Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (209)

Search Parameters:
Keywords = prebiotic chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1843 KB  
Hypothesis
Can the Timing of the Origin of Life Be Inferred from Trends in the Growth of Organismal Complexity?
by David A. Juckett
Life 2026, 16(1), 153; https://doi.org/10.3390/life16010153 (registering DOI) - 16 Jan 2026
Viewed by 35
Abstract
The origin of life embodies two fundamental questions: how and when did life begin? It is commonly conjectured that life began on Earth around 4 billion years ago. This requires that the complex organization of RNA, DNA, triplet codon, protein, and lipid membrane [...] Read more.
The origin of life embodies two fundamental questions: how and when did life begin? It is commonly conjectured that life began on Earth around 4 billion years ago. This requires that the complex organization of RNA, DNA, triplet codon, protein, and lipid membrane (RDTPM) architecture was easy to establish between the time the Earth cooled enough for liquid water and the time when early microorganisms appeared. These bracketing events create a narrow window of time to construct a completely operational self-replicating organic system of very high complexity. Another conjecture is that life did not begin on Earth but was seeded from life-bearing space objects (e.g., asteroids, comets, space dust), commonly referred to as panspermia. The second conjecture implies that life formed somewhere else and was part of the solar nebula, originating from an earlier generation star where there was more time available for the development of life. In this paper, the goal is to provide a hypothetical perspective related to the timing for the origin of pre-biotic chemistry and life itself. Using a form of complexity growth, biological features spanning from the present day back to early life on Earth were examined for trends across time. Genome sizes, gene number, protein–protein binding sites, energy for cell construction, mass of individual cells, the rate of cell mass growth, and a molecular complexity measure all yield highly significant regressions of linearly increasing complexity when plotted over the last 4 Gyr (billion years). When extrapolated back in time, intersections with simple complexities associated with each variable yield a mean value of 8.6 Gyr before the present time. This era coincides with the peak of star and planet formation in the universe. This speculative analysis is consistent with the second conjecture for the origin of life. The major assumptions of such an analysis are presented and discussed. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
12 pages, 894 KB  
Article
The Pyruvate–Glyoxalate Pathway as a Toxicity Assessment Tool of Xenobiotics: Lessons from Prebiotic Chemistry
by François Gagné and Chantale André
J. Xenobiot. 2025, 15(6), 198; https://doi.org/10.3390/jox15060198 - 1 Dec 2025
Viewed by 485
Abstract
There is an urgent need to evaluate the toxicity of xenobiotics and environmental mixtures for preventing loss in water quality for the sustainability of aquatic ecosystems. A simple prebiotic chemical pathway based on malate formation from pyruvate (pyr) and glyoxalate (glyox) is proposed [...] Read more.
There is an urgent need to evaluate the toxicity of xenobiotics and environmental mixtures for preventing loss in water quality for the sustainability of aquatic ecosystems. A simple prebiotic chemical pathway based on malate formation from pyruvate (pyr) and glyoxalate (glyox) is proposed as a quick and cheap screening tool for toxicity assessment. The assay is based on the pyr and glyox (aldol) condensation reactions, leading to biologically relevant precursors such as oxaloacetate and malate. Incubation of pyr and glyox at 40–70 °C in the presence of reduced iron Fe(II) led to malate formation following the first 3 h of incubation. The addition of various xenobiotics/contaminants (silver, copper, zinc, cerium IV, samarium III, dibutylphthalate, 1,3-diphenylguanidine, carbon-walled nanotube, nanoFe2O3 and polystyrene nanoparticles) led to inhibitions in malate synthesis at various degrees. Based on the concentration inhibiting malate concentrations by 20% (IC20), the following potencies were observed: silver < copper ~ 1.3-diphenylguanidine ~ carbon-walled nanotube < zinc ~ samarium < dibutylphthalate ~ samarium < Ce(IV) < nFeO3 < polystyrene nanoplastics. The IC20 values were also significantly correlated with the reported trout acute lethality data, suggesting its potential as an alternative toxicity test. The pyr-glyox pathway was also tested on surface water extracts (C18), identifying the most contaminated sites from large cities and municipal wastewater effluents dispersion plume. The inhibition potencies of the selected test compounds revealed that not only pro-oxidants but also chemicals hindering enolate formation, nucleophilic attack of carbonyls and dehydration involved in aldol-condensation reactions were associated with toxicity. The pyr-glyox pathway is based on prebiotic chemical reactions during the emergence of life and represents a unique tool for identifying toxic compounds individually and in complex mixtures. Full article
Show Figures

Graphical abstract

33 pages, 912 KB  
Review
Green Extraction of Bioactive Compounds from Plant-Based Agri-Food Residues: Advances Toward Sustainable Valorization
by Samanta Shiraishi Kagueyam, José Rivaldo dos Santos Filho, Alex Graça Contato, Cristina Giatti Marques de Souza, Rafael Castoldi, Rúbia Carvalho Gomes Corrêa, Carlos Adam Conte Junior, Natália Ueda Yamaguchi, Adelar Bracht and Rosane Marina Peralta
Plants 2025, 14(23), 3597; https://doi.org/10.3390/plants14233597 - 25 Nov 2025
Cited by 1 | Viewed by 1117
Abstract
Agri-food residues have accumulated globally at unprecedented scales, generating environmental pressures and resource inefficiencies, a core problem addressed in this review, while simultaneously representing rich, underutilized reservoirs of health-promoting phytochemicals. This review synthesizes recent advances (2016–2025) in the green extraction, characterization, and biological [...] Read more.
Agri-food residues have accumulated globally at unprecedented scales, generating environmental pressures and resource inefficiencies, a core problem addressed in this review, while simultaneously representing rich, underutilized reservoirs of health-promoting phytochemicals. This review synthesizes recent advances (2016–2025) in the green extraction, characterization, and biological validation of phytochemicals from plant-based residues, including polyphenols, flavonoids, carotenoids, alkaloids, and dietary fibers from key sources such as grape pomace, citrus peels, coffee silverskin, pomegranate peel, cereal brans, and tropical fruit by-products. Emphasis is placed on sustainable extraction methods: ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical CO2 extraction (SFE), and natural deep eutectic solvents (NADES), which enable efficient recovery while minimizing environmental impact. In vitro, in vivo, and clinical studies demonstrate that residue-derived compounds exert antioxidant, anti-inflammatory, metabolic-regulating, and prebiotic effects, contributing to health in general and gut microbiota modulation. Integrating these bioactives into functional foods and nutraceuticals supports sustainable nutrition and circular bioeconomy goals by reducing food waste and promoting health-oriented valorization. Regulatory advances, including approvals from the European Food Safety Authority (EFSA) and the U.S. Food and Drug Administration (FDA) for ingredients such as olive phenolics, citrus flavanones, and coffee cascara, further illustrate increasing translational readiness. The convergence of green chemistry, biorefinery design, and nutritional science positions agri-food residues as pivotal resources for future health-promoting and environmentally responsible diets. Remaining challenges include scaling cost-effective green processes, harmonizing life cycle assessment protocols, expanding toxicological datasets, and conducting longer-term clinical trials to support safe and evidence-based commercialization. Full article
Show Figures

Graphical abstract

43 pages, 1749 KB  
Hypothesis
The Origin of Life and Cellular Systems: A Continuum from Prebiotic Chemistry to Biodiversity
by Jaime Gómez-Márquez
Life 2025, 15(11), 1745; https://doi.org/10.3390/life15111745 - 13 Nov 2025
Viewed by 3177
Abstract
The origin of life remains one of the most profound and enduring enigmas in the biological sciences. Despite substantial advances in prebiotic chemistry, fundamental uncertainties persist regarding the precise mechanisms that enabled the emergence of the first cellular entity and, subsequently, the foundational [...] Read more.
The origin of life remains one of the most profound and enduring enigmas in the biological sciences. Despite substantial advances in prebiotic chemistry, fundamental uncertainties persist regarding the precise mechanisms that enabled the emergence of the first cellular entity and, subsequently, the foundational branches of the tree of life. After examining the core principles that define living systems, we propose that life emerged as a novel property of a prebiotically assembled system—formed through the integration of distinct molecular worlds, defined as sets of structurally and functionally related molecular entities that interact via catalytic, autocatalytic, and/or self-assembly processes. This emergence established a permanent system–process duality, wherein the system’s organization and its dynamic processes became inseparable. Upon acquiring the capacity to replicate and mutate its genetic program, this primordial organism initiated the evolutionary process, ultimately driving the diversification of life under the influence of evolutionary forces and leading to the formation of ecosystems. The challenge of uncovering the origin of life and the emergence of biodiversity is not solely scientific, it requires the integration of empirical evidence, theoretical insight, and critical reflection. This work does not claim certainty but proposes a perspective on how life and biodiversity may have arisen on Earth. Ultimately, time and scientific inquiry will determine the validity of this view. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

6 pages, 176 KB  
Opinion
Who Decides What Is Prebiotically Plausible? The Risks of Premature Constraints in Origin-of-Life Research
by Simon H. J. Eiby and Tue Hassenkam
Life 2025, 15(11), 1650; https://doi.org/10.3390/life15111650 - 22 Oct 2025
Cited by 1 | Viewed by 1041
Abstract
The origin of life is the ultimate scientific puzzle. The leap in complexity from inanimate matter to even the simplest known organisms is overwhelming, and the transition from simple chemistry to life is best viewed as a long, directionless pathway. So, how did [...] Read more.
The origin of life is the ultimate scientific puzzle. The leap in complexity from inanimate matter to even the simplest known organisms is overwhelming, and the transition from simple chemistry to life is best viewed as a long, directionless pathway. So, how did life arise de novo from simple chemical molecules? The chemical space of potential reactants, catalysts and inhibiting agents is vast, while our knowledge of prebiotic conditions is limited. This makes it difficult to assess whether reaction pathways are prebiotically plausible. Origin-of-life research is therefore inherently speculative and shaped by competing schools of thought. Prebiotic plausibility should inform discussion and exploration, but not impose undue constraints based on personal preferences. Genuine progress is achieved through openness to diverse approaches and scenarios, ensuring that a broad spectrum of studies and their underlying rationales, assumptions, and methodologies are visible and explored. Full article
(This article belongs to the Special Issue Recent Trends in Prebiotic Chemistry)
13 pages, 1519 KB  
Article
Thermodynamic Assessment of Prebiotic Molecule Formation Pathways on Comets
by Luca Tonietti
Universe 2025, 11(10), 349; https://doi.org/10.3390/universe11100349 - 18 Oct 2025
Viewed by 619
Abstract
Comets are chemically rich and thermally extreme, spanning surface temperatures from ~50 K in the Oort Cloud to >1000 K for sungrazing bodies. These conditions may support key steps of prebiotic chemistry, including the synthesis of nucleic acid precursors. This study present a [...] Read more.
Comets are chemically rich and thermally extreme, spanning surface temperatures from ~50 K in the Oort Cloud to >1000 K for sungrazing bodies. These conditions may support key steps of prebiotic chemistry, including the synthesis of nucleic acid precursors. This study present a thermodynamic evaluation of seven candidate reactions, producing nitrogenous bases, sugars, nucleosides, and nucleotides, across the cometary temperature spectrum, 50–1000 K. Purine nucleobase synthesis, including adenine formation via aminoacetonitrile polymerization and HCN polymerization, is strongly exergonic at all temperatures. Sugar formation from formaldehyde is also exergonic, while intermediate pathways, e.g., 2-aminooxazole synthesis, become thermodynamically viable only above ~700 K. Nucleoside formation is thermodynamically neutral at low T but becomes favorable at elevated temperatures, whereas phosphorylation to AMP, i.e., adenosine-monophosphate, a nucleotide serving as a critical regulator of cellular energy status, remains highly endergonic under the entire T range studied. My analysis suggests that, under standard-state assumptions, comets can thermodynamically support formation routes of nitrogenous bases and simple sugars but not a complete nucleotide assembly. This supports a dual-phase origin scenario, where comets act as molecular reservoirs, with further polymerization and biological activation occurring post-delivery on planetary surfaces. Importantly, these findings represent purely thermodynamic assessments under standard-state assumptions and do not address kinetic barriers, catalytic influences, or adsorption effects on ice or mineral surfaces. The results should therefore be viewed as a baseline map of feasibility, subject to modifications in more complex chemical environments. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

14 pages, 2049 KB  
Article
Sugars to Acids via Thioesters: A Computational Study
by Jeremy Kua and Jonathan D. Karin
Life 2025, 15(8), 1189; https://doi.org/10.3390/life15081189 - 26 Jul 2025
Viewed by 1037
Abstract
Extant core metabolic cycles such as the TCA cycle and its related analog pathways utilize carboxylic acids as metabolites, with thioesters playing a key role. We examine if sugars from the potentially autocatalytic formose reaction can be converted to carboxylic acids in the [...] Read more.
Extant core metabolic cycles such as the TCA cycle and its related analog pathways utilize carboxylic acids as metabolites, with thioesters playing a key role. We examine if sugars from the potentially autocatalytic formose reaction can be converted to carboxylic acids in the absence of enzymes by calculating the thermodynamics and kinetics of such pathways. We zero in on a mechanism involving the addition of a thiol to an aldehyde, followed by intramolecular disproportionation to form a thioester that can be hydrolyzed into its carboxylic acid. This route is thermodynamically favorable but can have kinetic bottlenecks. We find that elimination of H2O or H2S is often the rate-determining step, and that alpha di-carbonyl reactants that do not require such a step are more feasible in the absence of catalysts. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

18 pages, 1473 KB  
Perspective
Virus-First Theory Revisited: Bridging RNP-World and Cellular Life
by Francisco Prosdocimi and Savio Torres de Farias
Microbiol. Res. 2025, 16(7), 154; https://doi.org/10.3390/microbiolres16070154 - 7 Jul 2025
Cited by 1 | Viewed by 3697
Abstract
The virus-first theory presents a model in which viral lineages emerged before cells. This proposal aims to give the theory greater relevance by offering a plausible evolutionary framework that explains both (i) the origin of viruses from prebiotic chemistry and (ii) how viruses [...] Read more.
The virus-first theory presents a model in which viral lineages emerged before cells. This proposal aims to give the theory greater relevance by offering a plausible evolutionary framework that explains both (i) the origin of viruses from prebiotic chemistry and (ii) how viruses contributed to the emergence of cells. Here, we propose that viruses should be understood as a distinct class of ribonucleoprotein (RNP) systems, some of which evolved directly from the RNP-world. In our model, simple progenotes produced capsid-like particles through the evolution of a single gene encoding a self-assembling peptide. This allowed the formation of icosahedral shells around RNA genomes, as observed today in certain viral families whose capsids consist of ~60 identical subunits derived from a single gene product. These early capsids enabled mobility and protection, representing key intermediates toward biological complexity. Over time, some of those populations acquired additional peptides and evolved more elaborate architectures. Finally, the incorporation of lipid-binding domains in those capsid-like peptides allowed the formation of proteolipidic membranes akin to those found in modern cells. This model provides a gradualistic and logically coherent evolutionary path from the RNP-world to the emergence of cellular life, emphasizing the foundational role of viruses in early evolution. Full article
Show Figures

Figure 1

35 pages, 5123 KB  
Review
Prebiotic Oligosaccharides in Skin Health: Benefits, Mechanisms, and Cosmetic Applications
by Meijun Zeng, Yang Li, Jie Cheng, Jingyu Wang and Qiyu Liu
Antioxidants 2025, 14(6), 754; https://doi.org/10.3390/antiox14060754 - 18 Jun 2025
Cited by 6 | Viewed by 8696
Abstract
Prebiotic oligosaccharides have attracted significant interest in dermatology and skin health due to their ability to modulate the skin microbiome and microbiota–host interactions. This review offers a novel dual perspective, systematically examining the benefits of both oral intake and topical application of prebiotic [...] Read more.
Prebiotic oligosaccharides have attracted significant interest in dermatology and skin health due to their ability to modulate the skin microbiome and microbiota–host interactions. This review offers a novel dual perspective, systematically examining the benefits of both oral intake and topical application of prebiotic oligosaccharides, including well-established prebiotics (e.g., human milk oligosaccharides, galacto- and fructo-oligosaccharides) and emerging prebiotic candidates (e.g., gluco-oligosaccharides, chitosan-oligosaccharides, agaro-oligosaccharides). First, cutting-edge synthetic processes for producing diverse oligosaccharides and their structural chemistry are introduced. Then, we discuss in vitro studies demonstrating their efficacy in promoting skin commensals, inhibiting pathogens, and conferring protective effects, such as antioxidant, anti-inflammatory, anti-melanogenic, and wound-healing properties. Furthermore, we emphasize in vivo animal studies and clinical trials revealing that prebiotic oligosaccharides, administered orally or topically, alleviate atopic dermatitis, enhance skin hydration, attenuate acne, and protect against photo-aging by modulating skin–gut microbiota and immune responses. Mechanistically, we integrate genetic and molecular insights to elucidate how oligosaccharides mediate these benefits, including gut–skin axis crosstalk, immune regulation, and microbial metabolite signaling. Finally, we highlight current commercial applications of oligosaccharides in cosmetic formulations while addressing scientific and practical challenges, such as structure–function relationships, clinical scalability, and regulatory considerations. This review bridges mechanistic understanding with practical applications, offering a comprehensive resource for advancing prebiotic oligosaccharides-based skincare therapies. Full article
Show Figures

Figure 1

19 pages, 5046 KB  
Article
Self-Induced Crystalline Morphology at the Mineral–Fluid Interface: Silica–Carbonate Biomorphs of Alkaline Earth Metals as a Case Study
by Mayra Cuéllar-Cruz, Erick Alfredo Zúñiga-Estrada, Marcelino Antonio Zúñiga-Estrada, Selene R. Islas and Abel Moreno
Appl. Sci. 2025, 15(9), 4593; https://doi.org/10.3390/app15094593 - 22 Apr 2025
Cited by 1 | Viewed by 1242
Abstract
Minerals have played a fundamental part in prebiotic chemistry on Earth, catalyzing the synthesis of inorganic and even organic molecules, including macromolecules such as RNA or DNA. Minerals based on silica are some of the first inorganics to be found in very ancient [...] Read more.
Minerals have played a fundamental part in prebiotic chemistry on Earth, catalyzing the synthesis of inorganic and even organic molecules, including macromolecules such as RNA or DNA. Minerals based on silica are some of the first inorganics to be found in very ancient mineral fossils. These minerals or even volcanic glasses rich in silica, such as obsidians (a naturally volcanic glass, which is in fact an igneous rock), play an important role as supporting materials for obtaining the silico-carbonates of alkaline earth metals (usually called biomorphs). This is because, in most radiolarians, diatoms, and foraminifera, their external shells are made up of silica (SiO2). However, it has yet to be evaluated whether the silica contained in the minerals present in the prebiotic era of the Earth interacted with the chemical elements that were also present during that era. To evaluate whether obsidian participated in the formation of the first inorganic structures of pioneering organisms, this study aimed to synthesize calcium and barium biomorphs on igneous rock and to show that dissolved organic and inorganic molecules might have interacted with the molecules of obsidian, producing a plethora of shapes that mimicked the cherts of the Precambrian. Full article
Show Figures

Figure 1

21 pages, 1044 KB  
Review
Mezcal: A Review of Chemistry, Processing, and Potential Health Benefits
by Sandra Victoria Ávila-Reyes, Antonio Ruperto Jiménez-Aparicio, Guiomar Melgar-Lalanne, Fernanda Sarahí Fajardo-Espinoza and Humberto Hernández-Sánchez
Foods 2025, 14(8), 1408; https://doi.org/10.3390/foods14081408 - 18 Apr 2025
Cited by 3 | Viewed by 2530
Abstract
Mezcal is a Mexican alcoholic beverage elaborated by the distillation of fermented maguey (Agave genus) juice. In Mexico, there is an extensive variety of fermented beverages that embody many of the cultural traditions of this country. They are associated with environmental factors, [...] Read more.
Mezcal is a Mexican alcoholic beverage elaborated by the distillation of fermented maguey (Agave genus) juice. In Mexico, there is an extensive variety of fermented beverages that embody many of the cultural traditions of this country. They are associated with environmental factors, naturally occurring microbiota, and the local availability of raw materials. Fermentation processes for the elaboration of ancestral beverages are an antique technology used by ethnic groups since pre-Hispanic times; however, these beverages are currently being studied with renewed attention as a source of prebiotics, probiotics, synbiotics, and postbiotics. An important sector of these products is Agave beverages, such as pulque, tequila, and mezcal. Despite the increasing demand for the last beverage, there are still relatively few studies about the chemistry, biotechnology, and health benefits of mezcal. The main aspects considered in this document are the definitions used in the mezcal industry, characteristics of wild and cultivated Agave species and varieties, mezcal elaboration technology (including juice extraction, fermentation, distillation, and aging), and potential health benefits related to mezcal, including prebiotics and probiotics, and bioactive compounds, such as phenolics and alcohol. These compounds can make mezcal a potentially functional beverage when consumed moderately. Full article
Show Figures

Figure 1

76 pages, 4956 KB  
Article
Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact?
by Armen Y. Mulkidjanian, Daria V. Dibrova and Andrey Y. Bychkov
Life 2025, 15(3), 399; https://doi.org/10.3390/life15030399 - 4 Mar 2025
Cited by 3 | Viewed by 5518
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and [...] Read more.
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth’s crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth’s protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

12 pages, 1105 KB  
Article
Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry
by Ellie K. Hara and Alexis S. Templeton
Minerals 2025, 15(2), 141; https://doi.org/10.3390/min15020141 - 31 Jan 2025
Cited by 1 | Viewed by 2104
Abstract
Cyanide is a crucial reagent for the synthesis of biomolecules in prebiotic chemistry. However, effective organic synthesis requires cyanide to be concentrated. One proposed mechanism for cyanide storage and concentration on Early Earth involves the formation of aqueous ferrocyanide complexes. In basic pH [...] Read more.
Cyanide is a crucial reagent for the synthesis of biomolecules in prebiotic chemistry. However, effective organic synthesis requires cyanide to be concentrated. One proposed mechanism for cyanide storage and concentration on Early Earth involves the formation of aqueous ferrocyanide complexes. In basic pH conditions, cyanide will spontaneously form ferrocyanide complexes in the presence of aqueous Fe(II). While ferrocyanide aqueous complex formation is well defined, the potential for Fe(II)-bearing minerals to react with cyanide to form ferrocyanide complexes or store cyanide on the mineral surface has yet to be explored under prebiotically relevant conditions. In this study, we demonstrate that when cyanide interacts with ferroan brucite (MgxFe1−x(OH)2), cyanide will both form aqueous and mineral-surface-adsorbed ferrocyanide implying that there are two reservoirs that cyanide will partition into. In addition, we found that cyanide decreased the amount of hydrogen gas produced by the oxidation of ferroan brucite, indicating that cyanide alters the mineral’s redox reactivity. The cyanide adsorbed on brucite can be released by a decrease in pH, which leads to the dissolution of ferroan brucite, thus releasing the adsorbed cyanide. Our findings suggest that iron-bearing minerals may represent an overlooked storage reservoir of cyanide on Hadean Earth, potentially playing a significant role in cyanide availability for prebiotic chemistry. Full article
(This article belongs to the Special Issue Redox Reactivity of Iron Minerals in the Geosphere, 2nd Edition)
Show Figures

Figure 1

26 pages, 8346 KB  
Review
New Insights into Chemical Profiles and Health-Promoting Effects of Edible Mushroom Dictyophora indusiata (Vent ex. Pers.) Fischer: A Review
by Yogesh Kumar and Baojun Xu
J. Fungi 2025, 11(1), 75; https://doi.org/10.3390/jof11010075 - 18 Jan 2025
Cited by 2 | Viewed by 4320
Abstract
Mushrooms are valued for their culinary and medicinal benefits, containing bioactive compounds like polysaccharides, terpenoids, phenolics, lectins, and ergosterols. This review aims to encourage research on D. indusiata by summarizing its chemistry, health benefits, pharmacology, and potential therapeutic applications. Molecules from D. indusiata [...] Read more.
Mushrooms are valued for their culinary and medicinal benefits, containing bioactive compounds like polysaccharides, terpenoids, phenolics, lectins, and ergosterols. This review aims to encourage research on D. indusiata by summarizing its chemistry, health benefits, pharmacology, and potential therapeutic applications. Molecules from D. indusiata offer anti-diabetic, antioxidant, anti-tumor, hepatoprotective, and anti-bacterial effects. In particular, polysaccharides from Dictyophora indusiata (DIP) enhance immune function, reduce oxidative stress, and promote gut health as prebiotics. DIP shows neuroprotective effects by reducing oxidative damage, improving mitochondrial function, and regulating apoptosis, making them beneficial for neurodegenerative diseases. They also activate immune responses through TLR4 and NF-κB pathways. Additionally, compounds like dictyophorines and quinazoline from D. indusiata support nerve growth and protection. Mushrooms help regulate metabolism and improve lipid profiles, with potential applications in managing metabolic disorders, cancer, cardiovascular diseases, diabetes, and neurodegenerative conditions. Their wide range of bioactive compounds makes D. indusiata mushrooms functional foods with significant therapeutic potential. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Figure 1

16 pages, 3553 KB  
Article
Sulfur Analogs of the Core Formose Cycle: A Free Energy Map
by Jeremy Kua, Maria T. Peña, Samantha N. Cotter and John Leca
Life 2025, 15(1), 1; https://doi.org/10.3390/life15010001 - 24 Dec 2024
Cited by 1 | Viewed by 1258
Abstract
Using computational methods, we examine if the presence of H2S can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C [...] Read more.
Using computational methods, we examine if the presence of H2S can tame the unruly formose reaction by generating a free energy map of the reaction thermodynamics and kinetics of sulfur analogs within the core cycle. With mercaptoaldehyde as the linchpin C2 species, and feeding the cycle with CH2O, selected aldol additions and enolizations are kinetically more favorable. Thione formation is thermodynamically less favored compared to aldehydes and ketones, but all these species can be connected by enolization reactions. In some sulfur analogs, the retroaldol transformation of a C4 species back into linchpin species is thermodynamically favorable, and we have found one route incorporating where incorporating sulfur selects for a specific pathway over others. However, as CH2O diminishes, the aldol addition of larger species is less favorable for the sulfur analogs. Our results also suggest that competing Cannizzaro side reactions are kinetically less favored and thermodynamically disfavored when H2S is abundant. Full article
(This article belongs to the Special Issue Feature Papers in Origins of Life 2024)
Show Figures

Figure 1

Back to TopTop