An Integrated, CFD-Based, Analysis of Carbonation in a Stirred Tank Reactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Computational Domain
2.3. Governing Equations
2.3.1. Liquid Domain Model
2.3.2. Gas Domain Model
2.4. Model Implementation
2.4.1. Boundary Conditions
2.4.2. Simulation Procedure
3. Results and Discussion
3.1. CFD Analysis of the Precipitation Tank
3.2. CO2 Bubble Dynamics, Dissolution, and Hydrolysis
3.3. Effect of Process Conditions
3.3.1. Effect of Temperature
3.3.2. Effect of CO2 Inflow Rate
3.3.3. Effect of Impeller Rotational Speed
3.3.4. Influence of Process Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Grid Independence Study
References
- Huijgen, W.J.J.; Witkamp, G.-J.; Comans, R.N.J. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci. 2006, 61, 4242–4251. [Google Scholar] [CrossRef]
- Kashim, M.Z.; Tsegab, H.; Rahmani, O.; Abu Bakar, Z.A.; Aminpour, S.M. Reaction Mechanism of Wollastonite in Situ Mineral Carbonation for CO2 Sequestration: Effects of Saline Conditions, Temperature, and Pressure. ACS Omega 2020, 5, 28942–28954. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-C.; Zhuo, S.-H.; Jhuang, J.-H. CO2 Capture and Crystallization of ATH Using Sodium Aluminate Solution in a Bubble Column Scrubber. Energies 2022, 15, 1031. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, B.; Li, L. Advance in Post-Combustion CO2 Capture with Alkaline Solution: A Brief Review. Energy Procedia 2012, 14, 1515–1522. [Google Scholar] [CrossRef]
- Yang, B.; Deng, Z.; Zhu, M. Sintering Behavior of New Chromite-Alumina Mixed Ladle Filler Sands for High Mn-High Al Steel Grades. Metall. Mater. Trans. B 2022, 53, 3979–3991. [Google Scholar] [CrossRef]
- Lazou, A.; Van Der Eijk, C.; Tang, K.; Balomenos, E.; Kolbeinsen, L.; Safarian, J. The Utilization of Bauxite Residue with a Calcite-Rich Bauxite Ore in the Pedersen Process for Iron and Alumina Extraction. Metall. Mater. Trans. B 2021, 52, 1255–1266. [Google Scholar] [CrossRef]
- Panov, A.; Vinogradov, S.; Engalychev, S. Evolutional Development of Alkaline Aluminosilicates Processing Technology. In Light Metals; Springer: Cham, Switzerland, 2017; pp. 9–16. [Google Scholar]
- Marinos, D.; Kotsanis, D.; Alexandri, A.; Balomenos, E.; Panias, D. Carbonation of Sodium Aluminate/Sodium Carbonate Solutions for Precipitation of Alumina Hydrates—Avoiding Dawsonite Formation. Crystals 2021, 11, 836. [Google Scholar] [CrossRef]
- Marinos, D.; Vafeias, M.; Sparis, D.; Kotsanis, D.; Balomenos, E.; Panias, D. Parameters Affecting the Precipitation of Al Phases from Aluminate Solutions of the Pedersen Process: The Effect of Carbonate Content. J. Sustain. Metall. 2021, 7, 874–882. [Google Scholar] [CrossRef]
- Aghazadeh, V.; Shayanfar, S.; Samiee Beyragh, A. Thermodynamic Modeling and Experimental Studies of Bayerite Precipitation from Aluminate Solution: Temperature and pH Effect. Iran. J. Chem. Chem. Eng. 2019, 38, 229–238. [Google Scholar] [CrossRef]
- Lee, M.-y.; Parkinson, G.M.; Smith, P.G.; Lincoln, F.J.; Reyhani, M.M. Characterization of Aluminum Trihydroxide Crystals Precipitated from Caustic Solutions. In Separation and Purification by Crystallization; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1997; Volume 667, pp. 123–133. [Google Scholar]
- Mei, X.; Zhao, Q.; Li, Y.; Min, Y.; Liu, C.; Saxén, H.; Zevenhoven, R. Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process. Fuel 2022, 328, 125259. [Google Scholar] [CrossRef]
- Kim, M.; Park, S.; Lee, D.; Lim, S.; Park, M.; Lee, J.M. Modeling long-time behaviors of industrial multiphase reactors for CO2 capture using CFD-based compartmental model. Chem. Eng. J. 2020, 395, 125034. [Google Scholar] [CrossRef]
- Konopacka-Łyskawa, D.; Kościelska, B.; Łapiński, M. Precipitation of Spherical Vaterite Particles via Carbonation Route in the Bubble Column and the Gas-Lift Reactor. JOM 2019, 71, 1041–1048. [Google Scholar] [CrossRef]
- Tiefenthaler, J.; Mazzotti, M. Experimental Investigation of a Continuous Reactor for CO2 Capture and CaCO3 Precipitation. Front. Chem. Eng. 2022, 4, 830284. [Google Scholar] [CrossRef]
- Tiefenthaler, J.; Mazzotti, M. Modeling of a Continuous Carbonation Reactor for CaCO3 Precipitation. Front. Chem. Eng. 2022, 4, 849988. [Google Scholar] [CrossRef]
- Rigopoulos, S.; Jones, A.G. Dynamic modelling of a bubble column for particle formation via a gas–liquid reaction. Chem. Eng. Sci. 2001, 56, 6177–6184. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H. 2-Carbon dioxide sequestration by direct mineralization of fly ash. In Carbon Dioxide Sequestration in Cementitious Construction Materials; Pacheco-Torgal, F., Shi, C., Sanchez, A.P., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 13–37. [Google Scholar]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Miao, E.; Zheng, X.; Xiong, Z.; Zhao, Y.; Zhang, J. Kinetic modeling of direct aqueous mineral carbonation using carbide slag in a stirred tank reactor. Fuel 2022, 315, 122837. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Jensen, O.E.; Cliffe, K.A.; Maroto-Valer, M.M. A model of carbon dioxide dissolution and mineral carbonation kinetics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 1265–1290. [Google Scholar] [CrossRef]
- Brucato, A.; Ciofalo, M.; Grisafi, F.; Tocco, R. On the simulation of stirred tank reactors via computational fluid dynamics. Chem. Eng. Sci. 2000, 55, 291–302. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Liu, Y.; Zhang, T.-A.; Gu, S.; Zhang, C. Computational Fluid Dynamics (CFD) Simulations on Multiphase Flow in Mechanically Agitated Seed Precipitation Tank. JOM 2014, 66, 1218–1226. [Google Scholar] [CrossRef]
- Zhao, H.-L.; Lv, C.; Liu, Y.; Zhang, T.-A. Process Optimization of Seed Precipitation Tank with Multiple Impellers Using Computational Fluid Dynamics. JOM 2015, 67, 1451–1458. [Google Scholar] [CrossRef]
- Moguel, L.F.; Muhr, H.; Dietz, A.; Plasari, E. CFD simulation of barium carbonate precipitation in a fluidized bed reactor. Chem. Eng. Res. Des. 2010, 88, 1206–1216. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Q.H.; Yang, C.; Mao, Z.S.; Shen, X.Q. Simulation of Barium Sulfate Precipitation using CFD and FM-PDF Modeling in a Continuous Stirred Tank. Chem. Eng. Technol. 2007, 30, 1642–1649. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, C.; Mao, Z.-S.; Zhao, C. CFD Modeling of Nucleation, Growth, Aggregation, and Breakage in Continuous Precipitation of Barium Sulfate in a Stirred Tank. Ind. Eng. Chem. Res. 2009, 48, 6992–7003. [Google Scholar] [CrossRef]
- Yu, G.; Dai, B.; Chen, J.; Liu, D.; Yu, X.; Shao, J.; Zhao, L. CFD Modeling of a Carbonation Reactor with a K-Based Dry Sorbent for CO2 Capture. Chem. Eng. Technol. 2014, 37, 1705–1712. [Google Scholar] [CrossRef]
- Oblak, B.; Babnik, S.; Erklavec-Zajec, V.; Likozar, B.; Pohar, A. Digital Twinning Process for Stirred Tank Reactors/Separation Unit Operations through Tandem Experimental/Computational Fluid Dynamics (CFD) Simulations. Processes 2020, 8, 1511. [Google Scholar] [CrossRef]
- Zhou, S.; Yang, Q.; Lu, L.; Xia, D.; Zhang, W.; Yan, H. CFD Analysis of Sine Baffles on Flow Mixing and Power Consumption in Stirred Tank. Appl. Sci. 2022, 12, 5743. [Google Scholar] [CrossRef]
- Kim, M.; Na, J.; Park, S.; Park, J.-H.; Han, C. Modeling and validation of a pilot-scale aqueous mineral carbonation reactor for carbon capture using computational fluid dynamics. Chem. Eng. Sci. 2018, 177, 301–312. [Google Scholar] [CrossRef]
- Hu, X.; Ilgun, A.D.; Passalacqua, A.; Fox, R.O.; Bertola, F.; Milosevic, M.; Visscher, F. CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®. Int. J. Chem. React. Eng. 2021, 19, 193–207. [Google Scholar] [CrossRef]
- Mehdipour, I.; Falzone, G.; Prentice, D.; Neithalath, N.; Simonetti, D.; Sant, G. The role of gas flow distributions on CO2 mineralization within monolithic cemented composites: Coupled CFD-factorial design approach. React. Chem. Eng. 2021, 6, 494–504. [Google Scholar] [CrossRef]
- Li, S.; Yang, R.; Wang, C.; Han, H.; Shen, S.; Wang, H. CFD—PBM Simulation on Bubble Size Distribution in a Gas–Liquid–Solid Flow Three-Phase Flow Stirred Tank. ACS Omega 2022, 7, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, Z.; Wang, X.-Q.; Yi, X.-G.; Zhang, X.-B.; Luo, Z.-H. Mass transfer and bubble hydrodynamics in stirred tank with multiple properties fluid via a CFD-PBM method. Can. J. Chem. Eng. 2024, 102, 4038–4054. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, G.; Zhang, J.; Li, X.; Zhang, T. Numerical Simulation on Carbonation Reactor of Calcified Residue. In Light Metals; Springer: Cham, Switzerland, 2015; pp. 85–90. [Google Scholar]
- Kang, Z.; Feng, L.; Wang, J. Optimization of a Gas–Liquid Dual-Impeller Stirred Tank Based on Deep Learning with a Small Data Set from CFD Simulation. Ind. Eng. Chem. Res. 2024, 63, 843–855. [Google Scholar] [CrossRef]
- Han, J.; Ha, M.; Lee, J.; Kim, D.; Lee, D. Enhancing TiO2 Precipitation Process through the Utilization of Solution-Gas-Solid Multiphase CFD Simulation and Experiments. Processes 2023, 11, 3110. [Google Scholar] [CrossRef]
- Mittal, G.; Issao Kikugawa, R. Computational fluid dynamics simulation of a stirred tank reactor. Mater. Today Proc. 2021, 46, 11015–11019. [Google Scholar] [CrossRef]
- Cho, H.-J.; Choi, J. Calculation of the Mass Transfer Coefficient for the Dissolution of Multiple Carbon Dioxide Bubbles in Sea Water under Varying Conditions. J. Mar. Sci. Eng. 2019, 7, 457. [Google Scholar] [CrossRef]
- Kuzmin, D.; Haario, H.; Turek, S. Finite Element Simulation of Turbulent Bubbly Flows in gas-Liquid Reactors; University of Dortmund: Dortmund, Germany, 2005. [Google Scholar]
- Olsen, J.E.; Dunnebier, D.; Davies, E.; Skjetne, P.; Morud, J. Mass transfer between bubbles and seawater. Chem. Eng. Sci. 2017, 161, 308–315. [Google Scholar] [CrossRef]
- Sokolichin, A.; Eigenberger, G.; Lapin, A. Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 2004, 50, 24–45. [Google Scholar] [CrossRef]
- Zhao, W.; Buffo, A.; Alopaeus, V.; Han, B.; Louhi-Kultanen, M. Application of the compartmental model to the gas–liquid precipitation of CO2-Ca(OH)2 aqueous system in a stirred tank. AIChE J. 2017, 63, 378–386. [Google Scholar] [CrossRef]
- Krauβ, M.; Rzehak, R. Reactive absorption of CO2 in NaOH: Detailed study of enhancement factor models. Chem. Eng. Sci. 2017, 166, 193–209. [Google Scholar] [CrossRef]
- Hélène, C.; Alain, B.; Laetitia, A. CFD Simulations in Mechanically Stirred Tank and Flow Field Analysis: Application to the Wastewater (Sugarcane Vinasse) Anaerobic Digestion. In Promising Techniques for Wastewater Treatment and Water Quality Assessment; Iqbal Ahmed, M., Summers, J.K., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 9. [Google Scholar]
- Vakili, M.H.; Esfahany, M.N. CFD analysis of turbulence in a baffled stirred tank, a three-compartment model. Chem. Eng. Sci. 2009, 64, 351–362. [Google Scholar] [CrossRef]
- Deglon, D.A.; Meyer, C.J. CFD modelling of stirred tanks: Numerical considerations. Miner. Eng. 2006, 19, 1059–1068. [Google Scholar] [CrossRef]
- Schwarz, M.P.; Turner, W.J. Applicability of the standard k-ϵ turbulence model to gas-stirred baths. Appl. Math. Model. 1988, 12, 273–279. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L. Effects of Interphase Forces on Multiphase Flow and Bubble Distribution in Continuous Casting Strands. Metall. Mater. Trans. B 2021, 52, 528–547. [Google Scholar] [CrossRef]
- Crowe, C.; Schwarzkopf, J.; Sommerfeld, M.; Tsuji, Y. Multiphase Flows with Droplets and Particles; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tomiyama, A.; Kataoka, I.; Zun, I.; Sakaguchi, T. Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions. JSME Int. J. Ser. B 1998, 41, 472–479. [Google Scholar] [CrossRef]
- Sokolichin, A.; Eigenberger, G. Gas—Liquid flow in bubble columns and loop reactors: Part I. Detailed modelling and numerical simulation. Eng. Sci. 1994, 49, 5735–5746. [Google Scholar] [CrossRef]
- Higbie, R. The Rate of Absorption of Pure Gas into a Still Liquid during Short Periods of Exposure. Trans. Am. Inst. Chem. Engrs. 1935, 31, 365–389. [Google Scholar]
- Schulz, K.G.; Riebesell, U.; Rost, B.; Thoms, S.; Zeebe, R.E. Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Mar. Chem. 2006, 100, 53–65. [Google Scholar] [CrossRef]
- Koronaki, E.D.; Gakis, G.P.; Cheimarios, N.; Boudouvis, A.G. Efficient tracing and stability analysis of multiple stationary and periodic states with exploitation of commercial CFD software. Chem. Eng. Sci. 2016, 150, 26–34. [Google Scholar] [CrossRef]
- Gakis, G.P.; Skountzos, E.N.; Aviziotis, I.G.; Charitidis, C.A. Multi-parametric analysis of the CVD of CNTs: Effect of reaction temperature, pressure and acetylene flow rate. Chem. Eng. Sci. 2023, 267, 118374. [Google Scholar] [CrossRef]
- Gakis, G.P.; Vergnes, H.; Scheid, E.; Vahlas, C.; Caussat, B.; Boudouvis, A.G. Computational Fluid Dynamics simulation of the ALD of alumina from TMA and H2O in a commercial reactor. Chem. Eng. Res. Des. 2018, 132, 795–811. [Google Scholar] [CrossRef]
- Gakis, G.P.; Vergnes, H.; Scheid, E.; Vahlas, C.; Boudouvis, A.G.; Caussat, B. Detailed investigation of the surface mechanisms and their interplay with transport phenomena in alumina atomic layer deposition from TMA and water. Chem. Eng. Sci. 2019, 195, 399–412. [Google Scholar] [CrossRef]
- Gakis, G.P.; Chrysoloras, T.A.; Aviziotis, I.G.; Charitidis, C.A. Towards a mechanistic understanding of the floating catalyst CVD of CNTs: Interplay between catalyst particle nucleation, growth and deactivation. Chem. Eng. Sci. 2024, 295, 120204. [Google Scholar] [CrossRef]
- Gakis, G.P.; Koronaki, E.D.; Boudouvis, A.G. Numerical investigation of multiple stationary and time-periodic flow regimes in vertical rotating disc CVD reactors. J. Cryst. Growth 2015, 432, 152–159. [Google Scholar] [CrossRef]
- Gakis, G.P.; Termine, S.; Trompeta, A.-F.A.; Aviziotis, I.G.; Charitidis, C.A. Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chem. Eng. J. 2022, 445, 136807. [Google Scholar] [CrossRef]
- Gkinis, P.A.; Aviziotis, I.G.; Koronaki, E.D.; Gakis, G.P.; Boudouvis, A.G. The effects of flow multiplicity on GaN deposition in a rotating disk CVD reactor. J. Cryst. Growth 2017, 458, 140–148. [Google Scholar] [CrossRef]
- CHEMKIN-PRO. CHEMKIN-PRO 15131; Reaction Design: San Diego, CA, USA, 2013. [Google Scholar]
- Versteeg, G.F.; Van Swaaij, W.P.M. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J. Chem. Eng. Data 1988, 33, 29–34. [Google Scholar] [CrossRef]
- Korson, L.; Drost-Hansen, W.; Millero, F.J. Viscosity of water at various temperatures. J. Phys. Chem. 1969, 73, 34–39. [Google Scholar] [CrossRef]
- Johnson, K.S. Carbon dioxide hydration and dehydration kinetics in seawater1. Limnol. Oceanogr. 1982, 27, 849–855. [Google Scholar] [CrossRef]
- Soli, A.L.; Byrne, R.H. CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution. Mar. Chem. 2002, 78, 65–73. [Google Scholar] [CrossRef]
- Parkhurst, D.; Appelo, T. User’s Guide to PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey: Reston, VA, USA, 1999; Volume 99. [Google Scholar]
Parameter | Description | Value | Reference |
---|---|---|---|
Process conditions | |||
T | Temperature | According to experiments | |
Ν | Rotation rate | 200 rpm | |
JCO2 | CO2(g) Inflow rate | 160 sccm | |
Liquid domain | |||
DCO2 | CO2(aq) diffusion coefficient | 2.35 × 10−6 ×exp(−2119/T) | [31,65] |
HCO2 | Henry constant for CO2-H2O | 3.54 × 10−7×exp(2044/T) | [65] |
μh2o | H2O dynamic viscosity | 0.001002 × 10((A*(20−T)−B*(T−20)^2)/(T + C)) | [66] |
ρh2o | H2O density | 1000 kg/m3 | |
ρco2 | CO2(g) density | Ideal gas | |
kg | Mass transfer coefficient | Based on [40,42,54] | |
kf | Forward reaction rate constant | exp(1246.98 − 61,900/T − 183*ln(T)) | [55,67] |
kb | Backward reaction rate constant | exp(29.45 − 8018/T) | Fitted based on [68] |
DH | Diffusion coefficient of dissolved H+ species | 9.31 × 10−9 | [69] |
DHCO3 | Diffusion coefficient of dissolved HCO3− species | 1.18 × 10−9 | [69] |
db | Mean bubble diameter | 2 mm (Fitted to experiments) | |
Gas domain | |||
ρ | Gas density | Ideal gas | |
μ | Gas viscosity | Kinetic gas theory | |
Dco2-air | Diffusion coefficient of CO2(g) in air | Kinetic gas theory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gakis, G.P.; Marinos, D.; Aviziotis, I.G.; Balomenos, E.; Boudouvis, A.G.; Panias, D. An Integrated, CFD-Based, Analysis of Carbonation in a Stirred Tank Reactor. Materials 2025, 18, 1535. https://doi.org/10.3390/ma18071535
Gakis GP, Marinos D, Aviziotis IG, Balomenos E, Boudouvis AG, Panias D. An Integrated, CFD-Based, Analysis of Carbonation in a Stirred Tank Reactor. Materials. 2025; 18(7):1535. https://doi.org/10.3390/ma18071535
Chicago/Turabian StyleGakis, Georgios P., Danai Marinos, Ioannis G. Aviziotis, Efthymios Balomenos, Andreas G. Boudouvis, and Dimitrios Panias. 2025. "An Integrated, CFD-Based, Analysis of Carbonation in a Stirred Tank Reactor" Materials 18, no. 7: 1535. https://doi.org/10.3390/ma18071535
APA StyleGakis, G. P., Marinos, D., Aviziotis, I. G., Balomenos, E., Boudouvis, A. G., & Panias, D. (2025). An Integrated, CFD-Based, Analysis of Carbonation in a Stirred Tank Reactor. Materials, 18(7), 1535. https://doi.org/10.3390/ma18071535