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Abstract: High-entropy alloys (HEAs) have shown promising potential applications in advanced
reactors due to the outstanding mechanical properties and irradiation tolerance at elevated tempera-
tures. In this work, the novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared
to explore high-performance HEAs under irradiation. The microstructures and mechanical prop-
erties of the Ti2ZrHfxV0.5Ta0.2 HEAs before and after irradiation were investigated. The results
showed that the unirradiated Ti2ZrHfxV0.5Ta0.2 HEAs displayed a single-phase BCC structure. The
yield strength of the Ti2ZrHfxV0.5Ta0.2 HEAs increased gradually with the increase of Hf content
without decreasing the plasticity at room and elevated temperatures. After irradiation, no obvious
radiation-induced segregations or precipitations were found in the transmission electron microscope
results of the representative Ti2ZrHfV0.5Ta0.2 HEA. The size and number density of the He bubbles
in the Ti2ZrHfV0.5Ta0.2 HEA increased with the improvement of fluence at 1023 K. At the fluences
of 1 × 1016 and 3 × 1016 ions/cm2, the irradiation hardening fractions of the Ti2ZrHfV0.5Ta0.2 HEA
were 17.7% and 34.1%, respectively, which were lower than those of most reported conventional
low-activation materials at similar He ion irradiation fluences. The Ti2ZrHfV0.5Ta0.2 HEA showed
good comprehensive mechanical properties, structural stability, and irradiation hardening resistance
at elevated temperatures, making it a promising structural material candidate for advanced nuclear
energy systems.

Keywords: high-entropy alloys; mechanical properties; helium bubbles; irradiation tolerance;
low-activation materials

1. Introduction

It is an irresistible trend to obtain clean, low-carbon, and safe energy generated from
next generation fission and future fusion energy reactors to meet the needs of human society
and industrial development in the long term [1–5]. The absence of compatible structural
materials for extreme environments of high temperature, high neutron flux, and chemical
reactivity hinders the development of advanced reactors [6,7]. The evolution of microstruc-
tures caused by high-energy particles (neutrons, ions, and electrons) irradiation leads to
the degradation of mechanical properties, such as embrittlement, hardening, swelling, etc.,
which eventually threaten the safety and reliability of the reactors [8,9]. Considering one
of the significant goals for the advanced reactors is to produce economically clean energy
with no long-lived high-radioactivity waste [10–12], the low-activation criteria should be
included in the structural materials’ design of advanced reactors. Certain achievements
have been made in the research of qualified low-activation materials, including oxide
dispersion strengthened (ODS) steels [13,14], V-based alloys [15,16], reduced activation
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ferritic/martensitic (RAFM) steels [17,18], and China low activation martensitic (CLAM)
steels [19,20].

In the process of pursuing high-performance materials, the high-entropy alloys
(HEAs) [21] were introduced. The preeminent properties (such as high strength [22,23],
good corrosion resistance [24–26], fine tribological properties [27,28], remarkable softening
resistance [29,30], and outstanding irradiation tolerance [1,2,5,31], etc.) enhance the appli-
cation competitiveness of HEAs under extreme environments. Among them, refractory
high-entropy alloys (RHEAs) [32], which are characterized by a high melting point and
prepared by methods such as vacuum arc melting, suspension melting, spark plasma sin-
tering [33], and wire electric discharge machining [34], are expected to play a role in future
high-temperature applications [35]. Compared with conventional alloys, HEAs, especially
the body-centered cubic (BCC) structured ones composed of refractory elements, exhibit
better irradiation tolerance for the extreme lattice distortions and chemical complexity, such
as prominent resistance to hardening [1,36], suppressed dislocation evolution [11,36,37],
low volume swelling rate [38,39], and reduced radiation-induced segregation [40–42], etc.
Hence, the HEAs are considered to be a promising candidate for nuclear structural materi-
als [1,43] and the corresponding irradiation resistance mechanism has been revealed to a
certain extent [2,5,44,45]. The irradiation tolerance of the HEAs could be improved by select-
ing the appropriate elements and adjusting the chemical complexity [2,46]. Nevertheless,
the HEAs designed for nuclear industry applications are limited [36,42].

In this work, by introducing the concept of low-activation materials to the design of
HEAs, a novel series of RHEAs with BCC structure were proposed, with the expectation
to explore high-performance HEAs under irradiation. In addition, good comprehensive
mechanical properties at room and elevated temperatures should also be equipped for
the potential application. The basic parameters [47] (melting point (Tm), atomic radius
(r), density (ρ), and valence electron concentration (VEC)) of some commonly used low-
activation elements in the nuclear industry are displayed in Table 1. However, not all the
elements mentioned are suitable for the design of BCC-structured RHEAs. The high VEC
value of Fe element is not conducive to the formation of single-phase BCC structure, and
its low melting point could reduce the working temperature of the materials after alloying.
The negative mixing enthalpy between Cr and other refractory elements contributes to the
appearance of intermetallic compounds, which deteriorates the plasticity of the HEAs. In
the as-cast samples, W element with a high melting point is usually seriously segregated,
worsening the mechanical and irradiation tolerance. The five refractory elements of Ti, Zr,
Hf, V, and Ta were chosen to prepare the low-activation HEAs after considering the basic
physical and chemical properties and the alloying characteristics of each element in HEAs.
The Ti2ZrHfxV0.5Ta0.2 (x values in molar ratio, x = 0.25, 0.5, 0.75 and 1, denoted as Hf0.25Ta,
Hf0.5Ta, Hf0.75Ta and Hf1Ta, respectively) low-activation HEAs were designed, and the
effects of Hf element on the microstructures and mechanical properties were investigated.
As shown in Table 2, according to the phase formation rules of HEAs [48–50], all the
empirical parameters predicted the formation of single BCC solid solution phase in the
Ti2ZrHfxV0.5Ta0.2 HEAs.

Table 1. The values of Tm (K), r (nm), ρ (g/cm3), and VEC of some reduced-activation elements.

Elements Fe Ti Zr Cr V Hf Ta W

Tm (K) 1811 1941 2128 2180 2183 2506 3290 3695
r (nm) 0.126 0.147 0.160 0.128 0.134 0.159 0.146 0.139

ρ (g/cm3) 7.87 4.51 6.51 7.14 6.11 13.31 16.65 19.25
VEC 8 4 4 6 5 4 5 6

Ordinarily, the He atoms produced by transmutation reaction would aggregate and
form large-scale He bubbles for the limited solubility in the metals, which strongly dete-
riorated the mechanical properties of the alloys after irradiation [51]. The embrittlement
and hardening induced by He atoms were considered as the primary concerns of the
stability of structure materials around the half melting temperature (Tm) regime in the
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nuclear reactors [52]. Therefore, the performance of HEAs under He ion irradiation at
elevated temperature is definitely worth investigating. In this work, the evolutions of the
microstructures and mechanical properties of the novel low-activation Ti2ZrHfV0.5Ta0.2
HEA with He ions implantation at 1023 K (0.47 Tm) were studied in detail.

Table 2. Values of VEC, δ (%), Ω, ∆Hmix (kJ mol−1), and ∆Smix (J K−1 mol−1) of the Ti2ZrHfxV0.5Ta0.2 HEAs.

Alloys VEC ∆ Ω ∆Hmix ∆Smix

Hf0.25Ta 4.18 5.51 27.52 −0.82 10.64
Hf0.5Ta 4.17 5.54 32.09 −0.83 11.20

Hf0.75Ta 4.16 5.54 36.17 −0.69 11.48
Hf1Ta 4.15 5.52 283.96 −0.63 11.60

2. Experimental Section
2.1. Materials

The Ti2ZrHfxV0.5Ta0.2 HEAs were manufactured by vacuum arc melting under Ar
atmosphere. The purity of each raw elemental metal used in this study was higher than
99.9 wt%. All raw metals were purchased from the instrumental and research center of
Shanghai Yanku. The furnace chamber was vacuumed to below 5 × 10−3 Pa and then
protective high-purity argon was reverse charged to 0.05 Pa before starting the melting
process. The raw metals were melted on a water-cooled copper crucible. In order to
improve the quality of ingots, Ti ingot was melted before melting HEA ingots to remove
excess oxygen. For obtaining better homogenization, the ingots were re-melted a minimum
of seven times. Each smelting time was 2 min, and the smelting current was approximately
500 A. The acquired samples were button-shaped with a diameter of ~28 mm and a
thickness of ~11 mm.

2.2. Characterization of Microstructure and Mechanical Properties of As-Cast Samples

The crystal structures of the as-cast samples were characterized by an EMPYREAN
X-ray diffractometer (Malvern Panalytical, Almelo, Netherlands) with the 2θ scanning from
20 to 100 degrees. The scanning electron microscopy (SEM, Zeiss supra55, ZEISS, Carl
Zeiss AG, Jena, Germany) with an energy-dispersive spectrometer (EDS) was introduced
to analyze the morphology and chemical compositions. The Φ 5 × 10 mm cylindrical
specimens prepared by wire electrical discharge machining were used to test the mechanical
properties at room temperature (RT) using a Wippermann materials testing machine.
A thermal simulation machine of Gleeble-3500 (Data Science International, Sao Paulo City,
Brazil) was adopted for the compressive tests at elevated temperature (873 K) with Φ
6 × 9 mm cylindrical specimens.

2.3. Irradiation Experiment and Characterization of Microstructure of Irradiated Samples

The irradiation tolerance of the selected representative alloy (Hf1Ta) was identified
by He ion irradiation at 1023 K. The prepared specimens were irradiated with 1 MeV
He ions to the fluences of 1 × 1016 and 3 × 1016 ions/cm2 at the Shanghai Institute of
Applied Physics, Chinese Academy of Sciences (SINAP-CAS, Shanghai, China) using a
4 MV Pelletron accelerator. The sheets (sized 1 mm × 6.5 mm × 10 mm) for the irradi-
ation experiments were taken from the as-cast Hf1Ta HEA. Then, mechanical polishing
and electro-polishing were used to optimize the irradiated surface of the samples. At
the fluence of 3 × 1016 ions/cm2, the irradiation damage and He concentration along the
depth direction were predicted by Stopping and Range of Ions in Matter (SRIM-2008,
http://www.srim.org/, accessed on 3 March 2022), as shown in Figure 1. The displacement
energies were set as 30, 40, 90, 40, and 91 eV for the Ti, Zr, Hf, V, and Ta elements, respec-
tively. Simulation results showed that the peak irradiation dose and He concentration were
~1.2 displacements per atom (dpa) and 3.0 at.%, respectively. For observing the microstruc-
tures and He bubbles characteristics, the transmission electron microscopy (TEM, Themis

http://www.srim.org/
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Z G3, Thermo Fisher Scientific, Waltham, MA, USA) was employed. Thin films with a
thickness of ~60 nm were fabricated by the focused ion beam (FIB, Helios G4UX, Thermo
Fisher Scientific, Waltham, MA, USA).
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the fluence of 3 × 1016 ions/cm2.

2.4. Nanoindentation Test

The hardening behaviors of the samples with He ions implantation were determined
by nanoindentation tests (G200 nano-indenter, Technologies, Palo Alto City, CA, USA).
More than 8 measurements were adopted to calculate the average hardness of each depth.
The size and density of He bubbles in the Hf1Ta HEA were calculated by the Image Pro
software (Version 6.0), and more than 2 areas (100 nm × 100 nm) selected from the peak
damage regions were chosen to count.

3. Results and Discussion
3.1. Microstructures of the As-Cast Ti2ZrHfxV0.5Ta0.2 HEAs

The XRD patterns of the as-cast Ti2ZrHfxV0.5Ta0.2 HEAs are exhibited in Figure 2a, in
which only the diffraction peaks of BCC phase can be observed. The absence of other phase
diffraction peaks in the patterns suggested that the increase of Hf content had little effect
on the structure of the Ti2ZrHfxV0.5Ta0.2 HEAs.

The shift of the (110) diffraction peaks of BCC phases are displayed in Figure 2b.
As can be detected, the (110) peak shifted to a lower 2θ angle (decreased from 37.96◦ in
the Hf0.25Ta to 37.28◦ in the Hf1Ta) as the Hf content increased, implying that tensile
strain out-plane was created due the compressive in-plane stress induced by Hf [53,54].
According to Bragg’s law, the values of the lattice constants were calculated to be 0.3349,
0.3387, 0.3398, and 0.3408 nm for Ti2ZrHfxV0.5Ta0.2 HEAs corresponding to x = 0.25, 0.5,
0.75, and 1, respectively. The addition of Hf element with the second largest atomic radius
could improve the lattice distortion, which contributed to the increase of lattice constants.

Figure 3 displays the SEM images of the as-cast Ti2ZrHfxV0.5Ta0.2 HEAs. All the
HEAs exhibited typical dendritic structure and no significant microstructure evolution
can be observed in the HEAs with different Hf content. Combined with the XRD results,
the Ti2ZrHfxV0.5Ta0.2 HEAs exhibited a single BCC solid solution structure. The increase
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of Hf content could hardly change the microstructures of the Ti2ZrHfxV0.5Ta0.2 HEAs
significantly, indicating the complete dissolution of Hf element in the matrix. Through EDS
analysis, the chemical composition of different regions in the Ti2ZrHfxV0.5Ta0.2 HEAs are
listed in Table 3. Dendritic regions in the Ti2ZrHfxV0.5Ta0.2 HEAs were enriched with higher
melting point elements of Hf and Ta elements, while interdendritic regions were enriched
with lower melting point elements of Zr and V elements, which could be attributed to
the behaviors of elements with different melting points during solidification. It should be
noted that the addition of Hf element could mitigate the segregations of the elements and
the relatively uniform microstructure was obtained in the Hf1Ta HEA.
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Table 3. Chemical composition of dendritic (D) and interdendritic (ID) regions of the
Ti2ZrHfxV0.5Ta0.2 HEAs in atomic percentage.

Alloys Regions Ti Zr V Hf Ta

Hf0.25Ta
D 45.65 24.43 9.76 14.04 6.12
ID 45.35 25.39 11.83 12.96 4.47

Hf0.5Ta
D 45.18 23.50 9.70 15.81 5.81
ID 45.31 24.02 10.56 14.72 5.40

Hf0.75Ta
D 44.11 22.39 9.53 18.37 5.60
ID 44.02 22.80 10.31 17.60 5.26

Hf1Ta
D 42.24 21.01 9.04 23.26 4.45
ID 42.42 21.53 9.58 22.54 4.11

3.2. Mechanical Properties of the As-Cast Ti2ZrHfxV0.5Ta0.2 HEAs

Figure 4 exhibits the engineering stress–strain curves of Ti2ZrHfxV0.5Ta0.2 HEAs
gained by the compression test at RT. The values of yield strength σ and plastic strain
ε are summarized in Table 4. The plastic strain of the Ti2ZrHfxV0.5Ta0.2 HEAs was more
than 50% and no fracture could be detected during the compression test. Although the
changes of Hf content have no obvious effect on the plasticity, the yield strength of the
Ti2ZrHfxV0.5Ta0.2 HEAs improved from 745 to 873 MPa as the Hf content increased. The
advances in mechanical properties were predominantly attributed to the variation in lattice
distortion of this series of HEAs. The addition of Hf element with second largest atomic
radius intensified the lattice distortion and raised the resistance to dislocation motion, and
thus the yield strength was enhanced.

The mechanical properties of the Ti2ZrHfxV0.5Ta0.2 HEAs at 873 K have been inves-
tigated, and the compressive stress–strain curves are exhibited in Figure 5a. It can be
observed from all the flow curves that apparent softening emerged after the appearance of
stress peaks at the initial deformation stage, which was a typical manifestation of dynamic
recrystallization. The yield strength of the Hf0.25Ta-Hf1Ta HEAs at 873 K was 480, 553,
601, and 662 MPa, respectively. Figure 5b shows the comparison of yield strength of the
Ti2ZrHfxV0.5Ta0.2 HEAs at different temperatures. As the compression test temperature in-
creased from RT to 873 K, the yield strength decreased by 265, 236, 231, and 211 MPa for the
Hf0.25Ta-Hf1Ta HEAs, respectively, and the corresponding decline percentages were 34.4%,
29.9%, 27.8%, and 24.2%, respectively. The compression results indicated that the increase
of Hf content played a positive role in enhancing yield strength of the Ti2ZrHfxV0.5Ta0.2
HEAs at RT and 873 K. Generally, the alloy melting point was crucial to the softening
resistance at elevated temperatures. The melting points of the Ti2ZrHfxV0.5Ta0.2 HEAs
increased from 2122 K to 2183 K by the increase of Hf content, which was conducive to
the softening resistance improvement. On the other hand, the influence of solid solution
strengthening caused by the increase of Hf content on the strength cannot be ignored.
Under the dual effect, at 873 K the yield strength of Ti2ZrHfxV0.5Ta0.2 HEAs improved with
the increase of Hf content.

The novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs, especially Hf1Ta HEA, exhibited
fine comprehensive mechanical properties at RT and 873 K, which contributed to the
industrial application potential in extreme conditions. The He ion irradiation experiment
was introduced to preliminarily evaluate irradiation resistance of the Hf1Ta alloy, which
was selected as the representative of the designed low-activation Ti2ZrHfxV0.5Ta0.2 HEAs
due to the high yield strength at RT, elevated temperatures, and high melting point.

Table 4. Values of melting temperature and mechanical properties of the Ti2ZrHfxV0.5Ta0.2 HEAs at RT.

Alloys σ (MPa) ε (%) Tm (K)

Hf0.25Ta 745 >50 2122
Hf0.5Ta 789 >50 2145

Hf0.75Ta 832 >50 2165
Hf1Ta 873 >50 2183
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3.3. TEM Characterization of the Irradiated Ti2ZrHfV0.5Ta0.2 HEA

The characterizations of He bubbles, such as distribution range, shape, size, and
number density, were primarily analyzed in this work. Based on the SRIM simulation
results (shown in Figure 1), the peaks of irradiation damage and He concentration emerged
at the depth of ~2200 and 2300 nm, respectively. Therefore, at different fluences, the cross-
sectional TEM images containing peak damage regions at depths of 1700 to 2700 nm are
shown in Figure 6a,b, presenting the He bubbles’ distribution characterizations. For the
sample irradiated to a fluence of 1 × 1016 ions/cm2, the He bubbles emerged at the depth
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of ~2000 nm and extended to 2500 nm, and no bubbles could be identified beyond this
range. A wider spatial distribution of He bubbles was detected in the sample irradiated
to a higher fluence of 3 × 1016 ions/cm2. As can be detected in Figure 6b, larger bubbles
were observed in the depth range of 1850~2550 nm, which was roughly consistent with the
simulation results shown in Figure 1.
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the same position.

The features of He bubbles in the TEM bright field images taken in the same position
under different focusing states are presented in Figure 6c–e, in which white and black spots
were found in under- and over-focused conditions, respectively. Under different focusing
states, no precipitates could be observed in the peak damage regions.

The characterizations of the He bubbles at high magnification are displayed in
Figure 7a,b, in which faceted bubbles were observed in the Hf1Ta alloy at different flu-
ences. The He bubbles in BCC-structured conventional materials usually evolved into
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polygons at elevated temperatures to maintain a more stable state and faceted bubbles
formed in the Nb-Zr and Fe-Cr alloys [55]. The shape of He bubbles in materials can be
influenced by several factors, including crystal structure, surface energy, strain effects,
volume energy, etc. The extra elastic strain energy was generated by vacancy and He atoms
flowing into He bubbles at high temperatures. For maintaining a more stable state of He
bubbles, large areas of surfaces were formed and developed on low-energy planes [56],
which resulted in the formation of faceted bubbles in the Ti2ZrHfxV0.5Ta0.2 HEA at 1023 K.
The morphology of the bubbles in the Hf1Ta alloy in this study, Ti-Zr-Nb-V-Mo [46], and
Ti-V-Nb-Ta RHEAs [57] was similar to that found in the conventional materials with He
ions implantation, suggesting that the formation of faceted bubbles at elevated temperature
may be a feature of BCC-structured RHEAs.
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at the fluences of (a) 1 × 1016 and (b) 3 × 1016 ions/cm2.

At different fluences, no precipitations could be found in the peak damage regions of
the irradiated Ha1Ta HEA and only the diffraction spots of BCC phase were detected in
the selected area’s electron diffraction patterns obtained from different irradiation damage
regions, and they suggested preeminent phase stability of the Hf1Ta HEA under He ion
irradiation at 1023 K. The bubbles’ distributions in peak damage regions were determined
to be random and uniform under different fluences, and the He bubble sizes presented
normal-like distributions (as displayed in Figure 8), meaning that the nucleation and
growth process of He bubbles in the Hf1Ta HEA was homogeneous under irradiation [57].

Figure 9 exhibits the elemental distributions near the bubbles in the Hf1Ta HEA
irradiated to a fluence of 3 × 1016 ions/cm2. No obvious elemental enrichment regions
were detected in the images and the distribution of each element was relatively uniform.
Recent studies [40,57] on the HEAs indicated that the atomic size difference dominated
the elements segregation under irradiation. In those cases, the vacancies away from the
He bubbles were preferentially coupled with the oversized elements, resulting in the
enrichment of the undersized elements at the bubbles. Significantly, the radiation-induced
segregation may affect the behavior of dislocations/He bubbles and induce stress corrosion
cracking, thereby degrading the mechanical properties and putting a negative impact on
the irradiation performance of the alloys. The uniform distribution of elements near the
He bubbles suggested the good structural stability of the Hf1Ta HEA under the given
irradiation condition.
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The size distributions of the He bubbles in the peak damage regions are shown in
Figure 8. At each fluence, the He bubble sizes in the Hf1Ta HEA presented a unimodal
distribution. The average sizes (d) and number densities (N) of the He bubbles in the Hf1Ta
HEA at different fluences are listed in Table 5. The average size increased from 10.5 nm
to 13.7 nm and number density increased from 9.09 × 1020 m−3 to 2.42 × 1021 m−3 as the
fluence improved.

Table 5. Average size and density of He bubbles in the Hf1Ta HEA at different fluences.

Fluence (ions/cm2) Average Size (nm) Number Density (×1020 m−3)

1 × 1016 10.5 9.09
3 × 1016 13.7 24.21

Generally, the growth of He bubbles was temperature sensitive and larger He bubbles
were found at elevated temperature [58]. The average sizes of He bubbles in the conven-
tional materials were summarized in Table 6. Owing to the limitation of melting point, the
temperature of irradiation experiments applied to conventional materials was restricted,
which was no more than 973 K. Therefore, the He bubble sizes in the Hf1Ta HEA were larger
than those in conventional materials [59–63] due to the higher experiment temperature
(1023 K), while He bubble density was one to two orders of magnitude lower. Significantly,
the He bubble sizes in the Hf1Ta HEA were between 5–17 nm, which were close to those
found in the reported Ti-Zr-Nb-V-Mo [46] at 1023 K and Ti-V-Nb-Ta RHEAs [57] at 973 K.
However, the average sizes of He bubbles in tens of nanometers (34.1–85.6 nm) were found
in FCC-structured NiCoFeCrMn HEAs and its derivatives [58] at 973 K.

Table 6. Average sizes of He bubbles in the conventional materials (CMs) and typical HEAs and their
derivatives at elevated temperatures.

Alloys Temperature
(K)

Fluence
(ions/cm2)

Peak He
Concentration

(at.%)
Average Size

(nm)

HEAs

TiVTa [57] 973 1 × 1017 5.0 13.4
TiVNbTa [57] 973 1 × 1017 5.0 8.1
TiZrNbV [46] 1023 6 × 1016 3.9 12.5

TiZrNbVMo [46] 1023 6 × 1016 3.9 10.4
NiCo [58] 973 6.4 × 1016 3.6 25.1

NiCoCr [58] 973 6.4 × 1016 3.6 34.1
NiCoFeCrMn [58] 973 6.4 × 1016 3.6 85.6

CMs

V-4Cr-4Ti [59] 573 5 × 1016 4.0 2.7
ODS [60] 723 1 × 1017 5.6 3.9

RAFM [63] 773 3 × 1016 5.7 5.1
GH3535 [62] 923 1 × 1017 5.0 2.3
Ni-SiC [64] 923 6 × 1016 3.5 8.1

3.4. Irradiation Hardening

Nano-indentation tests were employed to assess the mechanical properties of the
Hf1Ta HEA after He ions’ irradiation. Figure 10a shows the average hardness dependence
of indentation depths of the unirradiated and irradiated Hf1Ta alloy. Due to the surface
effect on the measurement accuracy, hardness values measured at the depths less than
80 nm were not reliable and omitted. At the same depth, the irradiated sample possessed
higher hardness values than the unirradiated one, which suggested the hardening of
irradiated Hf1Ta HEA. For the indentation size effect, the hardness decreased slightly with
increasing the indentation depth as shown in Figure 10a, which could be described by the
model proposed by Nix and Gao [61]:

H = H0

√
1 + (h∗/h) (1)
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where H represents the measured hardness, H0 represents the hardness at infinite depth, h*
represents a characteristic length which depends on the material and the shape of indenter
tips, and h represents the indentation depth.
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For the uniform material, such as the unirradiated alloys, there was no deviation
away from linearity in the profiles of H2 versus h−1 based on the Nix–Gao model. As
shown in Figure 10b, the hardness curves of the unirradiated Hf1Ta HEA exhibited a good
linear relationship in the irradiation depth range of 80–2000 nm. The irradiated alloy was
heterogeneous, with a hard and thin damaged layer near the surface. The volume of the
plastic zone generated by the indenter pressing into the surface of the sample is usually
much larger than that of the indenter. As the plastic zone extended to the lower undamaged
region, the measured hardness value could be affected. In this case, the measured hardness
value decreased with the increase of depth and finally approached the hardness of the
unirradiated area, which was named as softer substrate effect (SSE) [61]. Therefore, there
was a deviation away from linearity when the depth value was large enough (deeper than
~350 nm for the Hf1Ta HEA in this study). The values corresponding to the linearity were
usually used for fitting to compare and study the hardness changes of the alloy before and
after irradiation to a certain extent. In this study, due to indentation size effect and soft
substrate effect, the values of hardness measured in the depth range of 80–350 nm in the
irradiated Hf1Ta HEA and 80–2000 nm in the unirradiated Hf1Ta HEA were used for fitting
to evaluate the hardness change.

The hardness value of the unirradiated sample was calculated as 3.78 GPa and the
hardness increment (∆H, hardness difference between unirradiated and irradiated samples)
and hardening fraction (∆H/H0, the ratio of the hardness increment to the hardness of
unirradiated sample) are summarized in Table 7. As the irradiation fluence increased from
1 × 1016 to 3 × 1016 ions/cm2, the hardness increment increased from 0.67 to 1.34 GPa,
and the hardening fraction increased from 17.7% to 34.1%. Remarkably, the irradiation
hardening fraction of the Hf1Ta HEA was equivalent to that of the BCC structured Ti-Zr-
Nb-V-Mo HEAs, which was lower than those of most reported conventional low-activation
materials at similar He ions’ irradiation fluences (shown in Table 8). RHEAs of different
systems showed good irradiation hardening resistance under He ion irradiation, and the
selected elements could greatly affect the irradiation resistance of the HEAs, which is
worthy of further study in the future.
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Table 7. Nanoindentation test results of the Hf1Ta HEA at different fluences.

Fluence (ions/cm2) H0 (GPa) ∆H (GPa) ∆H/H0 (%)

0 3.78 - -
1 × 1016 4.45 0.67 17.7
3 × 1016 5.07 1.34 34.1

Table 8. The hardening fraction of some He-irradiated conventional low-activation materials and
HEAs.

Alloys Temperature
(K)

Fluence
(×1016 ions/cm2)

Hardening Fraction
(%)

HEAs
TiZrNb [46] 1023 6 17.3

TiZrNbV [46] 1023 6 41.3
TiZrNbVMo

[46] 1023 6 23.6

CMs

ODS [60] 723 5 48.1
V-Cr-Ti [59] 573 5 52.0
RAFM [65] 773 3 85.9
CLAM [19] 773 3 61.1

Irradiation-induced defects, including dislocation loops, He bubbles, and stacking
faults, could act as the barrier of sliding dislocations, and have a significantly negative
impact on the mechanical properties of the irradiated alloys. It was reported that the
obstacle strength of He bubble defects was strongly related to their sizes [66–68]. Compared
to the smaller defects, the probability of interaction with dislocations was enhanced due to
the large cross section of the oversized bubbles [46]. The maximum He bubble size in Hf1Ta
HEA can reach more than 16 nm with average sizes of 10.5 and 13.7 nm at different fluences,
which was conducive to enhancing the interaction between He bubbles and dislocations
and improving the hardness. Thus, the formation of large He bubbles in the irradiated
Hf1Ta HEA could be considered as the main cause of hardening. Compared with the
sample irradiated at low fluence, the larger and denser He bubbles generated in the sample
irradiated at high fluence can interact with the dislocations more effectively, which led
to the higher hardness increment and hardening fraction in the Hf1Ta HEA irradiated
at the fluence of 3 × 1016 ions/cm2. Additionally, Zhao [33] and Shi [34] proposed that
residual density of vacancies and interstitials produced by irradiation could be greatly
reduced by the effective recombination in the HEAs. The severe lattice distortion in HEAs
could impose restrictions on the formation and growth of defect clusters, resulting in small
size defects with low density in the matrix. For those reasons, the force on dislocation
movement could be weakened and the degradation of mechanical properties of the Hf1Ta
HEA after irradiation was mitigated. Fine structural stability, limited radiation-induced
segregation, and low residual defect density contributed to the good irradiation tolerance
of the Hf1Ta HEA.

4. Conclusions

The novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared. He
ion irradiation experiments were employed to preliminarily evaluate irradiation tolerance
of the representative Hf1Ta HEA. The microstructures and mechanical properties of the
as-cast and irradiated samples were investigated. The main conclusions are as follows:

(1) The as-cast Ti2ZrHfxV0.5Ta0.2 HEAs exhibited BCC solid solution structure and the
plastic strain exceeded 50%. Due to the solid solution strengthening caused by the
increase of Hf content, the yield strength of the Ti2ZrHfxV0.5Ta0.2 HEAs enhanced
from 745 to 873 MPa at room temperature and from 480 to 662 MPa at 873 K.
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(2) No obvious radiation-induced element segregations or precipitations were found in
the He-implanted Hf1Ta HEA, which reflected fine structural stability under He ion
irradiation at 1023 K.

(3) The morphology of the He bubbles in the Hf1Ta HEA was faceted, which was similar
to that found in the BCC structured conventional materials, Ti-Zr-Nb-V-Mo, and
Ti-V-Nb-Ta RHEAs at elevated temperatures.

(4) As the irradiation fluence increased from 1 × 1016 to 3 × 1016 ions/cm2, the average
size of the He bubbles in Hf1Ta HEA increased from 10.5 to 13.7 nm and number
density increased from 9.09 × 1020 to 2.42 × 1021 m−3.

(5) With improving fluence, the irradiation hardness increment increased from 0.67 to
1.34 GPa, and the hardening fraction increased from 17.7% to 34.1%. Due to the
low residual defect density and fine structural stability, the hardening fraction of
the irradiated Hf1Ta HEA was lower than those of most reported conventional low-
activation materials at similar He ions’ irradiation fluences. The experimental results
indicated that the novel low-activation RHEA may be one of the promising candidate
structural materials for advanced nuclear energy system.
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