Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = precipitated bubbles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 14694 KiB  
Article
Optimizing Intermittent Water Injection Cycles to Mitigate Asphaltene Formation: A Reservoir Simulation Approach
by Edward Dylan Moorman, Jin Xue, Ismaeel Ibrahim, Nnaemeka Okeke, Racha Trabelsi, Haithem Trabelsi and Fathi Boukadi
Processes 2025, 13(7), 2143; https://doi.org/10.3390/pr13072143 - 5 Jul 2025
Viewed by 356
Abstract
Asphaltene deposition remains a critical challenge in water-injected reservoirs, where pressure and compositional variations destabilize the oil phase, triggering precipitation and formation damage. This study explores the application of intermittent waterflooding (IWF) as a practical mitigation strategy, combining alternating injection and well shut-in [...] Read more.
Asphaltene deposition remains a critical challenge in water-injected reservoirs, where pressure and compositional variations destabilize the oil phase, triggering precipitation and formation damage. This study explores the application of intermittent waterflooding (IWF) as a practical mitigation strategy, combining alternating injection and well shut-in times to stabilize fluid conditions. A synthetic reservoir model was developed in Eclipse 300 to evaluate how key parameters such as shut-in time, injection rate, and injection timing affect asphaltene behavior under varying operational regimes. Comparative simulations against traditional continuous waterflooding reveal that IWF can significantly suppress near-wellbore deposition, preserve permeability, and improve overall oil recovery. The results show that early injections and optimized cycling schedules maintain reservoir pressure above the bubble point, thereby reducing the extent of destabilization. This study offers a simulation-based framework for IWF design, providing insights into asphaltene control mechanisms and contributing to more efficient reservoir management in fields prone to flow assurance issues. Full article
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Study of Corrosion Characteristics of AlMg3.5 Alloy by Hydrogen-Induced Pressure and Mass Loss Evaluation Under Simulated Cementitious Repository Conditions
by Marvin Schobel, Christian Ekberg, Teodora Retegan Vollmer, Fredrik Wennerlund, Svante Hedström and Anders Puranen
Corros. Mater. Degrad. 2025, 6(3), 27; https://doi.org/10.3390/cmd6030027 - 30 Jun 2025
Viewed by 402
Abstract
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which [...] Read more.
The decommissioning and dismantling of nuclear research reactors can lead to a large amount of low- and intermediate-level radioactive waste. For repositories, the materials must be kept confined and safety must be ensured for extended time spans. Waste is encapsulated in concrete, which leads to alkaline conditions with pH values of 12 and higher. This can be advantageous for some radionuclides due to their precipitation at high pH. For other materials, such as reactive metals, however, it can be disadvantageous because it might foster their corrosion. The Studsvik R2 research reactor contained an AlMg3.5 alloy with a composition close to that of commercial Al5154 for its core internals and the reactor tank. Aluminum corrosion is known to start rapidly due to the formation of an oxidation layer, which later functions as natural protection for the surface. The corrosion can lead to pressure build-up through the accompanied production of hydrogen gas. This can lead to cracks in the concrete, which can be pathways for radioactive nuclides to migrate and must therefore be prevented. In this study, unirradiated rod-shaped samples were cut from the same material as the original reactor tank manufacture. They were embedded in concrete with elevated water–cement ratios of 0.7 compared to regular commercial concrete (ca. 0.45) to ensure water availability throughout all of the experiments. The sample containers were stored in pressure vessels with attached high-definition pressure gauges to read the hydrogen-induced pressure build-up. A second set of samples were exposed in simplified artificial cement–water to study similarities in corrosion characteristics between concrete and cement–water. Additionally, the samples were exposed to concrete and cement–water in free-standing sample containers for deconstructive examinations. In concrete, the corrosion rates started extremely high, with values of more than 10,000 µm/y, and slowed down to less than 500 µm/y after 2000 h, which resulted in visible channels inside the concrete. In the cement–water, the samples showed similar behavior after early fluctuations, most likely caused by the surface coverage of hydrogen bubbles. These trends were further supported by mass loss evaluations. Full article
Show Figures

Figure 1

12 pages, 1613 KiB  
Article
Mix Design-Driven Control of Carbonation and Hydration in CO2-Mixed Cement Pastes: Effects of Water, Slag, and Surfactant
by Jingliang Xia, Chunjin Li, Haoyuan Ma and Qiang Ren
Buildings 2025, 15(12), 2116; https://doi.org/10.3390/buildings15122116 - 18 Jun 2025
Viewed by 372
Abstract
This study systematically investigates the influence of mix proportion on and the early-age properties and CO2 uptake of CO2-mixed cement paste, focusing on variations in the water-to-binder (w/b) ratio, slag content, and air-entraining agent (AEA) dosage. Mineralogical characteristics were analyzed [...] Read more.
This study systematically investigates the influence of mix proportion on and the early-age properties and CO2 uptake of CO2-mixed cement paste, focusing on variations in the water-to-binder (w/b) ratio, slag content, and air-entraining agent (AEA) dosage. Mineralogical characteristics were analyzed using X-ray diffraction (XRD) and thermogravimetric analysis (TGA), while pore structures were assessed via nitrogen adsorption. CO2 uptake was quantified immediately after mixing. Results indicate that a low w/b ratio limits CO2 dissolution and transport, favors hydration over carbonation, and leads to a coarser pore structure. At moderate w/b ratios, excess free water facilitates concurrent carbonation and hydration; however, thinner water films ultimately hinder CaCO3 precipitation and C-S-H nucleation. Slag contents up to 30% slightly suppress early carbonation and hydration, while higher dosages significantly delay both reactions and increase capillary porosity. An increasing AEA dosage stabilizes CO2 bubbles, suppressing immediate CO2 dissolution and reducing the early formation of carbonation and hydration products; excessive AEAs promotes bubble coalescence and results in an interconnected pore network. An optimized mix design, moderate water content, slag below 30%, and limited AEA dosage enhance the synergy between carbonation and hydration, improving early pore refinement and reaction kinetics. Full article
Show Figures

Figure 1

20 pages, 1118 KiB  
Review
Atmospheric Microplastics: Inputs and Outputs
by Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Viewed by 1517
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by [...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future. Full article
Show Figures

Figure 1

20 pages, 6765 KiB  
Article
Effect of Precipitated Bubbles on the Behavior of Gas–Liquid Two-Phase Flow in Ruhrstahl Heraeus Refining
by Yihong Li, Zongyi Chen, Yan Tian, Dong Wang, Yibo He, Chengjian Hua, Zhifeng Ren and Pengju Zhang
Processes 2025, 13(5), 1484; https://doi.org/10.3390/pr13051484 - 12 May 2025
Cited by 1 | Viewed by 437
Abstract
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts [...] Read more.
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts that reflected the similarity of the precipitation bubble phenomenon. The experimental results show that an increase in precipitation bubbles is positively related to an increase in circulating flow rate, a reduction in mixing time, and an increase in gas content and negatively related to the residence time of liquid steel in the vacuum chamber. The two-phase flow pattern of the rising tube under the influence of precipitation bubbles includes bubble flow, slug flow, mixing flow, and churn flow. Under the influence of precipitation bubbles, the liquid surface spattering inside the vacuum chamber is reduced, the fluctuation amplitude is reduced, the efficiency of liquid steel processing is improved, it is not easy for cold steel to form, and the fluctuation frequency is increased, which is conducive to increasing the surface area of the vacuum chamber; the bubbles’ rising, aggregating, and crushing behavior increases the stirring effect inside the vacuum chamber, which is conducive to improving the decarburization and mass transfer rate. Under the influence of the precipitated bubbles, the concentration gradient between the ladle and the vacuum chamber is increased, which accelerates the mixing speed of the liquid steel in the ladle, and the volume of the dead zone is reduced by 50%. The lifting gas flow rate can be appropriately reduced in the plant. Full article
(This article belongs to the Special Issue Advanced Ladle Metallurgy and Secondary Refining)
Show Figures

Figure 1

19 pages, 3436 KiB  
Article
Carbon Dioxide Capture by Alkaline Water with a Semi-Batch Column and Ultra-Fine Microbubble Generator
by Samiya A. Almamari, Salam K. Al-Dawery, Saima Farooq, Dalal H. Al Aisri, Sumaya S. Alrahbi, Aisha A. Al Fazari, Hamed N. Harharah, Ramzi H. Harharah, Salim S. Al Alawi and Gasim Hayder
Processes 2025, 13(4), 1259; https://doi.org/10.3390/pr13041259 - 21 Apr 2025
Viewed by 706
Abstract
Increased emissions of carbon dioxide (CO2) from industrial activities are the main cause of the growing problem of global warming and climate change, highlighting the needs for efficient CO2 capture and storage (CCS) techniques. The present work aims to investigate [...] Read more.
Increased emissions of carbon dioxide (CO2) from industrial activities are the main cause of the growing problem of global warming and climate change, highlighting the needs for efficient CO2 capture and storage (CCS) techniques. The present work aims to investigate the possibility of CO2 sequestration using sodium hydroxide (NaOH) in a semi-batch column with an integrated gas lift tower and an ultra-micro bubbles generator, a novel setup designed to enhance mass transfer rates and capture efficiency. Unlike the previously reported setups, our system achieves a 50% faster capture rate with improved mass transfer, enhanced gas-liquid interaction and higher removal efficiency due to finer bubble dispersion, as confirmed by experimental findings. Preliminary tests to ascertain the effectiveness of CO2 removal were carried out across various CO2 gas flow rates (3, 5, 7 L/min), NaOH volumes (2, 3, 4 L) and concentrations (0.1, 0.2, 0.3 M). The results indicated that both gas flow rate and NaOH concentration have profound impacts on the CO2 capture rate. Increasing either of these parameters, or using low concentrations of NaOH, leads to a rapid drop in pH due to a faster rate of neutralization and the formation of carbonic acid (H2CO3), a weak acidic solution. For instance, with 0.1 M NaOH and 2 L volume, the pH decreased from 13.07 to 7.02 within 1.5 min at gas flow rate of 7 L/min, while with 0.3 M NaOH, pH reduced to 7.3 after 6 min. Higher volumes and concentrations of NaOH caused a decrease in the capture rate of CO2 due to reversed reaction with formed sodium carbonate. For instance, with 0.3 M NaOH and 4 L volume, the pH reduced from 13.58 to 8 after 5 min at 7 L/min gas flow rate. Scaling up to a 100 L semi-batch column with an ultra-fine micro bubble generator, as a new approach, reduced the time taken by half in the capture of CO2. Additionally, the study also investigated the comparison of tap versus deionized water in CO2 capture reaction. The results demonstrated that dissolved minerals in tap water, particularly Ca2+ and Mg2+ ions, affected precipitate formation and capture efficiency differently than deionized water, offering practical insights for CCS in varied water sources. Full article
Show Figures

Figure 1

26 pages, 6093 KiB  
Article
An Integrated, CFD-Based, Analysis of Carbonation in a Stirred Tank Reactor
by Georgios P. Gakis, Danai Marinos, Ioannis G. Aviziotis, Efthymios Balomenos, Andreas G. Boudouvis and Dimitrios Panias
Materials 2025, 18(7), 1535; https://doi.org/10.3390/ma18071535 - 28 Mar 2025
Viewed by 675
Abstract
Carbonation precipitation processes have been widely used due to their numerous applications in a wide range of fields. The complexity of these processes lies within the interplay of transport phenomena, multiphase flows, chemical reactions, and solid precipitation, deeming the experimental analysis and in-depth [...] Read more.
Carbonation precipitation processes have been widely used due to their numerous applications in a wide range of fields. The complexity of these processes lies within the interplay of transport phenomena, multiphase flows, chemical reactions, and solid precipitation, deeming the experimental analysis and in-depth mechanistic understanding of the process dynamics a rather challenging task. In this work, a three-dimensional CFD model is developed, focusing on the carbonation step of the carbonation precipitation process, taking into account the flow dynamics of the liquid solution in the stirred tank, the CO2 bubble flow, and the dissolution in the liquid solution, as well as its dissociation in water. The model is validated with experimental measurements, and a very good agreement is achieved. Additionally, a parametric analysis is conducted to study the effect of different process parameters, such as temperature, CO2 flow rate, and rotational speed. The analysis of the different phenomena and their interplay reveals the key mechanisms that dictate the carbonation step, resulting in an in-depth understanding of the process. The presented computational approach can potentially pave the way towards a knowledge-based process and reactor design; thus, assisting the scale-up of such processes in stirred tank reactors. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

25 pages, 15227 KiB  
Article
Mechanism of Multi-Physical Fields Coupling in Macro-Area Processing via Laser–Electrochemical Hybrid Machining (LECM)
by Guangxian Li, Zhikun Su, Tingan Zhao, Wei Wei and Songlin Ding
Metals 2024, 14(12), 1390; https://doi.org/10.3390/met14121390 - 4 Dec 2024
Cited by 3 | Viewed by 1212
Abstract
Laser–electrochemical hybrid machining (LECM) is promising in the processing of thin-wall parts, which avoids problems such as the weak stiffness of structures and thermal defects. However, while most studies focus on precision machining via LECM, few investigate the potential of this technique in [...] Read more.
Laser–electrochemical hybrid machining (LECM) is promising in the processing of thin-wall parts, which avoids problems such as the weak stiffness of structures and thermal defects. However, while most studies focus on precision machining via LECM, few investigate the potential of this technique in macro-area processing. In this paper, the synergistic effects on the coupling of thermal field and electrochemical field on bulk material removal mechanisms in the LECM of additively manufactured Ti6Al4V are comprehensively analyzed experimentally and theoretically. According to the experimental results, LECM improved the material removal rate (MRR) by up to 28.6% compared to ECM. The induction of the laser increases local heating, accelerating the temperature rise of the electrolyte, eventually promoting the electrochemical reaction. The hydrogen bubble flow promotes overall heat convection between the electrode and workpiece, which facilitates the removal of the facial precipitates and increases the efficiency of electrochemical dissolution. Higher voltages and laser powers promote the formation of hydrogen bubble flow; meanwhile, they also aggravate laser energy scattering, limiting the overall machining efficiency. Additionally, laser irradiation causes the ablation and rupture of hydrogen bubbles, which weakens the bubble flow effect and ultimately decreases the material removal efficiency. This study reveals the underlying mechanisms of the joint effects of the laser field and electrical field in LECM, and the findings can provide valuable insights for the optimization of LECM parameters in industrial applications. Full article
Show Figures

Figure 1

15 pages, 5659 KiB  
Article
Development of Dehydrogenation System for Liquid Organic Hydrogen Carrier with Enhanced Reaction Rate
by Juhan Lee, Muhammad Usman, Sanghyoun Park, Sangyong Lee and Myung Ho Song
Appl. Sci. 2024, 14(13), 5803; https://doi.org/10.3390/app14135803 - 3 Jul 2024
Viewed by 2332
Abstract
Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic [...] Read more.
Owing to the massive expansion and intermittent nature of renewable power, green hydrogen production, storage, and transportation technologies with improved economic returns need to be developed. Moreover, the slowness of the dehydrogenation reaction is a primary barrier to the commercialization of liquid organic hydrogen carrier (LOHC) technology. The present study focused on increasing the speed of dehydrogenation, resulting in the proposal of a triple-loop dehydrogenation system comprising reaction, heating, and chilling loops. The reactor has a rotating cage containing a packed bed of catalyst pellets, which is designed to enhance both heat and mass transfer by helping to detach precipitated hydrogen bubbles from the catalyst surface. In addition, the centrifugal force aids in isolating the gas phase from the LOHC liquid. A dehydrogenation experiment was conducted using the reaction and chilling loops, which revealed that the average hydrogen production rate during the first hour was 52.6 LPM (liter per minute) from 26.3 L of perhydro-dibenzyl-toluene with 1.5 kg of 0.5 wt% Pt/Al2O3 catalyst. This was approximately 48% more than the value predicted with the reaction kinetics measured with a small-scale plug flow dehydrogenation reactor with less than 1.0 g of 5.0 wt% Pt/Al2O3 catalyst. The concept, construction methods, and results of the preliminary gas infiltration, flow visualization, and reactor pumping experiments are also described in this paper. Full article
Show Figures

Figure 1

12 pages, 14127 KiB  
Article
Nanofluidic Study of Multiscale Phase Transitions and Wax Precipitation in Shale Oil Reservoirs
by Zhiyong Lu, Yunqiang Wan, Lilong Xu, Dongliang Fang, Hua Wu and Junjie Zhong
Energies 2024, 17(10), 2415; https://doi.org/10.3390/en17102415 - 17 May 2024
Cited by 3 | Viewed by 1140
Abstract
During hydraulic fracturing of waxy shale oil reservoirs, the presence of fracturing fluid can influence the phase behavior of the fluid within the reservoir, and heat exchange between the fluids causes wax precipitation that impacts reservoir development. To investigate multiscale fluid phase transition [...] Read more.
During hydraulic fracturing of waxy shale oil reservoirs, the presence of fracturing fluid can influence the phase behavior of the fluid within the reservoir, and heat exchange between the fluids causes wax precipitation that impacts reservoir development. To investigate multiscale fluid phase transition and microscale flow impacted by fracturing fluid injection, this study conducted no-water phase behavior experiments, water injection wax precipitation experiments, and water-condition phase behavior experiments using a nanofluidic chip model. The results show that in the no-water phase experiment, the gasification occurred first in the large cracks, while the matrix throat was the last, and the bubble point pressure difference between the two was 12.1 MPa. The wax precipitation phenomena during fracturing fluid injection can be divided into granular wax in cracks, flake wax in cracks, and wax precipitation in the matrix throat, and the wax mainly accumulated in the microcracks and remained in the form of particles. Compared with the no-water conditions, the large cracks and matrix throat bubble point in the water conditions decreased by 6.1 MPa and 3.5 MPa, respectively, and the presence of the water phase reduced the material occupancy ratio at each pore scale. For the smallest matrix throat, the final gas occupancy ratio under the water conditions decreased from 32% to 24% in the experiment without water. This study provides valuable insight into reservoir fracture modification and guidance for the efficient development of similar reservoirs. Full article
(This article belongs to the Special Issue New Advances in Low-Energy Processes for Geo-Energy Development)
Show Figures

Figure 1

13 pages, 14379 KiB  
Article
Constant Pressure-Regulated Microdroplet Polymerase Chain Reaction in Microfluid Chips: A Methodological Study
by Luyang Duanmu, Youji Shen, Ping Gong, Hao Zhang, Xiangkai Meng and Yuanhua Yu
Micromachines 2024, 15(1), 8; https://doi.org/10.3390/mi15010008 - 20 Dec 2023
Cited by 1 | Viewed by 1546
Abstract
Digital polymerase chain reaction (PCR) technology in microfluidic systems often results in bubble formation post-amplification, leading to microdroplet fragmentation and compromised detection accuracy. To solve this issue, this study introduces a method based on the constant pressure regulation of microdroplets during PCR within [...] Read more.
Digital polymerase chain reaction (PCR) technology in microfluidic systems often results in bubble formation post-amplification, leading to microdroplet fragmentation and compromised detection accuracy. To solve this issue, this study introduces a method based on the constant pressure regulation of microdroplets during PCR within microfluidic chips. An ideal pressure reference value for continuous pressure control was produced by examining air solubility in water at various pressures and temperatures as well as modeling air saturation solubility against pressure for various temperature scenarios. Employing a high-efficiency constant pressure device facilitates precise modulation of the microfluidic chip’s inlet and outlet pressure. This ensures that air solubility remains unsaturated during PCR amplification, preventing bubble precipitation and maintaining microdroplet integrity. The device and chip were subsequently utilized for quantitative analysis of the human epidermal growth factor receptor (EGFR) exon 18 gene, with results indicating a strong linear relationship between detection signal and DNA concentration within a range of 101–105 copies/μL (R2 = 0.999). By thwarting bubble generation during PCR process, the constant pressure methodology enhances microdroplet stability and PCR efficiency, underscoring its significant potential for nucleic acid quantification and trace detection. Full article
(This article belongs to the Special Issue Recent Advances of Microfluidics for Biomedical Applications)
Show Figures

Figure 1

23 pages, 26591 KiB  
Article
The Role of Te, As, Bi, and Sb in the Noble Metals (Pt, Pd, Au, Ag) and Microphases during Crystallization of a Cu-Fe-S Melt
by Elena Fedorovna Sinyakova, Nikolay Anatolievich Goryachev, Konstantin Aleksandrovich Kokh, Nikolay Semenovich Karmanov and Viktor Aleksandrovich Gusev
Minerals 2023, 13(9), 1150; https://doi.org/10.3390/min13091150 - 30 Aug 2023
Viewed by 1563
Abstract
Quasi-equilibrium directional crystallization was performed on a melt composition (at. %): 18.50 Cu, 32.50 Fe, 48.73 S, 0.03 Pt, Pd, Ag, Au, Te, As, Bi, Sb, and Sn, which closely resembles the Cu-rich massive ores found in the platinum-copper-nickel deposits of Norilsk. Base [...] Read more.
Quasi-equilibrium directional crystallization was performed on a melt composition (at. %): 18.50 Cu, 32.50 Fe, 48.73 S, 0.03 Pt, Pd, Ag, Au, Te, As, Bi, Sb, and Sn, which closely resembles the Cu-rich massive ores found in the platinum-copper-nickel deposits of Norilsk. Base metal sulfides (BMS) such as pyrrhotite solid solution (Fe,Cu)S1±δ (Poss), non-stoichiometric cubanite Cu1.1Fe1.9S3 (Cbn*), and intermediate solid solution Cu1.0Fe1.2S2.0 (Iss) are progressively precipitated from the melt during the crystallization process. The content of noble metals and semimetals in the structure of BMS is below the detection limit of SEM-EDS analysis. Only tin exhibits significant solubility in Cbn* and Iss, meanwhile Pt, Pd, Au, Ag, As, Bi, Sb, and Te are present as discrete composite inclusions, comprising up to 11 individual phases, within their matrices. These microphases correspond to native Au, native Bi, hessite Ag2Te, sperrylite Pt(As,S)2, hedleyite Bi2Te, michenerite PdTeBi, froodite PdBi2, a solid solution of sudburite-sobolevskite-kotulskite Pd(Sb, Bi)xTe1−x, geversite PtSb2, and a multicomponent solid solution based on geversite Me(TABS)2, where Me = Σ(Pt, Pd, Fe, Cu) and TABS = Σ(Te, As, Bi, Sb, Sn). Most of the inclusions occur as thin layers between BMS grain boundaries or appear drop-shaped and subhedral to isometric grains within the sulfide matrix. Only a small fraction of the trace elements form mineral inclusions of sizes ≤ 0.5 μm in Poss, most likely including PtAs2 and (Pt,Pd)S. It is likely that the simultaneous presence of noble metals (Pt, Pd, Au, Ag) and semimetals (As, Te, Bi, Sb) in the sulfide melt leads to the appearance of liquid droplets in the parent sulfide melt after pyrrhotite crystallization. The solidification of droplets during the early stages of Cbn* crystallization may occur simultaneously with the cooling of later fractions of the sulfide melt, resulting in the formation of Iss. In addition, abundant gas voids containing micro-inclusions were observed in Cbn* and Iss. These inclusions showed similar chemical and mineral compositions to those in BMS matrices, i.e., the presence of gas bubbles did not affect the main features of noble metal fractionation and evolution. Therefore, it is reasonable to assume that ore particles suspended in the melt are either trapped by defects at the crystallization front or transported towards gas bubbles via the Marangoni effect. Full article
(This article belongs to the Special Issue Precious Metals vs. Base Metals: Nature and Experiment)
Show Figures

Figure 1

17 pages, 10956 KiB  
Article
He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys
by Huanzhi Zhang, Qianqian Wang, Chunhui Li, Zhenbo Zhu, Hefei Huang and Yiping Lu
Materials 2023, 16(16), 5530; https://doi.org/10.3390/ma16165530 - 9 Aug 2023
Cited by 8 | Viewed by 2339
Abstract
High-entropy alloys (HEAs) have shown promising potential applications in advanced reactors due to the outstanding mechanical properties and irradiation tolerance at elevated temperatures. In this work, the novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared to [...] Read more.
High-entropy alloys (HEAs) have shown promising potential applications in advanced reactors due to the outstanding mechanical properties and irradiation tolerance at elevated temperatures. In this work, the novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared to explore high-performance HEAs under irradiation. The microstructures and mechanical properties of the Ti2ZrHfxV0.5Ta0.2 HEAs before and after irradiation were investigated. The results showed that the unirradiated Ti2ZrHfxV0.5Ta0.2 HEAs displayed a single-phase BCC structure. The yield strength of the Ti2ZrHfxV0.5Ta0.2 HEAs increased gradually with the increase of Hf content without decreasing the plasticity at room and elevated temperatures. After irradiation, no obvious radiation-induced segregations or precipitations were found in the transmission electron microscope results of the representative Ti2ZrHfV0.5Ta0.2 HEA. The size and number density of the He bubbles in the Ti2ZrHfV0.5Ta0.2 HEA increased with the improvement of fluence at 1023 K. At the fluences of 1 × 1016 and 3 × 1016 ions/cm2, the irradiation hardening fractions of the Ti2ZrHfV0.5Ta0.2 HEA were 17.7% and 34.1%, respectively, which were lower than those of most reported conventional low-activation materials at similar He ion irradiation fluences. The Ti2ZrHfV0.5Ta0.2 HEA showed good comprehensive mechanical properties, structural stability, and irradiation hardening resistance at elevated temperatures, making it a promising structural material candidate for advanced nuclear energy systems. Full article
(This article belongs to the Special Issue Heat Treatments and Performance of Alloy and Metal)
Show Figures

Figure 1

16 pages, 9270 KiB  
Article
Preparation of Bi2O3–YSZ and YSB–YSZ Composite Powders by a Microemulsion Method and Their Performance as Electrolytes in a Solid Oxide Fuel Cell
by Shuangshuang Liu, Jingde Zhang, Yuhang Tian, Jian Sun, Panxin Huang, Jianzhang Li and Guifang Han
Materials 2023, 16(13), 4673; https://doi.org/10.3390/ma16134673 - 28 Jun 2023
Cited by 8 | Viewed by 1700
Abstract
Bi2O3 is a promising sintering additive for YSZ that not only decreases its sintering temperature but also increases its ionic conductivity. However, Bi2O3 preferably grows into large-sized rods. Moreover, the addition of Bi2O3 induces [...] Read more.
Bi2O3 is a promising sintering additive for YSZ that not only decreases its sintering temperature but also increases its ionic conductivity. However, Bi2O3 preferably grows into large-sized rods. Moreover, the addition of Bi2O3 induces phase instability of YSZ and the precipitation of monoclinic ZrO2, which is unfavorable for the electrical property. In order to precisely control the morphology and size of Bi2O3, a microemulsion method was introduced. Spherical Bi2O3 nanoparticles were obtained from the formation of microemulsion bubbles at the water–oil interface due to the interaction between the two surfactants. Nanosized Bi2O3–YSZ composite powders with good mixing uniformity dramatically decreased the sintering temperature of YSZ to 1000 °C. Y2O3-stabilized Bi2O3 (YSB)–YSZ composite powders were also fabricated, which did not affect the phase of YSZ but decreased its sintering temperature. Meanwhile, the oxygen vacancy concentration further increased to 64.9% of the total oxygen with the addition of 5 mol% YSB. In addition, its ionic conductivity reached 0.027 S·cm−1 at 800 °C, one order of magnitude higher than that of YSZ. This work provides a new strategy to simultaneously decrease the sintering temperature, stabilize the phase and increase the conductivity of YSZ electrolytes. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

37 pages, 8578 KiB  
Review
Strain Localisation and Fracture of Nuclear Reactor Core Materials
by Malcolm Griffiths
J. Nucl. Eng. 2023, 4(2), 338-374; https://doi.org/10.3390/jne4020026 - 4 May 2023
Cited by 8 | Viewed by 3397
Abstract
The production of prismatic dislocation loops in nuclear reactor core materials results in hardening because the loops impede dislocation motion. Yielding often occurs by a localised clearing of the loops through interactions with gliding dislocations called channeling. The cleared channels represent a softer [...] Read more.
The production of prismatic dislocation loops in nuclear reactor core materials results in hardening because the loops impede dislocation motion. Yielding often occurs by a localised clearing of the loops through interactions with gliding dislocations called channeling. The cleared channels represent a softer material within which most of the subsequent deformation is localized. Channeling is often associated with hypothetical dislocation pileup and intergranular cracking in reactor components although the channels themselves do not amplify stress as one would expect from a pileup. The channels are often similar in appearance to twins leading to the possibility that twins are sometimes mistakenly identified as channels. Neither twins nor dislocation channels, which are bulk shears, produce the same stress conditions as a pileup on a single plane. At high doses, when cavities are produced (either He-stabilised bubbles at low temperatures or voids at high temperatures), there can be reduced ductility because the material is already in an equivalent advanced stage of microscopic necking. He-stabilised cavities form preferentially on grain boundaries and at precipitate or incoherent twin/ε-martensite interfaces. The higher planar density of the cavities, coupled with the incompatibility at the interface, results in a preferential failure known as He embrittlement. Strain localisation and inter- or intragranular failure are dependent on many factors that are ultimately microstructural in nature. The mechanisms are described and discussed in relation to reactor core materials. Full article
Show Figures

Figure 1

Back to TopTop