Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Implications for Prebiotic Chemistry
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, D.; Pitsch, S.; Kittaka, A.; Wagner, E.; Wintner, C.E.; Eschenmoser, A.; Ohlofjgewidmet, G. Chemie von A-Aminonitrilen. Aldomerisierung von Glycolaldehyd-Phosphat Zu Racemischen Hexose-2,4,6-Triphosphaten Und (in Gegenwart von Formaldehyd) Racemischen Pentose-2,4-Diphosphaten: Rac-Allose-2,4,6-Triphosphat Und Rac-Ribose-2,4-Diphosphat Sind Die Reaktionshauptprodukte. Helv. Chim. Acta 1990, 73, 1410–1468. [Google Scholar] [CrossRef]
- Oró, J. Synthesis of Adenine from Ammonium Cyanide. Biochem. Biophys. Res. Commun. 1960, 2, 407–412. [Google Scholar] [CrossRef]
- Strecker, A. Ueber Einen Neuen Aus Aldehyd—Ammoniak Und Blausäure Entstehenden Körper. Justus Liebigs Ann. Der Chem. 1854, 91, 349–351. [Google Scholar] [CrossRef]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. Common Origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat. Chem 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Ritson, D.J.; Battilocchio, C.; Ley, S.V.; Sutherland, J.D. Mimicking the Surface and Prebiotic Chemistry of Early Earth Using Flow Chemistry. Nat. Commun. 2018, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfreund, P.; Charnley, S.B. Organic Molecules in the Interstellar Medium, Comets, and Meteorites: A Voyage from Dark Clouds to the Early Earth. Annu. Rev. Astron. Astrophys. 2000, 38, 427–483. [Google Scholar] [CrossRef]
- Pizzarello, S. Catalytic Syntheses of Amino Acids and Their Significance for Nebular and Planetary Chemistry. Meteorit. Planet. Sci. 2012, 47, 1291–1296. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry. Cold Spring Harb. Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef] [PubMed]
- Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L. A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres. Orig. Life Evol. Biosph. 2008, 38, 105–115. [Google Scholar] [CrossRef]
- Ferus, M.; Kubelík, P.; Knížek, A.; Pastorek, A.; Sutherland, J.; Civiš, S. High Energy Radical Chemistry Formation of HCN-Rich Atmospheres on Early Earth. Sci. Rep. 2017, 7, 6275. [Google Scholar] [CrossRef] [PubMed]
- Stribling, R.; Miller, S.L. Energy Yields in the Prebiotic Synthesis of Hydrogen Cyanide and Formaldehyde. Orig. Life Evol. Biosph. 1986, 16, 279–280. [Google Scholar] [CrossRef]
- Tian, F.; Toon, O.B.; Pavlov, A.A.; De Sterck, H. A Hydrogen-Rich Early Earth Atmosphere. Science 2005, 308, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Kasting, J.F.; Zahnle, K. Revisiting HCN Formation in Earth’s Early Atmosphere. Earth Planet. Sci. Lett. 2011, 308, 417–423. [Google Scholar] [CrossRef]
- Zahnle, K.J. Photochemistry of Methane and the Formation of Hydrocyanic Acid (HCN) in the Earth’s Early Atmosphere. J. Geophys. Res. Atmos. 1986, 91, 2819–2834. [Google Scholar] [CrossRef]
- Zahnle, K.J.; Lupu, R.; Catling, D.C.; Wogan, N. Creation and Evolution of Impact-Generated Reduced Atmospheres of Early Earth. Planet. Sci. J. 2020, 1, 11. [Google Scholar] [CrossRef]
- Shock, E.L. Chapter 5 Chemical Environments of Submarine Hydrothermal Systems. Orig. Life Evol. Biosph. 1992, 22, 67–107. [Google Scholar] [CrossRef] [PubMed]
- Holm, N.G.; Neubeck, A. Reduction of Nitrogen Compounds in Oceanic Basement and Its Implications for HCN Formation and Abiotic Organic Synthesis. Geochem. Trans. 2009, 10, 9. [Google Scholar] [CrossRef]
- Sanchez, R.A.; Ferbis, J.P.; Orgel, L.E. Studies in Prebiotic Synthesis: II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide. J. Mol. Biol. 1967, 30, 223–253. [Google Scholar] [CrossRef]
- Todd, Z.R.; Fahrenbach, A.C.; Magnani, C.J.; Ranjan, S.; Björkbom, A.; Szostak, J.W.; Sasselov, D.D. Solvated-Electron Production Using Cyanocuprates Is Compatible with the UV-Environment on a Hadean–Archaean Earth. Chem. Commun. 2018, 54, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Ritson, D.; Sutherland, J.D. Prebiotic Synthesis of Simple Sugars by Photoredox Systems Chemistry. Nat. Chem. 2012, 4, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, S.; James Cleaves, H.; Miller, S.L. The Cold Origin of Life: A. Implications Based On The Hydrolytic Stabilities Of Hydrogen Cyanide And Formamide. Orig. Life Evol. Biosph. 2002, 32, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.D.; Miller, S.L. Was Ferrocyanide a Prebiotic Reagent? Orig. Life Evol. Biosph. 1996, 26, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, A.G. The Chemistry of Cyano Complexes of the Transition Metals; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Orgel, L.E. Sedimentary Minerals under Reducing Conditions. In The Origin of Life and Evolutionary Biochemistry; Dose, K., Fox, S.W., Deborin, G.A., Pavlovskaya, T.E., Eds.; Springer: Boston, MA, USA, 1974. [Google Scholar] [CrossRef]
- Schlesinger, G.; Miller, S.L. Equilibrium and Kinetics of Glyconitrile Formation in Aqueous Solution. J. Am. Chem. Soc. 1973, 95, 3729–3735. [Google Scholar] [CrossRef]
- Pinto, J.P.; Gladstone, G.R.; Yung, Y.L. Photochemical Production of Formaldehyde in Earth’s Primitive Atmosphere. Science 1980, 210, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Sleep, N.H.; Bird, D.K.; Pope, E.C. Serpentinite and the Dawn of Life. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2857–2869. [Google Scholar] [CrossRef] [PubMed]
- Todd, Z.R.; Wogan, N.F.; Catling, D.C. Favorable Environments for the Formation of Ferrocyanide, a Potentially Critical Reagent for Origins of Life. ACS Earth Space Chem. 2024, 8, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Toner, J.D.; Catling, D.C. Alkaline Lake Settings for Concentrated Prebiotic Cyanide and the Origin of Life. Geochim. Cosmochim. Acta 2019, 260, 124–132. [Google Scholar] [CrossRef]
- Ašperger, S.; Murati, I.; Pavlović, D. Kinetics and Mechanism of the Decomposition of Complex Cyanides of Iron(II) and Molybdenum(IV). J. Chem. Soc. 1960, 730–736. [Google Scholar] [CrossRef]
- Gáspár, V.; Beck, M.T. Kinetics of the Photoaquation of Hexacyanoferrate(II) Ion. Polyhedron 1983, 2, 387–391. [Google Scholar] [CrossRef]
- Catling, D.C.; Kasting, J.F. Atmospheric Evolution on Inhabited and Lifeless Worlds; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the Sequence of Serpentinization Reactions: Petrography, Mineral Chemistry, and Petrophysics of Serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Beard, J.S.; Frost, B.R.; Fryer, P.; McCaig, A.; Searle, R.; Ildefonse, B.; Zinin, P.; Sharma, S.K. Onset and Progression of Serpentinization and Magnetite Formation in Olivine-Rich Troctolite from IODP Hole U1309D. J. Petrol. 2009, 50, 387–403. [Google Scholar] [CrossRef]
- Boschi, C.; Dini, A.; Baneschi, I.; Bedini, F.; Perchiazzi, N.; Cavallo, A. Brucite-Driven CO2 Uptake in Serpentinized Dunites (Ligurian Ophiolites, Montecastelli, Tuscany). Lithos 2017, 288–289, 264–281. [Google Scholar] [CrossRef]
- Miller, H.M.; Mayhew, L.E.; Ellison, E.T.; Kelemen, P.; Kubo, M.; Templeton, A.S. Low Temperature Hydrogen Production during Experimental Hydration of Partially-Serpentinized Dunite. Geochim. Cosmochim. Acta 2017, 209, 161–183. [Google Scholar] [CrossRef]
- McCollom, T.M.; Bach, W. Thermodynamic Constraints on Hydrogen Generation during Serpentinization of Ultramafic Rocks. Geochim. Cosmochim. Acta 2009, 73, 856–875. [Google Scholar] [CrossRef]
- Olowe, A.A.; Génin, J.M.R. The Mechanism of Oxidation of Ferrous Hydroxide in Sulphated Aqueous Media: Importance of the Initial Ratio of the Reactants. Corros. Sci. 1991, 32, 965–984. [Google Scholar] [CrossRef]
- Gilbert, F.; Refait, P.; Lévêque, F.; Remazeilles, C.; Conforto, E. Synthesis of Goethite from Fe(OH)2 Precipitates: Influence of Fe(II) Concentration and Stirring Speed. J. Phys. Chem. Solids 2008, 69, 2124–2130. [Google Scholar] [CrossRef]
- Chimiak, L.; Hara, E.; Sessions, A.; Templeton, A.S. Glycine Synthesis from Nitrate and Glyoxylate Mediated by Ferroan Brucite: An Integrated Pathway for Prebiotic Amine Synthesis. Proc. Natl. Acad. Sci. USA 2024, 121, e2408248121. [Google Scholar] [CrossRef] [PubMed]
- Loo, B.H.; Lee, Y.G.; Liang, E.J.; Kiefer, W. Surface-Enhanced Raman Scattering from Ferrocyanide and Ferricyanide Ions Adsorbed on Silver and Copper Colloids. Chem. Phys. Lett. 1998, 297, 83–89. [Google Scholar] [CrossRef]
- Kettle, S.F.A.; Diana, E.; Boccaleri, E.; Stanghellini, P.L. The Vibrational Spectra of the Cyanide Ligand Revisited. Bridging Cyanides. Inorg. Chem. 2007, 46, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, K.R.; Heintz, R.A. Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives. In Progress in Inorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1996; pp. 283–391. [Google Scholar] [CrossRef]
- Lowry, R.B. SERS and Fourier Transform SERS Studies of the Hexacyanoferrate(III)-Hexacyanoferrate(II) Couple on Gold Electrode Surfaces. J. Raman Spectrosc. 1991, 22, 805–809. [Google Scholar] [CrossRef]
- Allen, C.S.; Van Duyne, R.P. Molecular Generality of Surface-Enhanced Raman Spectroscopy (SERS). A Detailed Investigation of the Hexacyanoruthenate Ion Adsorbed on Silver and Copper Electrodes. J. Am. Chem. Soc. 1981, 103, 7497–7501. [Google Scholar] [CrossRef]
- Bobicki, E.R.; Liu, Q.; Xu, Z. Ligand-Promoted Dissolution of Serpentine in Ultramafic Nickel Ores. Miner. Eng. 2014, 64, 109–119. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J. Experimental Study of Brucite Dissolution and Precipitation in Aqueous Solutions: Surface Speciation and Chemical Affinity Control. Geochim. Cosmochim. Acta 2004, 68, 31–45. [Google Scholar] [CrossRef]
- Templeton, A.S.; Ellison, E.T. Formation and Loss of Metastable Brucite: Does Fe(II)-Bearing Brucite Support Microbial Activity in Serpentinizing Ecosystems? Philos. Trans. R. Soc. A 2020, 378, 20180423. [Google Scholar] [CrossRef] [PubMed]
- Bethke, C.M. Geochemical and Biogeochemical Reaction Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Medina, D.; Anderson, C.G. A Review of the Cyanidation Treatment of Copper-Gold Ores and Concentrates. Metals 2020, 10, 897. [Google Scholar] [CrossRef]
- Guo, B.; Peng, Y.; Parker, G. Electrochemical and Spectroscopic Studies of Pyrite–Cyanide Interactions in Relation to the Depression of Pyrite Flotation. Miner. Eng. 2016, 92, 78–85. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J. The Emergence of Life from Iron Monosulphide Bubbles at a Submarine Hydrothermal Redox and pH Front. J. Geol. Soc. 1997, 154, 377–402. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a Source of Energy at the Origin of Life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef]
- Russell, M.J.; Nitschke, W. Methane: Fuel or Exhaust at the Emergence of Life? Astrobiology 2017, 17, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, K.A.; Kelley, D.S.; Butterfield, D.A.; Nelson, B.K.; Früh-Green, G. Formation and Evolution of Carbonate Chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta 2006, 70, 3625–3645. [Google Scholar] [CrossRef]
- Hara, E.K.; Templeton, A.S. Releasing Cyanide from Ferrocyanide through Carbon Monoxide Ligand Exchange in Alkaline Aqueous Environments. ACS Earth Space Chem. 2024, 8, 900–906. [Google Scholar] [CrossRef]
- Holm, N.G.; Dumont, M.; Ivarsson, M.; Konn, C. Alkaline Fluid Circulation in Ultramafic Rocks and Formation of Nucleotide Constituents: A Hypothesis. Geochem. Trans. 2006, 7, 7. [Google Scholar] [CrossRef]
- Samulewski, R.B.; Pintor, B.E.; Ivashita, F.F.; Paesano, A.; Zaia, D.A.M. Study of Ferrocyanide Adsorption onto Different Minerals as Prebiotic Chemistry Assays. Astrobiology 2021, 21, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
[Brucite] (mM) | [CN−] (mM) | Initial pH | Final pH | Measured [Fe(CN)6]4− (mM) | Theoretical Maximum [Fe(CN)6]4− (mM) |
---|---|---|---|---|---|
6 mM | 10 | 10.09 | 8.69 ± 0.05 | 1.06 ± 0.10 | 1.67 |
6 mM | 5 | 10.09 | 7.95 ± 0.06 | 0.24 ± 0.05 | 0.83 |
6 mM | 0 | 10.09 | 7.41 ± 0.10 | 0 | 0 |
6 mM | 10 | 11.26 | 10.12 ± 0.02 | 0.29 ± 0.01 | 1.67 |
6 mM | 5 | 11.26 | 9.97 ± 1.29 | 0.19 ± 0.01 | 0.83 |
6 mM | 0 | 11.26 | 9.64 ± 0.07 | 0 | 0 |
60 mM | 10 | 10.00 | 8.40 ± 0.09 | 0 | 1.67 |
60 mM | 5 | 10.00 | 8.36 ± 0.04 | 0 | 0.83 |
60 mM | 0 | 10.00 | 8.29 ± 0.02 | 0 | 0 |
[Brucite] (mM) | Final pH | [CN−] (mM) | CN/Brucite (mM/mM) |
---|---|---|---|
6 mM | 8.69 ± 0.05 | 10 | 3.64 |
6 mM | 7.95 ± 0.06 | 5 | 3.56 |
6 mM | 10.12 ± 0.02 | 10 | 8.26 |
6 mM | 9.97 ± 1.29 | 5 | 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, E.K.; Templeton, A.S. Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry. Minerals 2025, 15, 141. https://doi.org/10.3390/min15020141
Hara EK, Templeton AS. Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry. Minerals. 2025; 15(2):141. https://doi.org/10.3390/min15020141
Chicago/Turabian StyleHara, Ellie K., and Alexis S. Templeton. 2025. "Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry" Minerals 15, no. 2: 141. https://doi.org/10.3390/min15020141
APA StyleHara, E. K., & Templeton, A. S. (2025). Cyanide Storage on Ferroan Brucite (MgxFe1−x(OH)2): Implications for Prebiotic Chemistry. Minerals, 15(2), 141. https://doi.org/10.3390/min15020141