Jan Fořt, Robert Černý and Zhaoyi He
Buildings 2025, 15(10), 1586; https://doi.org/10.3390/buildings15101586 - 8 May 2025
Viewed by 461
Abstract
This study aims to enhance the sustainable utilization of electrolytic manganese residue (EMR), an industrial solid waste rich in sulfates and pollutants, by modifying it with appropriate proportions of granulated blast furnace slag (GBFS) and carbide slag (CS) and evaluating its potential as [...] Read more.
This study aims to enhance the sustainable utilization of electrolytic manganese residue (EMR), an industrial solid waste rich in sulfates and pollutants, by modifying it with appropriate proportions of granulated blast furnace slag (GBFS) and carbide slag (CS) and evaluating its potential as a cement retarder. The influence of both the GBFS/CS ratio and the dosage of modified EMR on the performance of cement mortar was systematically investigated, focusing on workability, mechanical properties, hydration behavior, leaching toxicity, and carbon emissions. Results showed that GBFS and CS significantly reduced pollutant concentrations in EMR while improving gypsum crystallinity. Modified EMR exhibited retarding properties, extending the initial and final setting times of cement mortar from 98 min and 226 min to 169 min and 298 min. With an 8 wt.% dosage, the 28-day compressive strength reached 58.76 MPa, a 1.3-fold increase compared to cement mortar (45.21 MPa). The content of reactive SiO2, Al2O3, Ca(OH)2, and CaSO4·2H2O promoted secondary hydration of cement and generated significant ettringite (AFt) and calcium silicate hydrate (C-S-H) gels, forming a dense microstructure. Pollutants in the modified EMR-cement mortar were reduced through precipitation, substitution, and encapsulation, meeting leaching toxicity standards. This study highlights the feasibility and environmental benefits of employing modified EMR as a cement retarder, demonstrating its potential in sustainable building materials. Full article
Show Figures

Figure 1

15 pages, 8404 KiB  
Article
Effects of Solid–Solution Temperature on Microstructures and Mechanical Properties of 2200 MPa Grade Secondary Hardening Steel
by Cheng Yang, Yong Li, Shun Han, Xuedong Pang, Ruming Geng, Xinyang Li and Chunxu Wang
Materials 2025, 18(9), 2126; https://doi.org/10.3390/ma18092126 - 6 May 2025
Viewed by 548
Abstract
With the increasing demands for mechanical properties of ultra–high–strength steels (UHSSs), enhancing their strength and obtaining an excellent strength–toughness matching have received widespread attention. In this paper, the influence of microstructure and primary carbides on the mechanical properties of 2200 MPa ultra–high–strength steel [...] Read more.
With the increasing demands for mechanical properties of ultra–high–strength steels (UHSSs), enhancing their strength and obtaining an excellent strength–toughness matching have received widespread attention. In this paper, the influence of microstructure and primary carbides on the mechanical properties of 2200 MPa ultra–high–strength steel was studied by treating it at different solid–solution temperatures. The mechanical properties of the experimental steel following aging demonstrated a non–monotonic dependence on solid–solution temperature, manifested as an initial increase followed by a gradual decline in both strength and toughness. Microstructural evolution analysis reveals that elevated solid–solution temperatures induce coarsening of prior austenite and martensite grains in the steel, thereby promoting toughness enhancement. Concurrently, primary carbides progressively dissolve into the matrix with increasing solid–solution temperature, generating a supersaturated solid–solution that facilitates M2C carbide precipitation during aging, ultimately leading to strength improvement in the experimental steel. An exceptional combination of strength, ductility, and toughness with an ultimate tensile strength of 2142 MPa, yield strength of 1830 MPa, elongation of 12.5%, and Charpy U–notch impact energy of 60.5 J was obtained when the experimental steel was solid–solution treated at 910 °C. Full article
Show Figures

Figure 1

19 pages, 8093 KiB  
Article
Temperature-Dependent Crystallization Optimization for Upcycling Purified Ash from the Calcium Carbide Industry: A Sustainable Approach for Mg(OH)2/Aragonite Coproduction
by Yingfeng Duan, Lu Wang, Yanyun Hong, Deliang Zhang, Wenwu Zhou, Liangbin Xie, Weiqin Zhao, Lianjie Huo, Shaobang Yan and Xiubin Ren
Processes 2025, 13(5), 1370; https://doi.org/10.3390/pr13051370 - 30 Apr 2025
Viewed by 460
Abstract
This study employs a wet precipitation–carbonation method to recycle and utilize purification slag from the calcium carbide industry, extracting high-value-added magnesium hydroxide (Mg(OH)2) and aragonite nanoparticles. Experimental results demonstrate that the reaction temperature significantly influences the yield, morphology, and crystallinity parameters [...] Read more.
This study employs a wet precipitation–carbonation method to recycle and utilize purification slag from the calcium carbide industry, extracting high-value-added magnesium hydroxide (Mg(OH)2) and aragonite nanoparticles. Experimental results demonstrate that the reaction temperature significantly influences the yield, morphology, and crystallinity parameters of the products. The optimal preparation temperatures for Mg(OH)2 and aragonite are 60 °C and 80 °C, respectively. Analysis via X-ray diffraction (XRD) combined with the Williamson–Hall method reveals that within the temperature range of 60–90 °C, the crystallite sizes of Mg(OH)2 and aragonite are 40.07–59.25 nm and 70.03–109.18 nm, respectively. As the temperature increases, the crystallite size, strain, lattice stress, and energy density of Mg(OH)2 exhibit a decreasing trend, whereas the corresponding crystallographic parameters of aragonite gradually increase. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

Back to TopTop